MATERIAIS COMPONENTES DO CONCRETO
|
|
|
- Jónatas Oliveira de Sousa
- 9 Há anos
- Visualizações:
Transcrição
1 INSTITUTO FEDERAL DO RIO GRANDE DO SUL IFRS LABORATÓRIO DE ESTRUTURAS E MATERIAIS DE CONSTRUÇÃO CIVIL - LEMCC TECNOLOGIA EM CONSTRUÇÃO DE EDIFÍCIOS MATERIAIS DE CONSTRUÇÃO CIVIL MATERIAIS COMPONENTES DO CONCRETO ESPECIFICAÇÕES E ENSAIOS versão 1.1
2 CAPÍTULO 1 CONSIDERAÇÕES INICIAIS 1.1 INTRODUÇÃO Esta apostila visa a apresentar sob um aspecto prático as especificações e metodologias de ensaio dos materiais com os quais é produzido o concreto de cimento Portland. São buscadas as regulamentações normativas de cada situação, objetivando uma preparação para a aplicação profissional dos conceitos aqui apresentados. Ao mesmo tempo, são expostas questões de conceituação teórica com o intuito de permitir o correto entendimento do conteúdo abordado. 1.2 OBJETIVOS Com a aquisição do conhecimento contido no presente documento, o aluno deverá ser capaz de distinguir sobre as especificações e especificidades dos materiais componentes do concreto, utilizando as normas técnicas respectivas. Deverá possuir competência para a correta interpretação dos resultados dos ensaios realizados. 1.3 CONCRETO Concreto de Cimento Portland é o material mais utilizado na construção civil na atualidade. É constituído pela mistura de cimento, agregados inertes e água e, de forma eventual, por aditivos e adições conforme a necessidade. Este material passou a ser utilizado como é conhecido hoje no fim do século XIX, com uso intensificado em meados do século XX; quando o concreto se transformou no material mais utilizado do mundo depois da água. A mistura de Cimento Portland e água forma uma pasta cuja fluidez varia conforme a relação água/cimento 1 da combinação. Esta pasta envolve os agregados, produzindo um material que é capaz de se moldar aos mais variados formatos. Nas primeiras horas o concreto apresenta certa fluidez, dependendo das características da mistura, com o passar do tempo, a mistura endurece pela reação de caráter irreversível do cimento em contato com a água. Este adquire resistência mecânica tornando-se um material de grande utilidade estrutural. 1 Razão, em massa, entre a quantidade de água e de cimento adicionada em argamassas ou concretos. 2
3 1.4 MATERIAIS COMPONENTES DO CONCRETO MCC s Tão fundamental quanto uma boa dosagem do concreto é a correta escolha dos materiais que o compõe. Neste documento são apresentados os principais materiais utilizados na produção do concreto e os principais ensaios de caracterização dos mesmos. A norma brasileira NBR Controle tecnológico de materiais componentes do concreto estabelece as condições exigíveis do controle da qualidade dos materiais com os quais o concreto é produzido. CAPÍTULO 2 CIMENTO PORTLAND 2.1 INTRODUÇÃO O Cimento Portland é um aglomerante hidráulico 2 proveniente da moagem do chamado Clínquer Portland. O clínquer é obtido pela mistura e moagem de calcário e argila em proporções adequadas. Esta mistura é aquecida em fornos (em geral rotativos) até temperaturas próximas da fusão completa do material, sofrendo um rápido resfriamento. O clínquer Portland é moído juntamente com gesso, resultando no Cimento Portland; um material em pó, fino e de cor acinzentada. Figura 2.1 Clínquer Portland. 2 Aglomerante hidráulico são os elementos que endurecem pela ação de água, através do processo de hidratação e depois de endurecido adquire características de rocha artificial, mantendo suas propriedades. 3
4 A adição do gesso (gipsita) é realizada na moagem final do cimento com o intuito de regular o tempo de pega, permitindo que o cimento permaneça trabalhável por um período de, pelo menos, uma hora. O cimento produzido desta forma constitui-se de vários óxidos que compõem compostos complexos que se combinam com a água. Esta combinação entre o cimento e água resulta em um material cristalino com propriedades de resistência e aderência aos agregados e às armaduras. Os principais óxidos que compõem o cimento e suas representações de forma simplificada são apresentados na Tabela 2.1. Tabela 2.1 Componentes principais do Cimento Portland. Representação Descrição Representação Simplificada CaO Óxido de Cal C SiO 2 Óxido de Silício S Al 2 O 3 Óxido de Alumínio A Fe 2 O 3 Óxido de Ferro F Figura 2.2 Jazida de extração mineral e britador (ITAMBÉ, 2008). O resultado das combinações entre os principais óxidos é a geração de quatro componentes principais: - C 3 S Silicato tricálcico; - C 2 S Silicato dicálcico; - C 3 A Aluminato tricálcico; - C 4 AF Ferro aluminato tetracálcico. 4
5 Figura 2.3 Forno de clinquerização (ITAMBÉ, 2008). As características proporcionadas por estes compostos ao Cimento Portland durante o seu processo de hidratação estão apresentadas de forma resumida na Tabela 2.2. A Figura 2.4 apresenta o comportamento mecânico dos componentes do concreto com o aumento da idade. As Figuras 2.5 e 2.6 apresentam um esquema simplificado do processo produtivo do cimento Portland e a vista aérea de uma fábrica, respectivamente. Tabela 2.2 Características principais dos compostos de Cimento Portland. Composto Característica C 3 S Endurecimento (reação) rápido, liberação de um moderado calor de hidratação 3, altas resistências iniciais. C 2 S Endurecimento lento, baixo calor de hidratação liberado, altas resistências finais. C 3 A Endurecimento muito rápido, muito alto calor de hidratação, baixa resistência. C 4 AF Endurecimento rápido, calor de hidratação alto, resistência desprezível. 3 Calor desenvolvido no maciço de concreto durante o processo exotérmico de hidratação do cimento. 5
6 Figura 2.4 Comportamento mecânico dos compostos do cimento Portland (TARTUCE e GIOVANNETTI, 1990). Figura 2.5 Fluxograma de produção do cimento. 6
7 Figura 2.6 Vista aérea da fábrica de cimento Portland Ash Grove Cement em Oregon-EUA (MEHTA e MONTEIRO, 2008) ADIÇÕES Em determinadas situações, são adicionados outros materiais ao composto oriundo da moagem de clínquer e gesso. Quando estas adições participam do processo de hidratação do cimento são denominadas adições ativas. As adições no cimento melhoram certas características do concreto, além de preservar o ambiente ao aproveitar resíduos e diminuir a extração de matéria prima. A introdução destas adições resulta em Cimentos Portland de tipos distintos, cujas características e propriedades são normatizadas por normas brasileiras (NBR) vigentes. 2.2 TIPOS DE CIMENTOS PORTLAND CIMENTO PORTLAND COMUM (CP I) Este é um tipo de cimento sem qualquer adição além do gesso, que serve como retardador de pega. Suas características são estabelecidas através da NBR 5732 Cimento Portland comum. Sua 7
8 utilização é indicada em construções de concreto nas quais a estrutura não fique exposta a ambientes agressivos, com presença de sulfatos. Também se pode encontrar no mercado o Cimento Portland comum com adições (CP I-S), cuja composição apresenta a adição de material pozolânico 4 em massa, ao ter de 5 % CIMENTO PORTLAND COMPOSTO (CP II) Este tipo de cimento é especificado através da norma brasileira NBR Cimento Portland composto. Tem como característica a liberação de calor numa velocidade menor do que o gerado pelo CP I. Desta forma, sua utilização é mais recomendada no caso de grandes maciços de concreto, onde o elevado volume da concretagem e a superfície relativamente pequena reduzem a capacidade de resfriamento da massa. Este cimento também apresenta melhor resistência ao ataque dos sulfatos contidos no solo. Os Cimentos Portland Compostos apresentam-se em três diferentes composições: a) Cimento Portland composto com fíler (CP II-F): Este cimento apresenta adição de material carbonático 5 (fíler) à mistura clínquer e gesso. A adição de fíler é estabelecida pela NBR entre 6 e 10 %, em massa, em relação ao cimento comum. Sua utilização não é recomendada em ambientes agressivos. b) Cimento Portland composto com pozolana (CP II-Z): Este tipo de cimento contém adição de material pozolânico. Apresenta adição de pozolana no percentual de 6 a 14 %, em massa; admitindo até 10 % de fíler à composição. A característica de resistência a sulfatos torna o composto pozolânico recomendado à aplicação em ambiente com sulfatos, tais como obras marítimas, subterrâneas ou industriais. c) Cimento Portland composto com escória (CP II-E): Este cimento apresenta adição de escória granulada de alto-forno. A escória de alto-forno é obtida pelo processo de fusão do subproduto da produção de aço ou ferro, conhecido como escória 4 Material composto em grande parte por silicatos que reagem com o hidróxido de cálcio liberado na hidratação do cimento, produzindo uma pasta compacta com resistência a certos agentes agressivos. 5 Materiais carbonáticos são rochas moídas compostas por carbonato de cálcio, como o calcário. Quando adicionados ao concreto são denominados fíler. 8
9 de ferro. Esta fusão gera um material vítreo, capaz de ser moído. Esta escória é composta por silicatos inertes que se comportam como aglomerantes hidráulicos, auxiliando no endurecimento da pasta. O teor em massa de escória é estabelecido pela NBR com valores entre 6 e 34 %; com a possibilidade de adição de fíler ao teor máximo de 10 %. É recomendado para estruturas com necessidade de calor de hidratação moderado, tais como grandes maciços de concreto, como obras de barragens CIMENTO PORTLAND DE ALTO-FORNO (CP III) Este tipo de cimento é especificado pela NBR 5735 Cimento Portland de alto-forno. Apresenta adição de escória em um percentual superior ao utilizado no cimento composto CP II-E; fato que proporciona a este cimento características como: baixo calor de hidratação e maior resistência a agentes agressivos. Sua utilização é indicada para os mesmos casos do cimento composto por escória, porém com vantagens em relação ao CP II. Os teores de adição de escória de alto-forno são apresentados na Tabela 2.3. Tabela 2.3 Teores dos componentes do CP III segundo a NBR Classe de Sigla Resistência 25 CP III Componentes (% em massa) Clínquer + sulfato Escória granulada Material de cálcio de alto-forno carbonático CIMENTO PORTLAND POZOLÂNICO (CP IV) Este tipo de cimento é especificado pela NBR 5736 Cimento Portland pozolânico. Apresenta adição de material pozolânico na proporção de 15 a 50 % em massa. O alto teor pozolânico proporciona ao concreto uma maior impermeabilidade e conseqüente durabilidade. Os materiais pozolânicos são definidos como elementos silicosos ou silicoaluminosos que por si só possuem pouca ou nenhuma atividade aglomerante, mas que, quando finamente divididos e na presença de água, reagem com o hidróxido de cálcio formando um composto com propriedades cimentícias. A origem da pozolana pode ser natural ou artificial. No caso natural são provenientes 9
10 regiões vulcânicas 6 ou de origem sedimentar. As pozolanas artificiais são oriundas de tratamentos térmicos ou subprodutos industriais, podendo ser: - Argilas calcinadas: provenientes da calcinação de algumas argilas que, quando tratadas com temperaturas entre 500 e 900 C, passam a reagir com o hidróxido de cálcio; - Cinzas volantes: resíduos provenientes da combustão de carvão pulverizado ou granulado. As cinzas volantes são precipitadas eletrostaticamente dos fumos de exaustão das centrais termelétricas a carvão e são as pozolanas artificiais mais comuns. No Rio Grande do Sul, o cimento CP IV é o mais produzido. Este fato decorre da grande oferta de cinzas volantes oriundas da queima de carvão mineral para a geração de energia elétrica nas usinas termoelétricas. A região de Candiota e Pinheiro Machado/RS concentra grande parte da produção de cimento deste estado CIMENTO PORTLAND DE ALTA RESISTÊNCIA INICIAL (CP V-ARI) Assim como o cimento comum CP I, o cimento CP V não apresenta nenhum tipo de adição, embora possa ser comercializado com teor de material carbonático de até 5 %. No entanto sua produção difere da dos demais cimentos em virtude da dosagem diferente entre calcário e argila utilizada na produção do clínquer e ao processo mais aprimorado de moagem que proporciona um cimento de grãos mais finos. Estas características fazem com que o CP V-ARI apresente resistências elevadas com maior rapidez. Este tipo de cimento é amplamente utilizado em estruturas pré-moldadas de concreto e em estruturas que exijam resistências iniciais mais elevadas nas primeiras idades. A norma brasileira NBR Cimento Portland de alta resistência inicial - define os parâmetros de produção deste tipo de cimento CIMENTO PORTLAND RESISTENTE A SULFATOS (CP RS) Este tipo de cimento busca proporcionar resistência a ambientes agressivos sulfatados que tendem a acarretar manifestações patológicas nas estruturas de concreto. Este tipo de cimento é indicado para regiões marítimas e industriais. A norma NBR 5737 Cimentos Portland resistentes a sulfatos apresenta as características inerentes ao cimento do tipo RS. Segundo esta norma, cinco 6 A origem do termo pozolana é a região do vulcão Vesúvio no território italiano, conhecida como Pozzuoli, onde são encontradas cinzas vulcânicas com propriedades pozolânicas. 10
11 tipos de cimentos podem apresentar resistência a sulfatos (CP I, CP II, CP III, CP IV e CP V-ARI), desde que satisfaçam as seguintes condições: - Teor de aluminato tricálcico (C 3 A) do clínquer e teor de adições carbonáticas de no máximo 8 % e 5 % em massa, respectivamente; - Cimentos do tipo alto-forno que contiverem entre 60 % e 70 % de escória granulada de alto-forno, em massa; - Cimentos do tipo pozolânico que contiverem entre 25 % e 40 % de material pozolânico, em massa; - Cimentos que tiverem antecedentes de resultados de ensaios de longa duração ou de obras que comprovem resistência aos sulfatos CIMENTO PORTLAND BRANCO (CPB) O cimento Portland branco é produzido a partir de clínquer Portland branco. Esta cor é obtida a partir de matérias primas com baixos teores de óxido de ferro e manganês; além do fato de utilizar caulim 7 ao invés de argila. A NBR Cimento Portland branco apresenta as especificações e exigências para este tipo de cimento. Figura 2.7 Extração e pedras de caulim. Este tipo de cimento é encontrado para duas distintas aplicações: - Cimento Portland branco estrutural: é utilizado na execução de concretos estruturais com finalidades arquitetônicas; - Cimento Portland branco não-estrutural: Não pode ser utilizado para fins estruturais, sendo aplicado em acabamentos, tais como o rejuntamento de revestimentos cerâmicos. 7 Minério composto de silicatos hidratados de alumínio, como a caulinita e a haloisita. Apresenta coloração branca. 11
12 2.2.8 CLASSES DE RESISTÊNCIA DO CIMENTO Além das especificações e classificações dos cimentos em virtude do tipo e teor de adição que o mesmo apresenta, têm-se a distinção em classes de resistência. Esta distinção é estabelecida com base no resultado aos 28 dias de idade da resistência à compressão de uma pasta do cimento determinada de acordo com a norma brasileira NBR 7215 Cimento Portland Determinação da resistência à compressão. As designações das classes de cimento são 25, 32 e 40; referindo-se as resistências à compressão de 25, 32 e 40 MPa, respectivamente. Por exemplo, um cimento com a classificação CP IV-32, indica um cimento Portland pozolânico cuja resistência à compressão conforme a NBR 7215 é de, pelo menos, 32 MPa aos 28 dias de idade. No Brasil, a produção de cimento apresentou um grande incremento na década de 1970, através do chamado Milagre Brasileiro. Após duas décadas de estagnação, a produção voltou a crescer, impulsionado, sobretudo, pela criação do Plano Real e pelo Programa de Aceleração do Crescimento (PAC). A Figura 2.8 apresenta esta evolução. Figura 2.8 Consumo brasileiro de cimento (Fonte: SNIC). 2.3 ENSAIOS DE CIMENTOS Existem diversos ensaios utilizados para caracterizar os cimentos. Alguns são comumente utilizados, outros são realizados em situações específicas, dependendo da necessidade. A seguir são apresentados alguns destes ensaios, suas características, procedimentos e referências normativas. 12
13 Cada tipo de cimento possui suas especificações, sendo estas estabelecidas nas respectivas normas de referência. A metodologia de ensaio destas especificações, no entanto, é comum à maioria dos cimentos Portland PASTA DE CONSISTÊNCIA NORMAL A determinação da pasta de consistência normal faz-se fundamental no estudo das propriedades dos cimentos Portland. Esta pasta normal é utilizada como forma de padronizar todos os ensaios de caracterização dos cimentos, tornando uniforme a metodologia de análise e evitando variações provocadas pelas manipulações de laboratoristas. A norma brasileira NBR NM 43 Cimento Portland Determinação da pasta de consistência normal define a pasta normal como a mistura de água destilada e cimento Portland realizada conforme esta norma, na qual a sonda de Tetmajer 8 (Figura 2.10-a), acoplada ao aparelho de Vicat (Figura 2.9), penetra a uma distância de (6 ± 1) mm da placa da base. A metodologia de preparação da pasta de consistência normal é padronizada pela NBR NM 43. Para a mistura, deve ser utilizado um misturador com pás padronizadas (Figura 2.11) e com duas velocidades de rotação e translação, conforme a Tabela 2.4. Figura 2.9 Aparelho de Vicat para determinação do tempo de início e fim de pega no cimento e pasta de consistência normal. 8 Sonda acoplada ao aparelho de Vicat para a determinação da pasta de consistência normal. 13
14 Medidas em milímetros (a) (b) (c) Figura 2.10 Sonda de Tetmajer para determinação da consistência normal (a); Agulha para determinação do tempo de pega inicial (b) e Agulha e acessórios para determinação do fim de pega (NBR NM 43). (a) (b) Figura 2.11 (a) Argamassadeira de movimento planetário para mistura de cimentos e argamassas em ensaios de laboratório; (b) Misturador mecânico com dimensões normatizadas. Tabela 2.4 Velocidade da pá do misturador (NBR NM 43). Velocidade Rotação Movimento Planetário [min -1 ] [min -1 ] Lenta 140 ± 5 62 ± 5 Rápida 285 ± ±
15 A pasta é preparada com uma massa de cimento de (500 ± 0,5) gramas, sendo a água adicionada ao aglomerante por tentativas, com exatidão de 0,5 g. Após a mistura, a pasta deve ser colocada no molde e posicionada no aparelho de Vicat. Esta é classificada como de consistência normal quando a pasta faz com que a sonda de Tetmajer se situe a uma distância de (6 ± 1) mm da placa da base após 30 segundos do instante em que esta foi solta no molde. Nos resultados do ensaio de determinação da pasta de consistência normal, deve ser expresso o percentual de água adicionado ao cimento que proporcionou a pasta normal. A equação (2.1) estabelece a quantidade de água utilizada: (2.1) Onde: - m a é a massa de água utilizada para obtenção da pasta normal, em gramas; - m c é a massa de cimento utilizada no ensaio, em gramas. Esta pasta de consistência normal deverá ser utilizada na determinação de outras propriedades dos cimentos Portland, conforme se pode verificar a seguir PEGA E ENDURECIMENTO Após um determinado tempo da mistura entre o cimento e a água, a pasta começa a perder sua plasticidade. Este fato ocorre devido ao início das reações químicas nos compostos do cimento. Ao tempo transcorrido entre a mistura e o início das reações dá-se o nome de início de pega. O início de pega pode ser percebido através do aumento repentino da viscosidade da pasta, bem como pelo aumento de sua temperatura decorrência das reações exotérmicas da hidratação do cimento. Por convenção, dá-se o nome de fim de pega ao ponto em que a pasta de cimento atinge um estágio de indeformabilidade ao sofrer pequenas solicitações de cargas. Após o fim de pega, a pasta de cimento continua o processo de incremento de resistência mecânica e coesão; etapa conhecida como endurecimento. Determinar o início e o fim de pega do cimento é importante para se ter uma noção do período em que o concreto irá apresentar plasticidade, permitindo o transporte, lançamento e 15
16 adensamento; bem como o instante a partir do qual se poderá transitar sobre ele e iniciar o procedimento de cura 9. Diversos são os fatores que influenciam nos tempos de início e fim de pega: - Composição de cimento rica em aluminato tricálcico (C 3 A) acarreta períodos curtos de início de pega, pois provoca um rápido endurecimento da pasta. A adição de gesso ao composto corrige este tempo; - Quanto mais aprimorada for a moagem do clínquer, ou seja, mais fino forem os grãos do cimento, mais rápido o início de pega. Isto ocorre devido a maior área de hidratação dos grãos no caso de moagem mais fina; - O aumento da temperatura culmina em redução do início de pega pela aceleração das reações químicas; A medição do tempo de pega do cimento é feita com a utilização de uma agulha (Figura 2.10-b e 2.10-c), acoplada ao Aparelho de Vicat (Figura 2.9). A norma NBR NM 65 Cimento Portland Determinação do tempo de pega, estabelece as condições e metodologias de ensaio. O ensaio consiste em produzir uma pasta de cimento de consistência normal e penetrar uma agulha de forma padronizada à mesma. O tempo de início de pega é, em condições normalizadas, o intervalo de tempo decorrido desde a adição de água ao cimento até o momento em que a agulha de Vicat penetra na pasta até uma distância de (4 ± 1) mm da placa base. O tempo de fim de pega é, em condições normalizadas, o intervalo de tempo decorrido desde a adição de água ao cimento até o momento em que a agulha de Vicat penetra 0,5 mm na pasta EXPANSIBILIDADE (ESTABILIDADE DE VOLUME) Faz-se fundamental que uma estrutura executada a partir de uma pasta de cimento (argamassa ou concreto), não sofra grandes variações volumétricas desde a hidratação até o endurecimento. Mais precisamente, não pode haver uma expansão prejudicial na pasta, fato que, sob condições de contenção, tende a provocar desagregações e deformações. Cimentos com excesso de óxido de cálcio (CaO) apresentam maior tendência de expansibilidade, visto que a hidratação deste composto ocorre mais lentamente e o hidróxido de cálcio (Ca(OH) 2 ) ocupa um volume muito maior quando comparado ao CaO. 9 Conjunto de procedimentos realizados para evitar a perda acelerada de água do maciço de concreto nos primeiros dias após o lançamento. 16
17 Devido ao fato da expansão do cimento dar-se de forma bastante lenta, muitas vezes tornando-se aparente apenas após alguns meses, são utilizados ensaios acelerados para a determinação desta propriedade. A norma NBR Cimento Portland Determinação da expansibilidade de Le Chatelier, normatiza a metodologia para determinar a expansibilidade da pasta de cimento. O método consiste em medir o distanciamento de duas hastes provocado pela expansão da pasta de cimento de consistência normal moldada no interior de um cilindro fendido segundo uma diretriz, em um aparelho denominado Agulha de Le Chatelier (ver Figura 2.12). (a) (b) Figura 2.12 Especificações da Agulha de Le Chatelier (a); Agulha de Chatelier (b). Este documento apresenta duas análises distintas: Expansibilidade a frio e a quente. Estas se diferem em função das condições de cura e ensaio a que a pasta é submetida CALOR DE HIDRATAÇÃO As reações que ocorrem na pasta de cimento durante o período de pega e endurecimento são exotérmicas; ou seja, acarretam elevação da temperatura do concreto ou argamassa, principalmente nas reações rápidas. Os efeitos do calor da hidratação do cimento são mais sensíveis nos concretos-massa 10, uma vez que a dissipação térmica ocorre pela superfície da peça e este calor é proporcional ao volume, provocando efeitos desfavoráveis. Os efeitos da elevação da temperatura dos concretos e argamassas em decorrência da energia térmica liberada durante a hidratação do cimento podem ser muito nocivos às estruturas. 10 Estruturas que exigem grandes volumes de concreto como, por exemplo, as obras de barragens. 17
18 No entanto, em outras situações o calor de hidratação pode ser favorável, como por exemplo, nas concretagens que são realizadas em situações de baixa temperatura, uma vez que este calor tende a oferecer energia de ativação para as reações de hidratação. O calor de hidratação é a quantidade de calor liberada pela unidade de massa de cimento durante sua reação de hidratação. É expresso em calorias por grama (cal/g) ou joule por grama (J/g). Figura 2.13 Taxa de liberação de calor de uma pasta de cimento Portland durante a pega e o período de endurecimento (MEHTA e MONTEIRO, 2008). A norma brasileira NBR Cimento Determinação do calor de hidratação pelo método da garrafa de Langavant, descreve a metodologia de determinação do calor de hidratação dos cimentos por meio de um calorímetro semi-adiabático 11. Figura 2.14 Garrafa de Langavant para determinação do calor de hidratação do cimento RESISTÊNCIA À COMPRESSÃO A determinação da resistência do cimento faz-se necessária à qualificação dos distintos cimentos quanto aos esforços mecânicos que o mesmo é capaz de suportar. 11 Uma fronteira adiabática isola completamente o sistema de sua vizinhança no que tange a troca de matéria ou ao calor. 18
19 O conceito de resistência do cimento visa determinar o comportamento do cimento nas argamassas e concretos; sendo assim, os ensaios deveriam ser realizados com base em pastas de argamassas e em concretos. Na prática esta metodologia não é adotada por obrigar a trabalhar com grandes quantidades de materiais e pelo fato de ampliar a possibilidade de dispersão nos resultados devido à dificuldade de normatizar todos os agregados utilizados. O ensaio da pasta de cimento e água sem agregados também não é representativo devido à diferença na quantidade de água para amassamento e devido à variação do incremento de resistência com o tempo quando comparada ao ensaio com a utilização de agregados. A Figura 2.15 apresenta uma relação entre as resistências de concreto e de argamassa para uma mesma relação água/cimento. Figura 2.15 Relação entre as resistências de concreto e de argamassas com igual relação água/cimento (NEVILLE, 2007). Como forma de uniformizar o método de qualificação do cimento quanto aos esforços mecânicos, foi determinado o ensaio do cimento sob a forma de argamassa composta por agregado miúdo. A NBR 7215 Cimento Portland Determinação da resistência à compressão, especifica o método de determinação da resistência à compressão do cimento Portland. A argamassa a ser ensaiada deve ser produzida com uma areia normal, cujas especificações atendam a NBR 7214 Areia normal para ensaio de cimento Especificação. A NBR 7215 especifica todas as condições de ensaio, desde a temperatura ambiente do laboratório (24 ± 4 C) até os métodos de cura dos corpos de prova; passando pela dosagem dos materiais. Este documento define a relação água/cimento da argamassa em 0,48. A mistura dos 19
20 materiais deve ser realizada com equipamento mecanizado e padronizado, conforme a Figura Os corpos de prova de argamassa são moldados em formas cilíndricas com dimensões 5 x 10 cm (Figura 2.16) e rompidos sob compressão para determinação da carga de ruptura 12. Antes do rompimento os exemplares devem ser capeados com um mistura de enxofre a quente, conforme a Figura Figura 2.16 Formas metálicas para corpos de prova de argamassa com dimensões 5 x 10 cm. Para cada idade, devem ser rompidos quatro CP s; sendo a resistência à compressão igual à média dos resultados, em megapascals, dos rompimentos individuais. Figura 2.17 Capeamento de corpos de prova de argamassa com enxofre. Os quatro resultados individuais de resistência, bem como a média destes resultados e o desvio padrão máximo 13 deverão compor o certificado de ensaio. 12 Carga máxima indicada no equipamento de ensaio. 13 Desvio padrão máximo é a diferença entre a resistência média dos rompimentos e a resistência individual que mais se afasta desta média. Deve ser expresso em percentual. 20
21 Quando o desvio padrão máximo for superior a 6 %, deve ser calculada uma nova média, desconsiderando o valor discrepante. Este valor descartado deve ser identificado no certificado de ensaio por um asterisco. A Figura 2.18 mostra um exemplo de prensa hidráulica utilizada no rompimento dos corpos de prova e na determinação da resistência à compressão do cimento. A Tabela 2.5 (pág. 27) apresenta os valores mínimos exigidos de resistência à compressão para cada idade de rompimento de todos os tipos de cimento comercializados no Brasil. Figura 2.18 Modelo de prensa hidráulica com acionamento elétrico para rompimento dos corpos de prova (Catálogo EMIC). A Figura 2.19 apresenta a evolução média da resistência à compressão dos tipos de cimento Portland brasileiros. Figura 2.19 Evolução média da resistência à compressão dos cimentos brasileiros (ABCP) FINURA 21
22 A medida da finura do cimento Portland busca verificar a granulometria dos grãos deste material. A definição da finura é importante, pois muitas propriedades dos concretos e argamassas variam em função deste valor. Como a hidratação do cimento se dá através da superfície dos grãos, a finura (grau de moagem) irá influenciar na rapidez da hidratação e em propriedades como calor de hidratação, retração, incremento de resistência com a idade, entre outras. Cimentos mais finos terão maiores resistências nas primeiras idades, bem como, tenderão a ser mais homogêneos (resistentes à penetração de água). Esta finura, no entanto, aumenta a possibilidade de fissuramento e retração, através da quantidade de calor liberada. Existem duas metodologias normatizadas para a definição da finura do cimento: a) NBR Cimento Portland - Determinação da finura por meio da peneira 75 µm (n 200) Consiste em determinar a percentagem retida de uma amostra de cimento em uma peneira com abertura de malha de 0,075 mm (peneira de n 200). Utiliza-se uma amostra de cimento de 20 gramas, coloca-se esta sobre a peneira n 200 e se inicia peneiramento mecanizado por um período de 3 minutos. O índice de finura do cimento é definido através da equação (2.2): (2.2) Onde: F é o índice de finura (%); R é o resíduo de cimento retido na peneira n 200 (g); M é a massa da amostra inicial de cimento (g); C é um fator de correção estabelecido em norma, referente à peneira utilizada no ensaio. Exemplo: Cimentos portland comum da classe CP I 32 apresentam resíduo retido na peneira de n 200 inferior a 12 %. b) NBR NM 76 Cimento Portland Determinação da finura pelo método de permeabilidade ao ar (Método de Blaine) 22
23 Consiste em determinar a área específica pelo tempo de passagem de certa quantidade de ar através de uma porção de cimento. A determinação da superfície serve, principalmente, para checar a uniformidade da moagem de uma fábrica de cimento. Este método baseia-se no tempo que determinada quantidade de ar necessita para atravessar uma camada de cimento compactada, de dimensões e porosidade especificadas. Em condições normatizadas, a superfície específica do cimento é proporcional a t, onde t é o tempo necessário para a quantidade de ar atravessar a camada de cimento. A superfície específica do cimento é expressa em centímetros quadrados por grama (cm²/g) ou metro quadrado por quilograma (m²/kg) e é determinada através da equação (2.3): Onde: S é a superfície específica do cimento (cm²/g); ɛ é a porosidade da camada (ɛ = 0,5 para as condições prescritas na NBR NM 76); t é o tempo medido (s); ρ é a massa específica do cimento (g/cm³); K é a uma constante que depende do aparelho utilizado no ensaio; ƞ é a viscosidade do ar à temperatura de ensaio (Pa.s). (2.3) Figura 2.20 Conjunto para determinação da superfície específica do cimento (Aparelho de Blaine). Como exemplo: um cimento portland comum, da classe CP I 32, apresenta uma área específica, determinada através do Método de Blaine, igual ou superior a 240 m²/kg. 23
24 2.3.7 PERDA AO FOGO E RESÍDUO SOLÚVEL O ensaio de perda ao fogo é determinado com base na norma brasileira NBR NM 18 Análise química Determinação de perda ao fogo - Consiste, basicamente, na pesagem de amostras de cimento Portland a uma temperatura entre 900 e 1000 C. Este ensaio estabelece a perda de massa do cimento após o aquecimento. Esta perda refere-se, em grande parte, ao dióxido de carbono presente no fíler calcário, sendo que este ensaio serve como parâmetro de estimativa do teor desta adição. Outra parcela da perda ao fogo refere-se à perda de água do gesso através do processo de evaporação. Um valor elevado de perda ao fogo caracteriza hidratação avançada do cimento e desaconselha sua utilização. O percentual de perda ao fogo é determinado pela equação (2.4): ( ) (2.4) Onde: M S é a massa do cimento seca a 100 C (g); M Q é a massa do cimento submetida à temperatura superior a 900 C (g); PF é a perda ao fogo (%). O resíduo insolúvel é estabelecido conforme as recomendações da NBR NM 15 Análise química Determinação do resíduo insolúvel, indica a quantidade de elementos não hidráulicos no cimento. A determinação do resíduo insolúvel é realizada mediante o ataque por ácido clorídrico diluído. Este ensaio permite estabelecer o teor de cinzas na massa do cimento. Os limites de perda ao fogo e resíduo insolúvel estabelecidos para cada tipo de cimento estão apresentados na Tabela 2.5 da página MASSA ESPECÍFICA A massa específica do cimento caracteriza-se pela razão entre a massa do sólido e o volume ocupado pelo mesmo. A determinação da massa específica do cimento é realizada com base na norma NBR NM 23 Cimento Portland e outros materiais em pó Determinação da massa específica. Este documento define as condições de ensaio e os equipamentos utilizados. O Frasco de Le Chatelier é utilizado para a determinação desta propriedade através da diferença de volume. Um determinado líquido (em geral querosene) é introduzido no frasco e tem seu volume medido. Após, uma massa previamente conhecida de cimento é colocada neste frasco e a variação de volume da 24
25 mistura é determinada. A massa específica é determinada pela razão entre a massa de cimento e a variação de volume proporcionada pela introdução do material sólido. Figura 2.21 Frasco de Le Chatelier para determinação da massa específica do cimento. 2.4 ESPECIFICAÇÕES E EXIGÊNCIAS DOS CIMENTOS Os cimentos Portland possuem características estabelecidas para cada um dos tipos produzidos. São partes destas características normatizadas as exigências químicas, físicas e mecânicas. A Tabela 2.5 apresenta as especificações estabelecidas em cada uma das normas técnicas de referência para os distintos cimentos comercializados no Brasil. 25
26 Tabela 2.5 Especificações e exigências técnicas dos tipos de cimento Portland brasileiros. Especificações Unid Norma do Tipo de Cimento ensaio CP I CP I-S CP II-E CP II-Z CP II-F CP III CP IV CP V NBR 5732 NBR NBR 5735 NBR 5736 NBR 5733 Resíduo insolúvel (RI) % NBR NM 15 1,0 5,0 2,5 16,0 2,5 1,5-1,0 Perda ao fogo (PF) % NBR NM 18 2,0 4,5 6,5 4,5 4,5 4,5 Óxido de magnésio (MgO) % NBR NM 14 6,5 6,5-6,5 6,5 Trióxido de enxofre (SO 3 ) % NBR NM 16 4,0 4,0 4,0 4,0 3,5 Anidrido carbônico (CO 2 ) % NBR NM 20 1,0 3,0 5,0 3,0 3,0 3,0 Pega Limites de Classe Início (h) h NBR NM 65 Fim (h) 10 10,0 12,0 12,0 10,0 quente mm 5 5,0 5,0 5,0 5,0 Expansibilidade a NBR frio mm 5 5,0 5,0 5,0 5,0 Peneira 75 µm % NBR ,0 10,0 12,0 10,0 8,0 8,0 6,0 Finura Área específica m²/kg NBR NM dias 8,0 10,0 15,0 8,0 10,0 15,0 8,0 10,0 12,0 8,0 10,0 24,0 14 Resistência à 7 dias 15,0 20,0 25,0 15,0 20,0 25,0 15,0 20,0 23,0 15,0 20,0 34,0 MPa NBR 7215 compressão 28 dias 25,0 32,0 40,0 25,0 32,0 40,0 25,0 32,0 40,0 25,0 32,0-91 dias ,0 40,0 48,0 32,0 40,0-14 Exigível a resistência de 14,0 MPa com 1 dia de idade. 26
27 CAPÍTULO 3 AGREGADOS 3.1 INTRODUÇÃO O agregado caracteriza-se como um componente geralmente inerte, desempenhando um papel de enchimento; acrescentando volume à pasta de cimento. No aspecto de enchimento, os agregados apresentam vantagens econômicas, reduzindo custos de produção do concreto. No caráter técnico, os agregados melhoram algumas características importantes do concreto, tais como redução da retração 15, da fluência 16, abrasão, entre outros. A pasta de cimento tem como função envolver as partículas de agregados, preenchendo os vazios entre os grãos destes. Os agregados ocupam percentuais entre 60 e 80 % do volume total do concreto, variando de acordo com o tipo de traço. Existem diversas origens para os agregados; podendo-se destacar as rochas britadas, materiais de leitos de rios ou em cavas de resíduos da degradação natural de rochas. A classificação dos agregados pode ser realizada segundo distintas características. Entre estas se podem destacar: a) Natureza ou Origem: - Natural: encontrados diretamente na natureza no formato em que serão utilizados (ex.: areia de rios e cavas, seixos,...). - Artificial: necessitam de beneficiamento para serem utilizados como agregado (ex.: rochas britadas, areias artificiais, pó de pedra,...). b) Dimensões: - Agregado Graúdo: são os agregados cujos grãos passam pela peneira com abertura de 75 mm e são retidos na peneira com abertura de 4,75 mm. - Agregado Miúdo: são aqueles cujos grãos são passantes na peneira # 4,75 mm e ficam retidos na peneira # 150 µm, em ensaio realizado segundo a norma NBR NM Redução do volume do maciço do concreto, sobretudo devido à perda de água da pasta de cimento. 16 Deformação lenta do concreto quando o mesmo é submetido a um carregamento permanente. 27
28 Figura 3.1 Peneiras para determinação da composição granulométrica de agregados. A norma NBR 7211 Agregados para concreto Especificação estabelece os requisitos exigíveis para o recebimento e a produção dos agregados miúdos e graúdos destinados a produção de concreto de cimento Portland. Este documento define os ensaios de caracterização necessários aos dois tipos de agregado, bem como os valores aceitáveis para cada análise. Todos os ensaios realizados com os agregados para concreto devem ter as amostras do material compostas segundo a norma NBR NM 26 Agregados Amostragem. Este documento define os procedimentos de formação das amostras desde a extração, passando pela redução, armazenamento e transporte. 3.2 AGREGADO MIÚDO A NBR NM 52 Agregado miúdo Determinação da massa específica e massa específica aparente define agregado miúdo o agregado que passa quase totalmente na peneira 4,75 mm e fica retida quase totalmente na peneira de 75 µm. Diversos são os ensaios realizados com os agregados miúdos a fim de caracterizá-lo e permitir seu uso de forma racional. Dentre estes ensaios de caracterização destacam-se: MASSA ESPECÍFICA Na caracterização do agregado miúdo devem ser considerados distintos tipos de massa específica: massa específica real, massa específica aparente e massa específica relativa. 28
29 a) Massa específica (real): - É a massa do agregado seco por unidade de volume excluindo deste os vazios permeáveis e os vazios entre os grãos. Sua determinação é realizada através do picnômetro ou do frasco de Chapman (Figura 3.2) em uma metodologia similar à realizada com o frasco de Le Chatelier. Excetuando-se os agregados leves, a massa específica real dos agregados miúdos fica em torno de 2,65 kg/dm³. (a) (b) Figura 3.2 Frasco de Chapman (a); Picnômetro (b). b) Massa específica aparente: - É a massa por unidade de volume incluindo neste os vazios permeáveis ou impermeáveis contidos nos grãos. c) Massa específica relativa: - É a relação entre a massa da unidade de volume de um material, incluindo os poros, a uma dada temperatura, e a massa de um volume igual de água destilada, livre de ar, a uma temperatura estabelecida. A norma NBR NM 52 apresenta as especificações de ensaio da massa específica dos agregados miúdos, estabelecendo as equações e procedimentos a serem utilizados em cada etapa da análise. A massa específica aparente do agregado miúdo no estado seco é determinada segundo a equação (3.1): (3.1) 29
30 Onde: - d 1 é a massa específica aparente do agregado seco (g/cm³); - m é a massa da amostra seca (g); - V é o volume do frasco de ensaio (cm³); - V a é o volume de água adicionada ao frasco (cm³), de acordo com a equação (3.2); (3.2) Onde: - m 1 é a massa do conjunto frasco + agregado (g); - m 2 é a massa total, frasco + agregado + água complementando o volume total (g); - ρ a é a massa específica da água (g/cm³). A massa específica do agregado no estado saturado com superfície seca, por sua vez, é determinada segundo a equação (3.3): (3.3) Onde: - d 2 é a massa específica do agregado saturado com superfície seca (g/cm³); - m s é a massa da amostra na condição saturada com superfície seca (g). A massa específica do agregado na condição seca é determinada pela equação (3.4): (3.4) Onde: - d 3 é a massa específica do agregado (g/cm³); - m é a massa da amostra seca em estufa a temperatura (105 ± 5) C (g). Os resultados dos ensaios realizados com a mesma amostra não devem diferir em mais de 0,02 g/cm³ para a massa específica. Os resultados devem ser apresentados com precisão de 0,01 g/cm³ 30
31 3.2.2 TEOR DE UMIDADE E ABSORÇÃO O conhecimento da umidade de determinada amostra de areia e sua capacidade de absorção são fundamentais para a correta dosagem de concretos e argamassas. Na grande maioria das vezes, os agregados miúdos são utilizados nas usinas dosadoras e nas obras na condição úmida; desta forma faz-se necessária a determinação deste teor de umidade como forma de corrigir distorções de peso e da quantidade de água no momento da dosagem. Quanto às condições de umidade que podem existir em uma determinada amostra de agregado, podem-se classificar quatro distintas, conforme apresentado na Figura 3.3. Figura 3.3 Esquema de diferentes graus de umidade de agregados: Seco em estufa (a); Seco ao ar (b); Saturado com superfície seca (c) e Saturado (d). (adaptado de PETRUCCI, 1978). O teor de umidade é definido como a relação entre a massa de água contida no agregado e sua massa seca. O teor que faz com que o agregado apresente-se no estado saturado com superfície seca SSS (Figura 3.3-c) é denominado de absorção; sendo este o ponto que culminam as possibilidades de o agregado absorver água e manter a superfície seca. Absorção é o processo pelo qual um liquido é conduzido e tende a ocupar os poros permeáveis de um corpo sólido poroso. No efeito sobre o agregado miúdo, considera-se nesta definição o incremento de massa de um corpo sólido poroso devido à penetração de água em seus poros permeáveis. Em geral, esta absorção apresenta valores inferiores a 2 %. A capacidade de o agregado miúdo absorver água é determinada através da norma NBR NM 30 Agregado miúdo Determinação da absorção de água. 31
32 A quantidade de água que vai além da necessária para levar o grão à condição SSS é denominada umidade superficial (Figura 3.3-d). A Figura 3.4 apresenta o aumento do volume de uma determinada amostra de agregado miúdo em relação ao teor de umidade adicionado à areia com granulometrias fina, média e grossa. Figura 3.4 Inchamento 17 devido à umidade no agregado miúdo (MEHTA e MONTEIRO, 2008). A determinação da unidade é realizada segundo distintos métodos, sendo os principais citados a seguir: a) Secagem por aquecimento ao fogo Método da Frigideira: Consiste em retirar do monte de areia a ser utilizado uma amostra do material, realizar a pesagem de 500 g deste material e colocá-lo em uma frigideira, realizando a secagem do mesmo. Após a completa secagem, a umidade do material é determinada através da equação (3.5). (3.5) Onde: - P S é a massa agregado seco (g). A Tabela 3.1 apresenta a conversão do valor da massa do agregado seco no teor de umidade para uma amostra de 500 g. 17 Ver item INCHAMENTO 32
33 Tabela 3.1 Determinação da umidade da areia por meio do método da frigideira para uma amostra de 500 gramas. b) Secagem por aquecimento em estufa: A metodologia de secagem por estufa é similar ao método da frigideira, consiste em realizar a retirada da água presente nos grãos do agregado através de uma secagem em estufa à temperatura de 105 ± 5 C. c) Frasco de Chapman: A norma brasileira NBR Agregados Determinação da umidade superficial em agregados miúdos por meio do frasco de Chapman especifica a metodologia de determinação do teor de umidade dos agregados miúdos através do frasco de Chapman. A operação consiste encher o frasco de Chapman (Figura 3.5) até a marca de 200 cm³, colocando os 500 gramas de areia pesados previamente no interior do mesmo. Após, deve-se proceder a leitura no frasco (areia + água). A equação (3.6) determina o teor de umidade da areia: 33
34 Figura 3.5 Escala normatizada do frasco de Chapman (NBR 9775). [ ] (3.6) Onde: L é a leitura final no frasco (areia + água); γ é a massa específica real da areia. d) Speed Test: O speed test apresenta-se como um procedimento de determinação rápida da umidade. Esta metodologia utiliza um recipiente vedado, no interior do qual se introduz certa quantidade de material (areia) e carbureto de cálcio (CaC 2 ) em pó. O carbureto reage com a água presente nos grãos do agregado, produzindo um gás, que exerce pressão no interior do recipiente. Um manômetro ligado ao aparelho indica a pressão no interior; esta pressão é correlacionada com o teor de umidade. 34
35 Figura 3.6 Conjunto para a determinação rápida do teor de umidade de areias e solos Speed Test. O valor do teor de umidade através do Speed test é determinado através da equação (3.7): (3.7) Onde: h é o teor de umidade em relação à massa seca (%); h 1 é a umidade determinada pelo aparelho em relação à amostra úmida (%) INCHAMENTO A água livre que se adere aos grãos de areia provoca afastamento entre estes. Este afastamento resulta em um inchamento do conjunto. A determinação do inchamento de determinada areia é de fundamental importância, visto que tende a acarretar grandes variações na massa unitária da mesma; fato que pode tornar errônea a dosagem dos concretos e argamassas. O inchamento depende da granulometria e do teor de umidade do agregado miúdo, sendo que as areias finas apresentam maior grau de inchamento devido à maior superfície específica. As areias ainda possuem outros índices de caracterização: umidade crítica e coeficiente médio de inchamento. 35
36 inchamento (%) IFRS Materiais Componentes do Concreto Especificações e ensaios A umidade crítica é definida como o teor de umidade acima do qual o inchamento permanece praticamente constante. Este valor crítico é determinado conforme apresentado na Figura 3.7. O coeficiente médio de inchamento apresenta-se como a média dos coeficientes de inchamento nos pontos de umidade crítica e máxima. 1,4 1,3 umidade máxima 1,2 1,1 umidade crítica umidade (%) Figura 3.7 Exemplo de gráfico de inchamento em relação ao teor de umidade e determinação das umidades crítica e máxima de areia GRANULOMETRIA A composição granulométrica ou granulometria de um agregado miúdo é a proporção relativa, expressa de forma percentual, dos diferentes tamanhos dos grãos que constituem uma determinada amostra. A norma brasileira NBR NM 248 Agregados Determinação da composição granulométrica estabelece a metodologia de estudo da granulometria dos agregados. A NBR NM-ISSO e Peneiras de ensaio Requisitos, define um conjunto de peneiras sucessivas denominadas série normal e intermediária, com aberturas de malhas conforme a Tabela
37 Agregado graúdo Agregado miúdo Tabela 3.2 Séries de peneiras, normal e intermediária (NBR NM 248). Série Normal Série Intermediária 75 mm mm - 50 mm 37,5 mm ,5 mm - 25 mm 19 mm ,5 mm 9,5 mm - - 6,3 mm 4,75 mm - 2,36 mm - 1,18 mm µm µm µm - A análise granulométrica é realizada conforme as seguintes etapas: - Coleta-se uma amostra de areia conforme as recomendações da NBR NM 26 Agregados Amostragem e, em laboratório, dividi-se o material em duas amostras, conforme a NBR NM 27 - Agregados Redução da amostra de campo para ensaios de laboratório. No caso dos agregados miúdos, com dimensão máxima característica (DMC) 18 (ou dos grãos) igual a 4,75 mm a massa mínima é de 300 gramas; - As duas amostras de ensaio deverão ser secas em estufa e após, determinadas as massas m 1 e m 2 ; - As peneiras normatizadas, previamente limpas, deverão ser colocadas em ordem crescente de abertura da malha da base para o topo, conforme Figura 3.8; - Colocar o material de massa m 1 a ser ensaiado no conjunto e proceder a agitação, mecânica (Figura 3.8) ou manual; 18 A abertura da peneira que retém, de forma acumulada, um percentual igual ou imediatamente inferior a 5 % da amostra ensaiada. 37
38 Figura 3.8 Peneiras redondas normalizadas e mesa vibratória para determinação da composição granulométrica. - Proceder a verificação da quantidade de massa retida em cada uma das peneiras; - Repetir o peneiramento para a amostra de massa m 2 ; - Calcular os percentuais médios, retidos e acumulados, em cada peneira, com aproximação de 1 %. A granulometria pode ser expressa pelo material que passa (passante) ou pelo material retido; podendo ser por peneira ou de forma acumulada. A Figura 3.9 apresenta um exemplo de curva granulométrica expressa em função da porcentagem que passa nas peneiras de forma acumulada. Estas curvas são representações gráficas das porcentagens retidas (ou passantes) acumuladas em cada peneira em relação à dimensão da abertura da malha. Convenciona-se representar a abertura das peneiras (abscissas) em escala logarítmica, enquanto que a percentagem de material (ordenadas) é expressa em escala normal. 38
39 Figura 3.9 Exemplo de curva granulométrica de areia em relação ao percentual passante. Outro conceito de fundamental importância na caracterização dos agregados miúdos é o módulo de finura, obtido através da razão da soma das porcentagens retidas acumuladas nas peneiras da série normal por 100. A norma NBR 7211 especifica os limites de distribuição granulométrica do agregado miúdo considerados, ótimo ou utilizável. A Tabela 3.3 apresenta estes valores. Uma areia é considerada bem graduada quando estiver contida entre os limites estabelecidos nesta tabela, expressos de forma gráfica na Figura A Figura 3.11 apresenta as possibilidades de composição granulométrica: bem graduada (ideal para o concreto), descontínua ou uniforme. 39
40 Percentual retido acumulado (%) IFRS Materiais Componentes do Concreto Especificações e ensaios Tabela 3.3 Limites de distribuição granulométrica do agregado miúdo (adaptado NBR 7211). Porcentagem, em massa, retida acumulada Peneira Limites inferiores Limites superiores Zona ótima Zona utilizável Zona ótima Zona utilizável 9,5 mm ,3 mm ,75 mm ,36 mm ,18 mm µm µm µm Notas: O módulo de finura da zona ótima varia de 2,20 a 2,90; O módulo de finura da zona utilizável inferior varia de 1,55 a 2,20; O módulo de finura da zona utilizável superior varia de 2,90 a 3, Zona utilizável Zona ótima Areia Grossa Areia Média Areia Fina Peneiras Figura 3.10 Representação gráfica dos limites de distribuição granulométrica do agregado miúdo. 40
41 Figura 3.11 Tipos de composições granulométricas dos agregados (CABRAL, 2008) SUBSTÂNCIAS NOCIVAS Existem determinados materiais encontrados nos agregados miúdos que prejudicam a qualidade dos concretos e argamassas produzidos com estes. Dentre as impurezas que, porventura, constituem amostras das areias, podem-se destacar os materiais pulverulentos, os torrões de argila e materiais friáveis 19 e as impurezas orgânicas. Os materiais pulverulentos são classificados como o material fino que passa através da peneira de abertura de malha de 75 µm por meio de lavagem. A norma NBR NM 46 Agregados Determinação do material fino que passa através da peneira 75 µm, por lavagem especifica as condições de ensaio para a determinação da quantidade de material fino relativa à massa do agregado. Os materiais finos presentes nas areias são constituídos de partículas de argila (< 0,002 mm) e silte (0,002 a 0,06 mm). Normalmente as argilas apresentam-se na forma de torrões de argila, cuja determinação é realizada por meio de ensaios de peneiramento, através das especificações da NBR 7218 Agregados Determinação do teor de argila em torrões e materiais friáveis. A Tabela 3.4 apresenta os limites máximos admissíveis de impurezas nos agregados miúdos. Os finos formam uma película ao redor dos grãos de areia que, quando não se separam no momento da mistura prejudicam a qualidade da argamassa. A necessidade de aumento da água de 19 Materiais friáveis são aqueles que podem ser quebrados ou reduzidos a pó com facilidade. 41
42 amassamento e conseqüente redução da resistência mecânica pelo aumento da relação a/c também é relacionada ao teor de material pulverulento. Por outro lado, a argila contribui para o preenchimento dos vazios entre os grãos da areia, permitindo que o cimento envolva melhor as partículas do agregado, proporcionando uma ligação mais forte entre si. A lavagem da areia pode eliminar a existência de argilas e siltes. Porém, esta deve ser realizada de forma muito cuidadosa para que os grãos mais finos do agregado não sejam arrastados; fato que acarreta aumento no índice de vazios do material. Tabela 3.4 Limites máximos aceitáveis de substâncias nocivas no agregado miúdo com relação à massa do material (adaptado NBR 7211). Determinação Método de ensaio Quantidade máxima relativa à massa do agregado miúdo (%) Torrões de argila e materiais NBR ,0 friáveis Concreto submetido a 3,0 Material desgaste superficial NBR NM 46 pulverulento Concretos protegidos de 5,0 desgaste superficial A solução obtida no ensaio deve NBR NM 49 ser mais clara do que a soluçãopadrão Impurezas Diferença máxima orgânicas¹ aceitável entre os NBR resultados de resistência à compressão comparativos ¹Quando a coloração da solução obtida no ensaio for mais escura do que a solução-padrão, a utilização do agregado miúdo deve ser estabelecida pelo ensaio previsto na NBR
43 As impurezas orgânicas são outros elementos que reduzem a qualidade dos agregados miúdos. São normalmente formadas por partículas de húmus 20 e exercem uma ação prejudicial sobre as reações de endurecimento das argamassas e concretos. A existência de impurezas orgânicas em teores prejudiciais é verificada através das especificações da NBR NM 49 Agregado miúdo Determinação de impurezas orgânicas. Tratase de um ensaio com a utilização de soluções químicas misturadas à amostra do agregado e cuja tonalidade (cor) é posteriormente comparada com uma tabela de cores padrão. Quanto mais escura for a mistura, maior é a quantidade de impurezas da amostra. Este ensaio é realizado com um conjunto de aparelhos denominado colorímetro (Figura 3.12). Figura 3.12 Conjunto colorímetro para determinação da existência de impurezas orgânicas nos agregados. Caso a mistura apresente uma cor de intensidade diferente do padrão, este agregado deve ser ensaiado conforme especificações da NBR 7221 Agregados Ensaio de qualidade de agregado miúdo. 3.3 AGREGADO GRAÚDO MASSA ESPECÍFICA E ABSORÇÃO DE ÁGUA As definições de massa específica real e massa específica aparente foram apresentadas na seção deste documento. As especificações para a determinação destas propriedades do agregado graúdo são feitas pela norma NBR NM 53 Agregado graúdo Determinação de massa específica, massa específica aparente e absorção de água. 20 Húmus é a matéria orgânica depositada no solo, resultante da decomposição de vegetais e animais. 43
44 A absorção de água dos agregados graúdos é determinada por esta mesma norma, através da equação (3.8) (3.8) Onde: A é a absorção de água (%); m s é a massa ao ar da amostra na condição saturada superfície seca (g); m é a massa ao ar da amostra seca (g) GRANULOMETRIA A composição granulométrica do agregado graúdo, à exemplo do que ocorre no agregados miúdo, é determinada conforme especificações da NBR NM 248 Agregados Determinação da composição granulométrica. A NBR 7211 estabelece os limites da granulometria do agregado graúdo para cada uma das zonas granulométricas 21, conforme a Tabela 3.5. Tabela 3.5 Limite da composição granulométrica do agregado graúdo (adaptado NBR 7211). Peneiras com abertura de malha Percentagem, em massa, retida acumulada Zona granulométrica d [mm] 4,75 / 12,5 9,5 / / 31,5 25 / 50 37,5 / , , , , , , , Zonas granulométricas correspondem à menor e à maior dimensão do agregado graúdo. 44
45 A Tabela 3.6 e a Figura 3.13 apresentam um exemplo de determinação da composição granulométrica de uma brita classificada comercialmente como Brita 01, extraída da região de Capão do Leão RS e amplamente utilizada nas obras portuárias da região de Rio Grande RS. A Tabela 3.6 apresenta os percentuais de material retidos nas peneiras das séries, normal e intermediária, conforme especificações da NBR NM 248. A Figura 3.12 mostra a representação gráfica da curva granulométrica, com a zona granulométrica na qual a amostra está inserida. Tabela 3.6 Exemplo de determinação da composição granulométrica. Média retida Dimensão máxima Peneiras Média retida Módulo de acumulada característica (mm) (%) Finura (%) (mm) 75* ,5* , * , ,5* , ,89 19,0 4,75* ,36* ,18* ,6* ,3* ,15* Resíduo Totais Soma para o cálculo do módulo de finura 689 * Conjunto de peneiras da série normal 45
46 Percentual retido acumulado [%] IFRS Materiais Componentes do Concreto Especificações e ensaios Limites Especificados (NBR 7211) Dados Amostrais ,5 31, ,5 9,5 6,3 4,75 2,36 Peneiras Figura 3.13 Exemplo de composição granulométrica e zona de classificação. Comercialmente, os agregados graúdos são nomeados como brita 0, 1, 2, e assim por diante. Esta denominação permite uma maior facilidade de diferenciação entre os mesmos por parte dos usuários. Como exemplo, as britas 0, 1 e 2 apresentam dimensão máxima característica igual a 9,5; 19,0 e 25,0 mm, respectivamente. (a) (b) (c) Figura 3.14 Classificação comercial de agregados graúdos: brita 0 (a); brita 1 (b) e brita 2 (c) FORMA DOS GRÃOS O formato dos grãos que compõem determinado lote de agregado influencia de forma bastante acentuada nas propriedades do concreto, sobretudo na trabalhabilidade 22. Para o estudo das formas dos grãos de um agregado graúdo convenciona-se: 22 Termo classificado pela maioria dos pesquisadores como a facilidade com que o concreto flui sem perda de homogeneidade por segregações. 46
47 - comprimento de um grão (c): maior dimensão possível de ser medida em qualquer direção do grão; - espessura de um grão (e): menor distância possível entre planos paralelos entre si em qualquer direção do grão; - índice de forma do agregado: média da relação entre o comprimento e a espessura dos grãos do agregado, ponderada pela quantidade de grãos de cada fração granulométrica o compõe. A determinação do índice de forma dos agregados é determinada segundo a norma brasileira NBR 7809 Agregado graúdo Determinação do índice de forma pelo método do paquímetro Método de ensaio. Este documento especifica a realização de ensaio de granulometria com as peneiras das séries, normal e intermediária. Cada fração obtida na análise granulométrica deve ser quarteada segundo a NBR NM 27 Agregados Redução da amostra de campo para ensaios em laboratório até a obtenção de um número de grãos obtidos através da equação (3.9): (3.9) Onde: 200 é o número de grãos necessários para a realização do ensaio; N i é o número de grãos a serem medidos na fração i; F i é a porcentagem de massa retida individual da fração i. O número de grãos determinado pela equação (3.9) deve ser medido com auxílio de um paquímetro. O índice de forma de cada uma das frações ensaiadas é determinado pela média ponderada de acordo com o resultado da equação (3.9) das relações entre o comprimento e a espessura (c/e) de todos os grãos medidos. Por experiência, pode se dizer que a forma do grão que melhor se adapta à produção do concreto é a forma cúbica, quando se trata de britas e, esférica, quando se refere a seixos. O formato lamelar 23 tende a provocar problemas, tais como, segregações devidas às armaduras, bolhas por aprisionamento de ar e menor resistência sob cargas em algumas direções. 23 Sólido de espacial no qual uma das dimensões apresenta maior ordem de grandeza em relação às demais. 47
48 3.3.4 SUBSTÂNCIAS NOCIVAS Os agregados não devem conter substâncias nocivas ou impurezas que prejudiquem as reações químicas dos aglomerantes e a qualidade dos concretos. Os torrões de argila presentes nos agregados geralmente são encontrados em agregados naturais de mineração. São prejudiciais à qualidade do material visto que apresentam resistência mecânica reduzida, absorvem água demasiadamente e originam vazios com sua desagregação. Os limites máximos aceitáveis são expostos na Tabela 3.7 para cada condição de utilização. Um dos prejuízos causados pelos materiais pulverulentos é a perda de aderência do agregado, causada pelo recobrimento feito por estes aos grãos. Como estes materiais pulverulentos apresentam grande área específica, exigem uma maior quantidade de água de amassamento; fato que acarreta elevação da relação água/cimento e consequente redução da resistência mecânica do concreto. Tabela 3.7 Limites máximos aceitáveis de substâncias nocivas no agregado graúdo com relação à massa do material (adaptado NBR 7211). Determinação Método de ensaio Quantidade máxima relativa à massa do agregado graúdo [%] Torrões de Concreto aparente 1,0 argila e Concreto sujeito a NBR 7218 materiais desgaste superficial 2,0 friáveis Outros concretos Material pulverulento 1 NBR NM 46 1,0 1 Para agregados produzidos a partir de rochas com absorção de água inferior a 1 %, determinados conforme a ABNT NBR NM 53, o limite de material fino pode ser alterado de 1 para 2 % RESISTÊNCIA AO DESGASTE POR ABRASÃO A determinação do índice de desgaste por abrasão dos agregados possui grande importância na qualificação de determinado lote deste material. Este ensaio é especificado segundo a norma NBR NM 51 Agregado graúdo Ensaio de abrasão Los Angeles, apresentando os requisitos de equipamentos para a análise que prevê o comportamento do 48
49 agregado quando submetido à abrasão; como por exemplo, a proporcionada pelo tráfego de veículos pesados em pisos ou pavimentos de concreto. Figura 3.14 Máquina para ensaio de agregados por abrasão Los Angeles. O ensaio consiste basicamente em adicionar uma amostra de agregado juntamente com um material abrasivo 24 em um tambor que propicie o tombamento dos materiais à medida que este gira e uma velocidade entre 30 e 33 rpm. Após, deve-se retirar o material do tambor e peneirá-lo na peneira com abertura de malha de 1,70 mm. A parcela de material retida na peneira deve ser seca em estufa e ter sua massa verificada. O percentual de perda por abrasão é dada pela equação (3.10): (3.10) Onde: m é a massa da amostra seca antes do início do ensaio (g); m 1 é a massa do material retido na peneira com abertura de malha de 1,70 mm (g); P é a perda por abrasão (%). A norma brasileira NBR 7211 especifica em 50 %, em massa, o índice de desgaste por abrasão Los Angeles máximo para os agregados graúdos a serem utilizado no concreto. 24 A NBR NM 51 especifica este material abrasivo como esferas de fundição, de ferro ou de aço, com aproximadamente 48 mm de diâmetro e massa entre 390 e 445 g. 49
50 CAPÍTULO 4 ÁGUA DE AMASSAMENTO A água de amassamento utilizada na produção do concreto não deve conter substâncias nocivas que possam prejudicar sua qualidade. A norma NBR Água para amassamento do concreto estabelece os requisitos necessários para a água utilizada nas dosagens. Figura 4.1 A água própria para o consumo humano pode ser utilizada sem problemas na dosagem do concreto; embora a recíproca não seja verdadeira. Na prática, o efeito mais nocivo da água de amassamento ao concreto é a sua adição em excesso durante a mistura. Este fato acarreta uma redução da resistência mecânica do concreto, aumenta o índice de vazios do material e, consequentemente, reduz a durabilidade do elemento concretado. CAPÍTULO 5 ADIÇÕES Com o intuito de aprimorar as propriedades do concreto para determinada aplicação, diversos tipos de adições são acrescentadas ao mesmo. Em geral, todos os materiais adicionados ao concreto que não o cimento, os agregados, a água e os aditivos são denominados adições. Estas adições têm por objetivo melhorar o desempenho em alguma situação específica, como por exemplo: aumentar a resistência mecânica, modificar a coloração da massa, impedir a propagação de fissuras, reduzir os vazios e a permeabilidade, entre outros. Dentre as adições que tem seu uso mais difundido comercialmente, podem ser citados: a sílica-ativa (microssílica), o metacaulim, as fibras (aço, polipropileno, nylon, etc.), pigmentos corantes e o isopor ou outros materiais com o intuito de preenchimento. 50
51 (a) (b) Figura 5.1 Fibras metálicas (a) e fibras de polipropileno para adição no concreto (b) (MAGALHÃES, 2009). Sílica-ativa: A sílica ativa, ou microssílica, é um resíduo oriundo das indústrias de ferro-ligas e silício metálico. Pelas suas propriedades químicas (teor de SiO2 > 85%) e físicas (superfície específica média de 20 m²/kg) este material é considerado uma excelente pozolana que, quando usado no concreto, além de atuar quimicamente também atua de forma física, através do efeito microfíler. Desta forma, a sílica ativa é proposta como um material alternativo para melhorar as características de concretos e argamassas de revestimento superficial. O emprego deste material melhora as condições de porosidade, melhora a aderência pasta/agregado e a reação com os produtos de hidratação do cimento resulta em compostos mais resistentes, diminuindo a lixiviação e aumentando a resistência à abrasão. (DAL MOLIN) Metacaulim: Ao contrário do que ocorre com a sílica-ativa, o metacaulim não é um subproduto de algum tipo de atividade de siderurgia. É um material primário, produzido a partir da calcinação de argilas especiais, resultando em um material com alta atividade pozolânica. As fibras adicionadas ao concreto apresentam-se das mais diversas formas: as fibras metálicas são normalmente utilizadas na execução de pavimento industriais de concreto, apresentam um módulo de elasticidade elevado, dificultando a propagação de fissuras no compósito. Exercem uma atividade de redistribuição dos esforços no concreto, mesmo quando utilizadas em baixos teores. As fibras de polipropileno são compostas por filamentos extremamente finos, produzidos através de extrusão. A utilização deste tipo de fibra justifica-se à medida que minimiza a 51
52 fissuração do concreto quando o mesmo está no estado plástico e nas primeiras etapas do endurecimento. É importante considerar que, à medida que o módulo de elasticidade do concreto se eleva, tornando-se maior do que o módulo das fibras, estas tendem a apresentar uma atuação bastante limitada. Figura 5.2 Concreto com adição de fibras (MAGALHÃES, 2009). O concreto colorido é obtido através da adição de pigmentos durante a dosagem. Este concreto é mais utilizado para fins arquitetônicos, embora algumas grandes obras possam utilizálo com colorações diferentes para cada peça a ser executada (pilares, vigas, lajes, etc.), com o objetivo de evitar aplicações errôneas do material oriundo da central dosadora. A aplicação deste concreto requer maior cuidado no acabamento das formas e no adensamento, de modo a obter estruturas de melhor qualidade visual. A Tabela 5.1 apresenta uma série de pigmentos inorgânicos utilizados na elaboração de concretos coloridos. Tabela 5.1 Pigmentos inorgânicos a base de óxido (ISAIA, 2005). Cor desejada do concreto Especificação do pigmento Composição química Vermelho Óxido de ferro vermelho α Fe 2 O 3 Amarelo Óxido de ferro amarelo α FeOOH Preto Óxido de ferro preto Fe 2 O 4 Marrom Óxido de ferro marrom Mistura de pigmentos amarelo + vermelho + preto Verde Óxido de cromo Cr 2 O 3 Azul Óxido de cobalto Co(Al,Cr) 2 O
53 Figura 5.3 Exemplo de aplicações de concreto colorido (ACPO Artefatos de Concreto Pedro Osório). CAPÍTULO 6 ADITIVOS A introdução de aditivos ao concreto vem sendo realizada cada vez de forma mais ampla. Este acréscimo no consumo e utilização de aditivos é motivado pela capacidade que estes possuem de proporcionar ao concreto consideráveis melhorias nas suas propriedades e, por vezes, sob o aspecto econômico. A seção deste documento busca estabelecer uma visão geral dos diversos tipos de aditivos utilizados na dosagem do concreto; sem a estabelecer as formações e interações químicas característicos de cada componente. Para tal, sugere-se a utilização da bibliografia apresentada ao final deste trabalho. A norma NBR Aditivos para concreto de cimento Portland Especificação classifica os aditivos para concretos e argamassas e estabelece os requisitos mínimos necessários para o desempenho destes componentes. Segundo este documento, os aditivos são classificados em cinco grandes grupos: - A aceleradores; - R retardadores; - P Plastificantes; - SP superplastificantes; - IAR incorporadores de ar. 53
54 Os compostos aditivos que apresentam efeito combinado de dois ou mais destes grupos recebem designações por combinação destas cinco siglas (Ex.: PR Plastificante retardador). Os aditivos têm seu desempenho verificado conforme as especificações da norma NBR Verificação do uso de aditivos para concreto Especificações. Os limites de variação de composição para o controle da uniformidade dos aditivos são estabelecidos pela norma brasileira NBR Aditivos para argamassa e concreto Ensaios de caracterização. Os aditivos do tipo P aumentam o índice de consistência do concreto (melhoram a trabalhabilidade), mantendo a quantidade de água utilizada para o amassamento. Os do tipo R aumentam os tempos de início e fim de pega, permitindo que o concreto mantenha-se em condições de trabalho por um maior período. São muito utilizados em obras que encontram longe do local da produção do concreto, ou em situações de concretagens demoradas. Os aditivos do tipo A, por sua vez, apresentam capacidade de acelerar os tempos de início e fim de pega, bem como aceleram o ganho de resistência do concreto nas primeiras idades. É muito utilizado na indústria de elementos pré-moldados, onde a velocidade de desforma representa competitividade operacional. Os aditivos SP possuem a mesma finalidade dos aditivos plastificantes, porém, com um efeito mais intenso. Permite ao concreto uma maior fluidez sem perda da coesão entre os componentes. São muito utilizados em situações de grande concentração de armaduras, na execução de estacas e na produção de concretos do tipo alto adensável (Figura 6.1), sendo capaz de envolver as armaduras e outros obstáculos mantendo a homogeneidade da mistura. Figura 6.1 Concreto com elevada plasticidade, facilitando o preenchimento das formas (Revista Téchne). 54
55 Os aditivos incorporadores de ar (IAR) incorporam ao maciço do concreto pequenas bolhas de ar que são homogeneamente distribuídas. Esta introdução de ar garante ao concreto uma maior trabalhabilidade, facilitando a utilização do mesmo. O aditivo IAR é amplamente utilizado na produção de concretos leves 25, em situações que não existam a necessidade ou a possibilidade de utilização do concreto comum. Outra utilização dos aditivos IAR é em locais em de baixa temperatura ambiente, visto que, a introdução de ar em forma de pequenas bolhas impede que a água ao congelar (e se dilatar) rompa as estruturas do concreto. Figura 6.2 Conjunto habitacional construído com uso de concreto leve com introdução de aditivo incorporador de ar (Terra Nova Pelotas/RS). O crescimento acelerado na utilização dos aditivos ocorrida nas últimas décadas fez com que os trabalhos de pesquisas sobre o tema ganhassem um grande incremento. No princípio, 25 São concreto cuja massa específica é inferior a kg/m³. 55
56 muitos aditivos possuíam cloretos em sua formulação; fato que depois de várias experiências mostrou-se extremamente nocivo às estruturas de concreto, sobretudo as armadas ou protendidas. Atualmente existem diversos produtos disponíveis no mercado que utilizam bases químicas que não apresentam efeitos nocivos às armaduras. A introdução dos aditivos à dosagem do concreto permite uma produção com menores custos. A adição de aditivos plastificantes, por exemplo, melhora propriedades do concreto, permitindo a redução de água para amassamento e, por conseqüência o consumo de cimento. Centrais dosadoras de concreto utilizam aditivos plastificantes redutores de água em praticamente todos os seus traços básicos. Na atualidade, não se pode falar em tecnologia do concreto sem que o uso dos aditivos seja mencionado. Os aditivos podem ser encontrados na forma líquida ou em pó. Na maioria dos casos, são adicionados ao concreto imediatamente ao final da dosagem dos demais MCC s. Em certos casos, no entanto, os aditivos são dosados na obra, próximo ao momento do lançamento. Esta prática é utilizada devido ao fato de alguns aditivos possuírem grandes efeitos ao concreto (sobretudo a trabalhabilidade), porém por períodos curtos de tempo. Esta característica é muito comum aos aditivos superplastificantes, cujo período de atuação é, em média, de 40 a 50 minutos. Outros tipos de aditivos podem ser introduzidos ao concreto objetivando melhorar alguma característica específica, fora as propriedades classificadas pela NBR Como exemplo os aditivos impermeabilizantes são muito utilizados visando proporcionar uma estrutura cristalina mais compacta, reduzindo a permeabilidade do concreto e ampliando sua vida útil. Estes compostos, normalmente são dotados de algum efeito dentre os citados anteriormente. Tanques de contenção, lajes de cobertura e reservatórios de água são exemplos de aplicação deste tipo de aditivo. REFERÊNCIAS BIBLIOGRÁFICAS: Todas as normas técnicas referidas no texto fizeram parte das referências bibliográficas do presente trabalho. CABRAL, Eduardo. Tecnologia do Concreto, módulo IV, Fortaleza, GIAMMUSSO, S. E. Manual do Concreto, 1ª ed. São Paulo, PINI, ISAIA, G. C. Concreto Ensino, Pesquisa e Realizações. Vol. 1 e 2. São Paulo, IBRACON,
57 ISAIA, G. C. Materiais de Construção Civil e Princípios de Ciência e Engenharia de Materiais. 2ª ed. Vol. 1 e 2. São Paulo, IBRACON, ITAMBÉ. Treinamento de mão de obra para construção civil. Curitiba, Cia de Cimento Itambé, MAGALHÃES, F. C. Estudo probabilístico da resistência à compressão e da resistência à tração na flexão dos concretos utilizados na construção do dique seco do Estaleiro Rio Grande, no superporto, em Rio Gande-RS. Universidade Federal do Rio Grande, FURG. Dissertação de Mestrado. Rio Grande, MEHTA, P. K.; MONTEIRO P. J. M. Concreto Microestrutura, Propriedades e Materiais, 3ª ed. São Paulo, IBRACON, MOREIRA, A. R. Apostila de Tecnologia do Concreto. CEFET-PR, NEVILLE, A. M. Propriedades do Concreto. Tradução Salvador E. Giamamusso, 2ª ed. São Paulo, PINI, PETRUCCI, E. G. R. Concreto de cimento Portland, 5ª ed. Porto Alegre, Globo, TARTUCE, R.; GIOVANNETTI, E. Princípios básicos sobre o concreto de cimento Portland, 1ª ed. São Paulo, PINI: IBRACON,
MATERIAIS DE CONSTRUÇÃO CIVIL. M.Sc. Arq. Elena M. D. Oliveira
MATERIAIS DE CONSTRUÇÃO CIVIL M.Sc. Arq. Elena M. D. Oliveira GESSO É um aglomerante natural resultante da queima do CaSO4 2H2O (gipsita). Também chamado de gesso de estucador, gessoparisougessodepegarápida.
Agregados para Construção Civil
Agregados para Construção Civil Agregados são fragmentos de rochas, popularmente denominados pedras e areias. É um material granular, sem forma nem volume definidos, geralmente inerte, com dimensões e
ARGAMASSAS DE REVESTIMENTO MATERIAIS BÁSICOS EMPREGADOS NA PRODUÇÃO DAS ARGAMASSAS DE REVESTIMENTOS
ARGAMASSAS DE REVESTIMENTO MATERIAIS BÁSICOS EMPREGADOS NA PRODUÇÃO DAS ARGAMASSAS DE REVESTIMENTOS INTRODUÇÃO O empirismo durante a especificação dos materiais A complexidade do número de variáveis envolvidas
Universidade Federal do Ceará. Curso de Engenharia Civil. Aulas 1 e 2: Aglomerantes Cal, Gesso e Cimento. Prof. Eduardo Cabral
Universidade Federal do Ceará Curso de Engenharia Civil Aulas 1 e 2: Aglomerantes Cal, Gesso e Cimento Prof. Eduardo Cabral Definições Aglomerantes É o material ligante, ativo, geralmente pulverulento,
MATERIAIS COMPONENTES DO CONCRETO
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO SUL CAMPUS RIO GRANDE Curso Superior de Tecnologia em Construção de Edifícios Prof. Fábio Costa Magalhães MATERIAIS COMPONENTES DO CONCRETO
O cimento é um aglomerante hidráulico produzido a partir de uma mistura de rocha calcária e argila.
Cimento Portland O cimento é um aglomerante hidráulico produzido a partir de uma mistura de rocha calcária e argila. A calcinação dessa mistura dá origem ao clinker, um produto de natureza granulosa, cuja
Curso (s) : Engenharia Civil - Joinville Nome do projeto: Estudo Comparativo da Granulometria do Agregado Miúdo para Uso em Argamassas de Revestimento
FORMULÁRIO PARA INSCRIÇÃO DE PROJETO DE INICIAÇÃO CIENTÍFICA. Coordenação/Colegiado ao(s) qual(is) será vinculado: Curso (s) : Engenharia Civil - Joinville Nome do projeto: Estudo Comparativo da Granulometria
O fluxograma da Figura 4 apresenta, de forma resumida, a metodologia adotada no desenvolvimento neste trabalho.
3. METODOLOGIA O fluxograma da Figura 4 apresenta, de forma resumida, a metodologia adotada no desenvolvimento neste trabalho. DEFINIÇÃO E OBTENÇÃO DAS MATÉRIAS PRIMAS CARACTERIZAÇÃO DAS MATÉRIAS PRIMAS
Aditivos para argamassas e concretos
Pontifícia Universidade Católica de Goiás Engenharia Civil Aditivos para argamassas e concretos Materiais de Construção II Professora: Mayara Moraes Introdução Mehta: Quarto componente do concreto ; Estados
CONCRETO Componentes AGLOMERANTES. AGLOMERANTES Classificação. AGLOMERANTES Requisitos importantes. AGLOMERANTES Propriedades fundamentais CIMENTO
CONCRETO Componentes Fase contínua Pasta de cimento endurecida Zona de transição Interface entre a pasta e o agregado Fase descontínua Agregados Componente cuja principal característica é endurecer quando
Dosagem de Concreto INTRODUÇÃO OBJETIVO. Materiais Naturais e Artificiais
Dosagem de Concreto INTRODUÇÃO Atualmente, no Brasil, são produzidos cerca de 20 milhões de m3 de concreto/ano em Centrais de Concreto, denominadas Empresas de Serviços de Concretagem. Uma economia de
As argamassas e os concretos serão estudados nos capítulos seguintes. Os aglomerantes podem ser classificados, quanto ao seu princípio ativo, em:
Materiais de Construção Araujo, Rodrigues & Freitas 18 3. Aglomerantes 1. Definição e Uso Aglomerante é o material ativo, ligante, em geral pulverulento, cuja principal função é formar uma pasta que promove
Materiais constituintes do Concreto. Prof. M.Sc. Ricardo Ferreira
Materiais constituintes do Concreto Prof. M.Sc. Ricardo Ferreira Adições Prof. M.Sc. Ricardo Ferreira Fonte: Egydio Herve Neto Dario Dafico Silvia Selmo Rubens Curti, 3/42 Adições Adições minerais são
1. CONCEITO: 2. CLASSIFICAÇÃO: AGLOMERANTES. Ativos. Inertes. Aéreos. Hidráulicos. Endurecem por secagem Ex.: argila (barro cru)
1. CONCEITO: É um material ativo (pulverulento), que promove a ligação entre os grãos do material inerte (agregado). Exemplos: gesso, cal e cimento). São usados para a fabricação de: Pastas: aglomerante
TIJOLOS CRUS COM SOLO ESTABILIZADO
TIJOLOS CRUS COM SOLO ESTABILIZADO João Maurício Fernandes Souza¹; José Dafico Alves² ¹ Bolsista PIBIC/CNPq, Engenheiro Agrícola, UnUCET - UEG 2 Orientador, docente do Curso de Engenharia Agrícola, UnUCET
CIMENTO PORTLAND: NOMENCLATURA
Pontifícia Universidade Católica de Goiás Engenharia Civil Prof.: Mayara Moraes CIMENTO PORTLAND: NOMENCLATURA TIPO CP XXX RR Cimento Portland Composição Classe - Resistência aos 28 dias(mpa) SIGLA Ex.:
AULA 4 AGLOMERANTES continuação
AULA 4 AGLOMERANTES continuação Disciplina: Materiais de Construção I Professora: Dra. Carmeane Effting 1 o semestre 2014 Centro de Ciências Tecnológicas Departamento de Engenharia Civil O que tem em comum
Definição. laje. pilar. viga
Definição É a rocha artificial obtida a partir da mistura, e posterior endurecimento, de um aglomerante (normalmente cimento portland), água, agregado miúdo (areia quartzoza), agregado graúdo (brita),
Materiais de Construção. Prof. Aline Fernandes de Oliveira, Arquiteta Urbanista 2010
Materiais de Construção de Oliveira, Arquiteta Urbanista 2010 AGREGADOS AGREGADOS DEFINIÇÃO É o material particulado, incoesivo, de atividade química praticamente nula, constituído de misturas de partículas
17/04/2015 AGLOMERANTES HIDRÁULICOS PARA PAVIMENTAÇÃO REFERÊNCIAS CAL HIDRÁULICA. UNIVERSIDADE FEDERAL DA PARAÍBA Centro de Tecnologia
UNIVERSIDADE FEDERAL DA PARAÍBA Centro de Tecnologia Departamento de Engenharia Civil e Ambiental Laboratório de Geotecnia e Pavimentação (LAPAV) AGLOMERANTES HIDRÁULICOS PARA PAVIMENTAÇÃO Prof. Ricardo
Propriedades do Concreto
Universidade Federal de Itajubá Instituto de Recursos Naturais Propriedades do Concreto EHD 804 MÉTODOS DE CONSTRUÇÃO Profa. Nívea Pons PROPRIEDADES DO CONCRETO O concreto fresco é assim considerado até
Granulometria. Marcio Varela
Granulometria Marcio Varela Granulometria Definição: É a distribuição, em porcentagem, dos diversos tamanhos de grãos. É a determinação das dimensões das partículas do agregado e de suas respectivas porcentagens
Dosagem dos Concretos de Cimento Portland
(UFPR) (DCC) Disciplina: Materiais de Construção IV - Laboratório Dosagem dos Concretos de Cimento Portland Eng. Marcelo H. F. de Medeiros Professor Dr. do Professor Dr. do Programa de Pós-Graduação em
Propriedades do concreto JAQUELINE PÉRTILE
Propriedades do concreto JAQUELINE PÉRTILE Concreto O preparo do concreto é uma série de operações executadas de modo a obter, á partir de um determinado número de componentes previamente conhecidos, um
PUC CAMPINAS Faculdade de Arquitetura e Urbanismo. Disciplina Materiais de Construção Civil A
PUC CAMPINAS Faculdade de Arquitetura e Urbanismo Disciplina Materiais de Construção Civil A Agregados para concreto Profa. Lia Lorena Pimentel 1 1. AGREGADOS PARA ARGAMASSAS E CONCRETOS Uma vez que cerca
TIJOLOS DO TIPO SOLO-CIMENTO INCORPORADOS COM RESIDUOS DE BORRA DE TINTA PROVENIENTE DO POLO MOVELEIRO DE UBA
TIJOLOS DO TIPO SOLO-CIMENTO INCORPORADOS COM RESIDUOS DE BORRA DE TINTA PROVENIENTE DO POLO MOVELEIRO DE UBA Sergio Celio Da Silva Lima (FIC/UNIS) [email protected] Daniel Perez Bondi (FIC/UNIS)
Aditivos para argamassas e concretos
Pontifícia Universidade Católica de Goiás Engenharia Civil Aditivos para argamassas e concretos Materiais de Construção II Professora: Mayara Moraes Introdução Mehta: Quarto componente do concreto ; Estados
ESTUDO PARA UTILIZAÇÃO E VIABILIDADE DE AREIA DE FUNDIÇÃO EM CONCRETO 1
ESTUDO PARA UTILIZAÇÃO E VIABILIDADE DE AREIA DE FUNDIÇÃO EM CONCRETO 1 Geannina Terezinha Dos Santos Lima 2, Pedro Goecks 3, Cristiane Dos Santos 4, Gabriela Blatt 5, Diorges Lopes 6, Cristina Pozzobon
CONCRETO SUSTENTÁVEL: SUBSTITUIÇÃO DA AREIA NATURAL POR PÓ DE BRITA PARA CONFECÇÃO DE CONCRETO SIMPLES
1 UNIVERSIDADE ESTADUAL DO MARANHÃO CONCRETO SUSTENTÁVEL: SUBSTITUIÇÃO DA AREIA NATURAL POR PÓ DE BRITA PARA CONFECÇÃO DE CONCRETO SIMPLES Prof Dr.Jorge Creso Cutrim Demetrio OBJETIVOS 1. Analisar a viabilidade
Materiais e Processos Construtivos. Materiais e Processos Construtivos. Concreto. Frank Cabral de Freitas Amaral 1º º Ten.-Eng.º.
Concreto Frank Cabral de Freitas Amaral 1º º Ten.Eng.º Instrutor Abril / 2006 1 Programação SEMANA DATA TÓPICOS 1 2 3 4 5 6 7 8 06/mar 09/mar 13/mar 16/mar 20/mar 23/mar 27/mar 30/mar 3/abr 6/abr 10/abr
Leia estas instruções:
Leia estas instruções: 1 Confira se os dados contidos na parte inferior desta capa estão corretos e, em seguida, assine no espaço reservado para isso. Caso se identifique em qualquer outro local deste
Programa de Pós-Graduação em Engenharia Urbana. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil.
Programa de Pós-Graduação em Engenharia Urbana Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil Agregados Referência desta aula Mehta & Monteiro (1994), Capítulo 7
DESENVOLVIMENTO DE COMPOSIÇÃO DE CONCRETO PERMEÁVEL COM AGREGADOS ORIUNDOS DE RESÍDUOS DE CONSTRUÇÃO CIVIL DA REGIÃO DE CAMPINAS
DESENVOLVIMENTO DE COMPOSIÇÃO DE CONCRETO PERMEÁVEL COM AGREGADOS ORIUNDOS DE RESÍDUOS DE CONSTRUÇÃO CIVIL DA REGIÃO DE CAMPINAS Katrine Krislei Pereira Engenharia Civil CEATEC [email protected] Resumo:
Desenvolvimentos com vista à regulamentação no domínio dos agregados. Maria de Lurdes Antunes, LNEC
Desenvolvimentos com vista à regulamentação no domínio dos., LNEC Agregados: Normas harmonizadas (1/2) EN 12620 Agregados para betão EN 13043 Agregados para misturas betuminosas e tratamentos superficiais
Presa. Difícil de determinar o instante em que se dá a passagem do estado líquido ao estado sólido
LIGANTES HIDRÓFILOS CIMENTOS Propriedades físicas e mecânicas do cimento Presa Métodos de definição do início de presa: condutibilidade eléctrica viscosidade desenvolvimento de calor, etc. Difícil de determinar
Materiais de Construção AGREGADOS NA CONSTRUÇÃO CIVIL
Materiais de Construção AGREGADOS NA CONSTRUÇÃO CIVIL Agregados para concreto Os agregados constituem um componente importante no concreto, contribuindo com cerca de 80% do peso e 20% do custo de concreto
Estudo da Viabilidade Técnica e Econômica do Calcário Britado na Substituição Parcial do Agregado Miúdo para Produção de Argamassas de Cimento
Estudo da Viabilidade Técnica e Econômica do Calcário Britado na Substituição Parcial do Agregado Miúdo para Produção de Argamassas de Cimento Rodrigo Cézar Kanning [email protected] Universidade
25 a 28 de Outubro de 2011 ISBN 978-85-8084-055-1
25 a 28 de Outubro de 2011 ISBN 978-85-8084-055-1 ESTUDO DA POTENCIALIDADE DA UTILIZAÇÃO DA MISTURA DE CINZA DE BAGAÇO DE CANA DE AÇÚCAR E RESÍDUOS DE PNEUS NA CONFECÇÃO DE CONCRETOS E PAVERS PARA PAVIMENTAÇÃO
ME-38 MÉTODOS DE ENSAIO ENSAIO DE COMPRESSÃO DE CORPOS-DE-PROVA CILÍNDRICOS DE CONCRETO
ME-38 MÉTODOS DE ENSAIO ENSAIO DE COMPRESSÃO DE CORPOS-DE-PROVA CILÍNDRICOS DE CONCRETO DOCUMENTO DE CIRCULAÇÃO EXTERNA 1 ÍNDICE PÁG. 1. INTRODUÇÃO... 3 2. OBJETIVO... 3 3. S E NORMAS COMPLEMENTARES...
TÉCNICA CONSULTORIA A IMPORTÂNCIA DA COMBINAÇÃO GRANULOMÉTRICA PARA BLOCOS DE CONCRETO 2. CONCRETO SECO X CONCRETO PLÁSTICO. Paula Ikematsu (1)
A IMPORTÂNCIA DA COMBINAÇÃO GRANULOMÉTRICA PARA BLOCOS DE CONCRETO Paula Ikematsu (1) Gerente de área de Produto e Canais Técnicos da InterCement S/A Mestre em Engenharia Civil (Escola Politécnica da Universidade
Tecnologia da Construção I CRÉDITOS: 4 (T2-P2)
UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO DECANATO DE ENSINO DE GRADUAÇÃO DEPARTAMENTO DE ASSUNTOS ACADÊMICOS E REGISTRO GERAL DIVISÃO DE REGISTROS ACADÊMICOS PROGRAMA ANALÍTICO DISCIPLINA CÓDIGO: IT836
VENCENDO OS DESAFIOS DAS ARGAMASSAS PRODUZIDAS EM CENTRAIS DOSADORAS argamassa estabilizada e contrapiso autoadensável
VENCENDO OS DESAFIOS DAS ARGAMASSAS PRODUZIDAS EM CENTRAIS DOSADORAS argamassa estabilizada e contrapiso autoadensável Juliano Moresco Silva Especialista em Tecnologia do Concreto [email protected]
CIMENTO. 1.5 Tipos de Cimento Portland produzidos no Brasil. - Cimento Branco. - Cimentos resistentes a sulfato
CIMENTO 1.5 Tipos de Cimento Portland produzidos no Brasil - Cimento Branco - Cimentos resistentes a sulfato 1.6. Composição química do clínquer do Cimento Portland Embora o cimento Portland consista essencialmente
Cimento Portland branco
JUL 1993 Cimento Portland branco NBR 12989 ABNT-Associação Brasileira de Normas Técnicas Sede: Rio de Janeiro Av. Treze de Maio, 13-28º andar CEP 20003-900 - Caixa Postal 1680 Rio de Janeiro - RJ Tel.:
CURSO DE AQUITETURA E URBANISMO
1- Generalidades PROPRIEDADES DO CONCRETO FRESCO Todas as misturas de concreto devem ser adequadamente dosadas para atender aos requisitos de: Economia; Trabalhabilidade; Resistência; Durabilidade. Esses
MATERIAIS DE CONSTRUÇAO. DECIV EM UFOP Aglomerantes Cimento Portland
MATERIAIS DE CONSTRUÇAO DECIV EM UFOP Aglomerantes Cimento Portland Cimento Portland Cimento Portland 3 Cimento Portland Aglomerante hidráulico produzido a partir da moagem do clínquer constituído por
Faculdade de Tecnologia e Ciências Curso de Engenharia Civil Materiais de Construção Civil II. Dosagem de concreto. Prof.ª: Rebeca Bastos Silva
Faculdade de Tecnologia e Ciências Curso de Engenharia Civil Materiais de Construção Civil II Dosagem de concreto Prof.ª: Rebeca Bastos Silva Histórico - Egípcios e os etruscos empregava argamassa na construção
MATERIAIS DE CONSTRUÇÃO 1 2004 AGREGADOS AGREGADOS MATERIAIS DE CONSTRUÇÃO 1 2004 AGREGADOS
1 agregado aterial granular usado na construção. O agregado pode ser natural, artificial ou reciclado. : 70 a 80% do volume do betão 2 composição de 1 m 3 de betão : por exemplo cimento água agregados
Direitos e Deveres. Belo Horizonte, 16 de Setembro de 2010. Eng. Flávio Renato P. Capuruço
: Direitos e Deveres Belo Horizonte, 16 de Setembro de 2010 Eng. Flávio Renato P. Capuruço Sistemas Construtivos: Comparativo 1 Alguns fatos motivadores da discussão: Na Aquisição: Compras efetuadas apenas
DER/PR ES-OA 09/05 OBRAS DE ARTE ESPECIAIS: ESTRUTURAS DE CONCRETO PROTENDIDO
DER/PR ES-OA 09/05 OBRAS DE ARTE ESPECIAIS: ESTRUTURAS DE CONCRETO PROTENDIDO Departamento de Estradas de Rodagem do Estado do Paraná - DER/PR Avenida Iguaçu 420 CEP 80230 902 Curitiba Paraná Fone (41)
Argamassa TIPOS. AC-I: Uso interno, com exceção de saunas, churrasqueiras, estufas e outros revestimentos especiais. AC-II: Uso interno e externo.
Especificações Técnicas Argamassa INDUSTRIALIZADA : Produto industrializado, constituído de aglomerantes e agregados miúdos, podendo ainda ser adicionados produtos especiais (aditivos), pigmentos com a
Tipos de Poços. escavação..
O que é um poço Tubular Chamamos de poço toda perfuração através da qual obtemos água de um aqüífero e há muitas formas de classificá-los. Usaremos aqui uma classificação baseada em sua profundidade e
ALVENARIA DE BLOCOS DE SOLO-CIMENTO FICHA CATALOGRÁFICA-27 DATA: JANEIRO/2014.
Tecnologias, sistemas construtivos e tipologias para habitações de interesse social em reassentamentos. ALVENARIA DE BLOCOS DE SOLO-CIMENTO FICHA CATALOGRÁFICA-27 DATA: JANEIRO/2014. Tecnologias, sistemas
Universidade do Estado de Mato Grosso Engenharia Civil Estradas II
Universidade do Estado de Mato Grosso Engenharia Civil Estradas II CBUQ Ana Elza Dalla Roza e Lucas Ribeiro [email protected] - [email protected] Dosagem Marshall O primeiro procedimento de dosagem
MATERIAIS DE CONSTRUÇÃO CIVIL
MATERIAIS DE CONSTRUÇÃO CIVIL Processo de criação de fibrocimento com bagaço de cana M.Sc. Arq. Elena M. D. Oliveira Bagaço de cana vira matéria-prima para fibrocimento Na Escola de Engenharia de São Carlos
Tubulão TIPOS/MODELOS. De acordo com o método de escavação os tubulões se classificam em: a céu aberto e ar comprimido.
Tubulão CONCEITO São fundações de forma cilíndrica com base alargada ou não, que resistem por compressão a cargas elevadas. São compostos por três partes: cabeça, fuste e base. A cabeça é executada em
A IMPORTÂNCIA DO CONTROLE TECNOLÓGICO DO CONCRETO
11. CONEX Apresentação Oral Resumo Expandido 1 ÁREA TEMÁTICA: ( ) COMUNICAÇÃO ( ) CULTURA ( ) DIREITOS HUMANOS E JUSTIÇA ( ) EDUCAÇÃO ( ) MEIO AMBIENTE ( ) SAÚDE ( ) TRABALHO ( X ) TECNOLOGIA A IMPORTÂNCIA
CONSIDERAÇÕES A RESPEITO DO USO DE CALES DE CONSTRUÇÃO E INDUSTRIAL EM SISTEMAS DE TRATAMENTO DE EFLUENTES/ESTABILIZAÇÃO DE LODO
A cal hidratada é o principal agente alcalino, utilizado em larga escala para o tratamento de águas e de efluentes; devido as suas excelentes características físico-químicas, aliadas ao baixo custo e facilidade
UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA. Compactável (BAC) Miguel Oliveira / Elson Almeida. Faro, 2007
UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA Betão Auto-Compact Compactável (BAC) Miguel Oliveira / Elson Almeida Faro, 2007 Conceito de Betão Auto-Compact Compactável O seu conceito deve-se ás
ME-10 MÉTODOS DE ENSAIO DETERMINAÇÃO DA UMIDADE PELO MÉTODO EXPEDITO ( SPEEDY )
ME-10 MÉTODOS DE ENSAIO EXPEDITO ( SPEEDY ) DOCUMENTO DE CIRCULAÇÃO EXTERNA 1 ÍNDICE PÁG. 1. INTRODUÇÃO...3 2. OBJETIVO...3 3. S E NORMAS COMPLEMENTARES...3 4. DEFINIÇÕES...4 5. APARELHAGEM E MATERIAL...4
ESTUDO DE CARACTERÍSTICA FÍSICA E MECÂNICA DO CONCRETO PELO EFEITO DE VÁRIOS TIPOS DE CURA
ESTUDO DE CARACTERÍSTICA FÍSICA E MECÂNICA DO CONCRETO PELO EFEITO DE VÁRIOS TIPOS DE CURA AUTORES : Engº Roberto J. Falcão Bauer (Diretor técnico) Engº Rubens Curti (Gerente técnico) Engº Álvaro Martins
ENSAIOS BÁSICOS DE CIMENTO PORTLAND Prof. Dario de Araújo Dafico, Dr.
ENSAIOS BÁSICOS DE CIMENTO PORTLAND Prof. Dario de Araújo Dafico, Dr. Versão: Abr./2012 NBR NBR 5741 (1993) Extração e preparação de amostras de cimento Esta norma estabelece os procedimentos pelos quais
6 Constituição dos compósitos em estágio avançado da hidratação
6 Constituição dos compósitos em estágio avançado da hidratação Este capítulo analisa a constituição dos compósitos com CCA com base nos resultados de análise termogravimétrica e microscopia. As amostras
IV Seminário de Iniciação Científica 372
IV Seminário de Iniciação Científica 372 AVALIAÇÃO DO DESEMPENHO DE REVESTIMENTOS DE ARGAMASSA INDUSTRIALIZADA Juliane Barbosa Rosa 1,3., Renato Resende Angelim 2,3. 1 Voluntária Iniciação Científica PVIC/UEG
IMPORTÂNCIA DA CURA NO DESEMPENHO DAS ARGAMASSAS IMPORTÂNCIA DA CURA NO DESEMPENHO DAS ARGAMASSAS
Universidade Federal da Bahia Escola Politécnica Departamento de Ciência e Tecnologia dos Materiais IMPORTÂNCIA DA CURA NO DESEMPENHO DAS ARGAMASSAS Prof.Dra Vanessa Silveira Silva 1 IMPORTÂNCIA DA CURA
FISSURAS NO CONCRETO: PRINCIPAIS CAUSAS E COMO PREVENIR
FISSURAS NO CONCRETO: PRINCIPAIS CAUSAS E COMO PREVENIR COMITÊ GO 12.211 FISSURAÇÂO DO CONCRETO Coordenador: José Dafico Alves Membro: Luciano Martin Teixeira INTRODUCÃO As fissuras são eventos importantes
Universidade Paulista Unip
Elementos de Produção de Ar Comprimido Compressores Definição Universidade Paulista Unip Compressores são máquinas destinadas a elevar a pressão de um certo volume de ar, admitido nas condições atmosféricas,
Universidade Federal de Itajubá Instituto de Recursos Naturais DOSAGEM DO CONCRETO EHD 804 MÉTODOS DE CONSTRUÇÃO. Profa.
Universidade Federal de Itajubá Instituto de Recursos Naturais DOSAGEM DO CONCRETO EHD 804 MÉTODOS DE CONSTRUÇÃO Profa. Nívea Pons Dosar um concreto é compor os materiais constituintes em proporções convenientemente
ANÁLISE DA VIABILIDADE DE INCORPORAÇÃO DE AGREGADOS RECICLADOS PROVENIENTES DO BENEFICIAMENTO DE RESÍDUO CLASSE A NA PRODUÇÃO DE CONCRETOS C20 E C30
ANÁLISE DA VIABILIDADE DE INCORPORAÇÃO DE AGREGADOS RECICLADOS PROVENIENTES DO BENEFICIAMENTO DE RESÍDUO CLASSE A NA PRODUÇÃO DE CONCRETOS C20 E C30 Samara Correa Gomes Pontifícia Universidade Católica
CORROSÃO EM ESTRUTURAS DE CONCRETO. Prof. Ruy Alexandre Generoso
CORROSÃO EM ESTRUTURAS DE CONCRETO Prof. Ruy Alexandre Generoso É um dos materiais mais importantes de engenharia usado em construções. É usado nos mais variados tipos de construções tais como: barragens,
RELATÓRIO TÉCNICO N 04/2008 ANÁLISE DA AÇÃO DE ALTAS TEMPERATURAS EM PAINEL EM ALVENARIA DE BLOCOS CERÂMICOS VAZADOS
RELATÓRIO TÉCNICO N 04/2008 ANÁLISE DA AÇÃO DE ALTAS TEMPERATURAS EM PAINEL EM ALVENARIA DE BLOCOS CERÂMICOS VAZADOS - Pauluzzi Produtos Cerâmicos LTDA - Porto Alegre - Fevereiro de 2008. RELATÓRIO TÉCNICO
Adições Minerais ao Concreto Materiais de Construção II
Pontifícia Universidade Católica de Goiás Engenharia Civil Adições Minerais ao Concreto Materiais de Construção II Professora: Mayara Moraes Adições Minerais Fonseca, 2010: Aditivos químicos ASTM C125
DETERMINAÇÃO DAS PROPRIEDADES FÍSICAS E MECÂNICAS DE CONCRETO C40 E C50 EXECUTADO COM AGREGADOS RECICLADOS CINZA
Anais do XX Encontro de Iniciação Científica ISSN 1982-0178 DETERMINAÇÃO DAS PROPRIEDADES FÍSICAS E MECÂNICAS DE CONCRETO C40 E C50 EXECUTADO COM AGREGADOS RECICLADOS CINZA Caio Henrique Tinós Provasi
Concreto e Postes de Concreto Diego Augusto de Sá /Janaína Rodrigues Lenzi
Concreto e Postes de Concreto Diego Augusto de Sá /Janaína Rodrigues Lenzi INTRODUÇÃO: Neste trabalho será apresentado um apanhado sobre as diversas formas de concreto e agregados bem como o seu uso, dando
UNIVERSIDADE FEDERAL DE SANTA MARIA COLÉGIO TÉCNICO INDUSTRIAL DE SANTA MARIA Curso de Eletrotécnica
UNIVERSIDADE FEDERAL DE SANTA MARIA COLÉGIO TÉCNICO INDUSTRIAL DE SANTA MARIA Curso de Eletrotécnica Apostila de Automação Industrial Elaborada pelo Professor M.Eng. Rodrigo Cardozo Fuentes Prof. Rodrigo
7.0 PERMEABILIDADE DOS SOLOS
7.0 PERMEABILIDADE DOS SOLOS 7.1 Introdução A permeabilidade é a propriedade que o solo apresenta de permitir o escoamento da água através s dele. O movimento de água através s de um solo é influenciado
2 Sistema de Lajes com Forma de Aço Incorporado
2 Sistema de Lajes com Forma de Aço Incorporado 2.1. Generalidades As vantagens de utilização de sistemas construtivos em aço são associadas à: redução do tempo de construção, racionalização no uso de
MATERIAIS DE CONSTRUÇÃO II TECNOLOGIA DA ARGAMASSA E DO CONCRETO
SEÇÃO DE ENSINO DE ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO MAJ MONIZ DE ARAGÃO MATERIAIS DE CONSTRUÇÃO II TECNOLOGIA DA ARGAMASSA E DO CONCRETO Idade do concreto. Verificação da resistência. Módulo de
DEPARTAMENTO DE ÁGUA E ESGOTO DE BAGÉ DEPARTAMENTO DE PROJETOS MEMORIAL DESCRITIVO
DEPARTAMENTO DE ÁGUA E ESGOTO DE BAGÉ DEPARTAMENTO DE PROJETOS MEMORIAL DESCRITIVO REPAVIMENTAÇÃO EM PAVIMENTOS COM PEDRA IRREGULAR, PARALELEPÍPEDO, BLOCOS DE CONCRETO E CBUQ. 2015 APRESENTAÇÃO Trata o
Ensaios para Avaliação das Estruturas
ENSAIOS PARA INSPEÇÃO DE ESTRUTURAS DE CONCRETO Prof. Eliana Barreto Monteiro Ensaios para Avaliação das Estruturas Inspeção visual Ensaios não destrutivos Ensaios destrutivos Ensaios para Avaliação das
Estudo do comportamento do gesso-α com a adição de ácidos graxos
Estudo do comportamento do gesso-α com a adição de ácidos graxos Maria Carolina de Albuquerque Feitosa Bolsista de Iniciação Científica, Engenharia de Minas, UFPE João Alves Sampaio Orientador, Engenheiro
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL - UFRGS DEPARTAMENTO DE ENGENHARIA QUÍMICA TÓPICOS ESPECIAIS EM TECNOLOGIA INORGÂNICA I CARVÃO MINERAL
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL - UFRGS DEPARTAMENTO DE ENGENHARIA QUÍMICA TÓPICOS ESPECIAIS EM TECNOLOGIA INORGÂNICA I CARVÃO MINERAL Porto Alegre, 21 de março de 2003. 1 - INTRODUÇÃO O carvão
HISTÓRICO DA EVOLUÇÃO DAS USINAS
HISTÓRICO DA EVOLUÇÃO DAS USINAS Histórico da evolução das Usinas de Asfalto. USINAS VOLUMÉTRICAS. USINAS BATCH ou GRAVIMÉTRICAS. USINAS DRUM MIX FLUXO PARALELO. USINAS CONTRA FLUXO O processo volumétrico
LIGHT STEEL FRAMING. Em Portugal o sistema é vulgarmente conhecido por Estrutura em Aço Leve.
Light Steel Framing PORTEFÓLIO 2 QUEM SOMOS A INSIDEPLAN foi criada com o intuito de responder às exigências do mercado no âmbito da prestação de serviços a nível de projecto e obra. Na execução de projectos
Tratamentos térmicos. 1. Introdução
Universidade Estadual do Norte Fluminense Centro de Ciências e Tecnologias Agropecuárias Laboratório de Engenharia Agrícola EAG 3204 Mecânica Aplicada * Tratamentos térmicos 1. Introdução O tratamento
TECNOLOGIA MECÂNICA. Aula 08. Tratamentos Térmicos das Ligas Ferrosas (Parte 2) Tratamentos Termo-Físicos e Termo-Químicos
Aula 08 Tratamentos Térmicos das Ligas Ferrosas (Parte 2) e Termo-Químicos Prof. Me. Dario de Almeida Jané Tratamentos Térmicos Parte 2 - Introdução - - Recozimento - Normalização - Têmpera - Revenido
RESUMOS TEÓRICOS de QUÍMICA GERAL e EXPERIMENTAL
RESUMOS TEÓRICOS de QUÍMICA GERAL e EXPERIMENTAL 5 ESTUDO DA MATÉRIA 1 DEFINIÇÕES Matéria é tudo que ocupa lugar no espaço e tem massa. Nem tudo que existe no universo e matéria. Por exemplo, o calor e
IFES/CAMPUS DE ALEGRE - ES PROJETO BÁSICO
IFES/CAMPUS DE ALEGRE - ES PROJETO BÁSICO Especificação Destinada Construção do Núcleo de Empresas Junior INTRODUÇÃO A execução dos serviços referente Construção do Núcleo de Empresas Junior, obedecerá
Início da execução de uma concretagem submersa. Borra = Concreto misturado com bentonita e solo Concreto
EXEMPLO N O 166 ESTRUTURAS: Estacas escavadas de concreto armado, com diâmetro de 1,10m e 1,30m, executadas com concreto submerso. OBSERVAÇÃO: Concreto com baixa resistência no topo das estacas. Poroso
Critérios de Avaliação Fabril. Artefatos de Concreto para uso no SEP (Sistema Elétrico de Potência)
Critérios de Avaliação Fabril Artefatos de Concreto para uso no SEP (Sistema Elétrico de Potência) O presente subitem tem como objetivo orientar fabricantes de artefatos de concreto para redes de distribuição
PROCESSOS DE TRANSFORMAÇÃO PARA MATERIAIS PLÁSTICOS
PROCESSOS DE TRANSFORMAÇÃO PARA MATERIAIS PLÁSTICOS 1 - Introdução Este texto tem o objetivo de informar conceitos básicos dos principais processos de transformação para materiais plásticos. 2 - Moldagem
H = +25,4 kj / mol Neste caso, dizemos que a entalpia da mistura aumentou em 25,4 kj por mol de nitrato de amônio dissolvido.
Lei de Hess 1. Introdução Termoquímica é o ramo da termodinâmica que estuda o calor trocado entre o sistema e sua vizinhança devido à ocorrência de uma reação química ou transformação de fase. Desta maneira,
ESPECIFICAÇÃO DE SERVIÇO
ESPECIFICAÇÃO DE SERVIÇO DRENOS SUB-SUPERFICIAIS Grupo de Serviço DRENAGEM Código DERBA-ES-D-07/01 1. OBJETIVO Esta especificação de serviço tem por objetivo definir e orientar a execução de drenos subsuperficiais,
Óleo Combustível. Informações Técnicas
Informações Técnicas 1. Definição e composição... 3 2. Principais aplicações... 3 2.1. Sistemas de combustão de óleo combustível... 3 3. Tipos de óleos combustíveis... 4 4. Requisitos de qualidade e especificação...
COMPARATIVO LABORATORIAL DE MISTURAS ASFÁLTICAS MOLDADAS NO CENTRO E LIMITES DAS FAIXAS B E C DO DNIT 1
COMPARATIVO LABORATORIAL DE MISTURAS ASFÁLTICAS MOLDADAS NO CENTRO E LIMITES DAS FAIXAS B E C DO DNIT 1 Janaína Terhorst Pizutti 2, José Antônio Santana Echeverria 3, João Paulo Avrella 4, Ricardo Zardin
TRAÇOS DE CONCRETO PARA OBRAS DE PEQUENO PORTE
1 TRAÇOS DE CONCRETO PARA OBRAS DE PEQUENO PORTE Marcos R. Barboza Paulo Sérgio Bastos UNESP, Faculdade de Engenharia de Bauru, Departamento de Engenharia Civil Resumo Este trabalho surgiu de duas necessidades
(J/gºC) Água 4,19 Petróleo 2,09 Glicerin a 2,43. Leite 3,93 Mercúri o 0,14. a) a água. b) o petróleo. c) a glicerina. d) o leite.
COLÉGIO PEDRO II PRÓ-REITORIA DE PÓS-GRADUAÇÃO, PESQUISA, EXTENSÃO E CULTURA PROGRAMA DE RESIDÊNCIA DOCENTE RESIDENTE DOCENTE: Marcia Cristina de Souza Meneguite Lopes MATRÍCULA: P4112515 INSCRIÇÃO: PRD.FIS.0006/15
Investigação Laboratorial do Uso de Resíduo da Construção Civil como Agregado Graúdo em Estaca de Compactação Argamassada
Investigação Laboratorial do Uso de Resíduo da Construção Civil como Agregado Graúdo em Estaca de Compactação Argamassada Ronaldo Alves de Medeiros Junior Universidade de Pernambuco-UPE, Recife, Brasil,
CONSTRUÇÕES RURAIS: MATERIAIS DE CONSTRUÇÃO. Vandoir Holtz 1
Vandoir Holtz 1 ARGAMASSA Classificação das argamassas: Segundo o emprego: Argamassas para assentamento de alvenarias. Argamassas para revestimentos; Argamassas para pisos; Argamassas para injeções. DOSAGEM
ADITIVOS. Reforçar ou introduzir certas características. Em pequenas quantidades (< 5%). Pode ou não ser lançado diretamente na betoneira
ADITIVOS 1. OBJETIVO Reforçar ou introduzir certas características 2. UTILIZAÇÃO Em pequenas quantidades (< 5%). Pode ou não ser lançado diretamente na betoneira 3. FUNÇÕES BÁSICAS DOS ADITIVOS CONCRETO
