Informática. Business Intelligence (BI), Data Warehouse, OLAP e Data Mining. Prof. Márcio Hunecke
|
|
|
- Tiago Carvalhal
- 6 Há anos
- Visualizações:
Transcrição
1 Informática Business Intelligence (BI), Data Warehouse, OLAP e Data Mining Prof. Márcio Hunecke
2
3 Conceitos de BI Conjunto de ferramentas e técnicas que objetivam dar suporte à tomada de decisão Refere-se ao processo de coleta, organização, análise, compartilhamento e monitoramento de informações que oferecem suporte a gestão de negócios Envolve desde a etapa de coleta até a demonstração dos resultados Trabalha com dados estruturados (tabelas) enquanto que Big Data trabalha com dados estruturados e principalmente não estruturados.
4 BI
5 Data Warehouse Conjuntos dados integrado (banco de dados grande) Orientados por assunto (Data Mart) Variável com o tempo (armazena histórico) Não volátil (não alterado) Banco de dados utilizado para consulta e análises Multidimensional (Cubos) Objetivo é auxiliar a tomada de decisão (DSS) Integra dados dos sistemas OLTP (sistemas transacionais)
6 Propósitos de um Data Warehouse Para entender o propósito do DW, analisaremos as seguintes questões: Nós possuímos montanhas de dados, no entanto, não conseguimos acessá-los. É necessário facilitar o acesso às informações para os usuários de negócio. Apenas mostre-me o que é importante. Nós precisamos que as pessoas usem a informação para suportar uma tomada de decisão baseada em fatos. Uma das missões do data Warehouse é justamente consolidar os dados que são importantes para a tomada de decisão. Evitar o Achômetro.
7 ETL (Extract, Transform and Load) Etapas do ETL Extract Transform - Clean, Conform Load Deliver Componentes do ETL ETL Management Services ETL Data Stores ETL Metadata
8 OLAP OLAP (On-Line Analitical Processing) Software utilizado para gerar as informações vindas do DW (Data Warehouse) Análise Dinâmica e Multidimensional Atividades tanto analíticas quanto navegacionais Os cubos são massas de dados que retornam das consultas feitas ao banco de dados e podem ser manipulados e visualizados.
9
10 Operações de análise OLAP Drill Down ou Roll Down à Mais detalhes e menos granularidade Drill Up ou Roll Up à Menos detalhes e mais granularidade Slice à Selecionar dados de uma única dimensão (fatiar) Dice à Selecionar dados de duas ou mais dimensões Pivot à Operação de rotação, nova perspectiva
11 Modelagem multidimensional Tabela Fato (atributos numéricos) e Tabelas Dimensões Modelo Estrela (Star) Fato com 1 dimensão não normalizada Modelo Floco de Neve (Snowflake) Fato com mais dimensões e todas normalizadas na 2FN
12 Data Mining Mineração de Dados Processo de extrair informação válida, previamente desconhecida e de máxima abrangência a partir de grandes bases de dados, usandoas para apoiar nas tomadas de decisões. Descobrir relacionamentos escondidos no banco de ados. Três métodos para identificar padrões em dados: Modelos simples (consultas baseadas em SQL, raciocínio humano) Modelos intermediários (regressão, árvores de decisão, agrupamento) Modelos complexos (redes neurais, outra indução de regras)
13 Etapas do processo de Data Mining Análise do problema - O processo de análise inicia a partir de um objetivo de busca, seguindo um determinado conhecimento; o principal objetivo é a possibilidade de selecionar os dados e definir as técnicas utilizadas na análise. De acordo com o CRISP-DM essa fase pode ser dividida em Entendimento do Negócio e Entendimento dos Dados. Preparação dos Dados - A preparação consiste em fases internas de coletânea de dados, avaliação, consolidação e limpeza, seleção dos dados e transformação. Modelagem - Definição de tarefas e técnicas utilizadas sobre a ação de cada algoritmo, etapa que gera um modelo a ser analisado posteriormente. Análise e validação de resultados - Considerando que um modelo válido nem sempre é um modelo correto, visa detectar o que há de implícito num modelo, e o que nele é mais peculiar na precisão de uma informação.
Informática. Pré-Prova SEFAZ (RS) Prof. Márcio Hunecke
Informática Pré-Prova SEFAZ (RS) Prof. Márcio Hunecke Questões Segurança da Informação e Certificação Digital 1) Ano: 2018 Banca: CESPE Órgão: BNB Prova: Especialista Técnico - Analista de Sistema Nível:
Informática. Data Warehouse. Professor Julio Alves.
Informática Data Warehouse Professor Julio Alves www.acasadoconcurseiro.com.br Informática 1. DATA WAREHOUSE Executivos tomadores de decisão (diretores, gerentes, analistas, etc) necessitam de ferramentas
Motivação. Análise de Dados. BD x DW OLTP. Data Warehouse. Revisão Quais as diferenças entre as tecnologias de BD e DW? OLAP Modelos Multidimensionais
Data Warehouse Análise de Dados Motivação Revisão Quais as diferenças entre as tecnologias de BD e? Modelos Multidimensionais BD x OLTP dados volume dados granularidade dados atualização dados uso Característica
Roteiro da apresentação
Alexandre Schlöttgen Data Warehouse Curso de Pós Graduação em Ciência da Computação Tópicos Avançados em Modelos de Banco de Dados Profs: Clésio Santos e Nina Edelweiss Junho de 2003 Roteiro da apresentação
Informática. Business Intelligence. Professor Márcio Hunecke.
Informática Business Intelligence Professor Márcio Hunecke www.acasadoconcurseiro.com.br Informática Aula XX BUSINESS INTELLIGENCE (BI) Conceitos de dado, informação, conhecimento e inteligência É importante
Sistemas de Suporte à Decisão. Suporte à Decisão X Operacional. Banco de Dados Avançado. Data Warehouse. Data Warehouse & Data Mart
Sistemas de Suporte à Decisão Sistemas de Suporte a Decisão (SSD) Permitem armazenar e analisar grandes volumes de dados para extrair informações que auxiliam a compreensão do comportamento dos dados Armazenar
SEFAZ INFORMÁTICA Data Mining Prof. Márcio Hunecke
SEFAZ INFORMÁTICA Data Mining Prof. Márcio Hunecke www.acasadoconcurseiro.com.br Informática DATA MINING Data mining (ou mineração de dados) é o processo de extrair informação válida, previamente desconhecida
Conceitos Básicos. Processamento Analítico de Dados Profa. Dra. Cristina Dutra de Aguiar Ciferri Prof. Dr. Ricardo Rodrigues Ciferri
Conceitos Básicos Processamento Analítico de Dados Profa. Dra. Cristina Dutra de Aguiar Ciferri Prof. Dr. Ricardo Rodrigues Ciferri Data Warehousing Engloba arquiteturas, algoritmos e ferramentas que possibilitam
Informática Parte 6 Prof. Márcio Hunecke
Escriturário Informática Parte 6 Prof. Márcio Hunecke Informática DATA WAREHOUSE (MODELAGEM CONCEITUAL PARA DATA WAREHOU- SES, DADOS MULTIDIMENSIONAIS) E OLAP Data Warehouse Executivos tomadores de decisão
GESTÃO DE DADOS NAS ORGANIZAÇÕES. Prof. Robson Almeida
GESTÃO DE DADOS NAS ORGANIZAÇÕES Prof. Robson Almeida INFRA-ESTRUTURA DE SISTEMAS DE INFORMAÇÃO 3 CONCEITOS Bit: Menor unidade de dados; dígito binário (0,1) Byte: Grupo de bits que representa um único
Modelagem Multidimensional
Modelagem Multidimensional Processamento Analítico de Dados Profa. Dra. Cristina Dutra de Aguiar Ciferri Prof. Dr. Ricardo Rodrigues Ciferri Modelagem Multidimensional Análises dos usuários de SSD representam
Inteligência do Negócio
Inteligência do Negócio DENISE NEVES 2017 [email protected] Inteligência do Negócio Objetivo Primeiro Bimestre Apresentar ao aluno as etapas de projeto de Business Intelligence. Introdução a Inteligência
Inteligência nos Negócios (Business Inteligente)
Inteligência nos Negócios (Business Inteligente) Sistemas de Informação Sistemas de Apoio a Decisão Aran Bey Tcholakian Morales, Dr. Eng. (Apostila 4: OLAP) Fundamentação da disciplina Analise de dados
Business Intelligence (BI)
Business Intelligence (BI) Conceitos Iniciais Professor: Aurisan Santana CONTEÚDO DO CURSO Business Intelligence (BI): Introdução, Histórico e Conceitos Dado, Informação e Conhecimento Data Warehouse (DW)
Modelagem Multidimensional
Profa. Dra. Cristina Dutra de Aguiar Ciferri Prof. Dr. Ricardo Rodrigues Ciferri Análises dos usuários de SSD representam requisições multidimensionais aos dados do DW permitem a identificação de problemas
Business Intelligence :
Business Intelligence : Tecnologia da Informação a serviço do suporte decisório nas organizações. Extraído dos trabalhos de Pablo Passos e Grimaldo Lopes Roteiro Planejamento Estratégico Evitando a Desinformação
Sistemas de Informação
Sistemas de Informação Sistemas empresariais: BI e BSC 1 BI BI Business Intelligence ou Inteligência de Negócios Resolução de problemas complexos Decisões assertivas Manter Vender Comprar Inteligência
TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE
TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE Engenharia de Computação Professor: Rosalvo Ferreira de Oliveira Neto OLPT x OLAP Roteiro OLTP Datawarehouse OLAP Operações OLAP Exemplo com Mondrian e Jpivot
SEFAZ INFORMÁTICA Business Intelligence (BI) Prof. Márcio Hunecke
SEFAZ INFORMÁTICA Business Intelligence (BI) Prof. Márcio Hunecke www.acasadoconcurseiro.com.br Informática Business Intelligence (BI) Conceitos de dado, informação, conhecimento e inteligência É importante
Ferramentas de Tomada de Decisão
Ferramentas de Tomada de Decisão SLIDES III Professor Júlio Cesar da Silva [email protected] site: http://eloquium.com.br/ twitter: @profjuliocsilva facebook: https://www.facebook.com/paginaeloquium
Motivação. Pouco conhecimento. Muitos dados e informações. Problemas para tomada de decisão
Motivação Problemas para tomada de decisão Muitos dados e informações Pouco conhecimento Motivação Uso amigável Sistemas computacionais que integram dados oriundos de diversas fontes Grande poder analítico
OLAP. Rodrigo Leite Durães.
OLAP Rodrigo Leite Durães. [email protected] OLAP Definição OLAP (Online analytical processing) é uma categoria de tecnologia de software que possibilita a visualização dos dados armazenados, segundo
SISTEMAS DE APOIO À INTELIGÊNCIA DE NEGÓCIOS
SISTEMAS DE APOIO À INTELIGÊNCIA DE NEGÓCIOS http://www.uniriotec.br/~tanaka/sain [email protected] Introdução a OLAP Material baseado em originais de Maria Luiza Campos NCE/UFRJ Atualizado com publicações
Introdução à teoria de Data Warehouse. Prof. Rodrigo Leite Durães
Introdução à teoria de Data Warehouse Prof. Rodrigo Leite Durães [email protected] Organizações: necessidade de INFORMAÇÃO para tomada de decisões Exemplos: FACULDADE - abertura de mais vagas para
Fundamentos da Inteligência de Negócios: Gerenciamento da Informação e de Bancos de Dados by Prentice Hall
Fundamentos da Inteligência de Negócios: Gerenciamento da Informação e de Bancos de Dados 5.1 2007 by Prentice Hall A Abordagem de Banco de Dados para Gerenciamento de Dados Banco de dados: conjunto de
PÓS-GRADUAÇÃO LATO SENSU. Curso: Banco de Dados. Disciplina: Data Warehouse e Business Intelligence; Laboratório Professor: Fernando Zaidan
PÓS-GRADUAÇÃO LATO SENSU Curso: Banco de Dados Disciplina: Data Warehouse e Business Intelligence; Laboratório Professor: Fernando Zaidan Apresentação da disciplina 2016 Apresentações e perfil da turma
Campus Capivari Análise e Desenvolvimento de Sistemas (ADS) Prof. André Luís Belini /
Campus Capivari Análise e Desenvolvimento de Sistemas (ADS) Prof. André Luís Belini E-mail: [email protected] / [email protected] MATÉRIA: SIG Aula N : 06 Tema: Fundamentos da inteligência
Bancos de Dados IV. OLAP e Cubos de Dados. Rogério Costa
Bancos de Dados IV OLAP e Cubos de Dados Rogério Costa [email protected] 1 OLAP Online Analytical Processing (OLAP) Análise interativa de dados, permitindo que dados sejam sumarizados e vistos de
Tópicos Avançados Business Intelligence. Banco de Dados Prof. Otacílio José Pereira. Unidade 10 Tópicos Avançados Business Inteligence.
Tópicos Avançados Business Intelligence Banco de Dados Prof. Otacílio José Pereira Unidade 10 Tópicos Avançados Business Inteligence Roteiro Introdução Níveis organizacionais na empresa Visão Geral das
Sistemas de Apoio a Decisão
Sistemas de Apoio a Decisão (Inteligência nos Negócios - Business Inteligente) Sistemas de Informação/Ciências da Computação Aran Bey Tcholakian Morales, Dr. Eng. (Apostila 2) Apresentação A tecnologia
Bancos de Dados IV. Data Warehouse Conceitos. Rogério Costa
Bancos de Dados IV Data Warehouse Conceitos Rogério Costa [email protected] 1 Data Warehouse - O que é? Conjunto de dados orientados por assunto, integrado, variável com o tempo e nãovolátil Orientado
Banco de Dados Data Mining Data Warehouse Big Data
Universidade Estadual de Mato Grosso do Sul Curso de Computação, Licenciatura Banco de Dados Data Mining Data Warehouse Big Data Prof. José Gonçalves Dias Neto [email protected] Data Mining: Introdução
Introdução ao Data Mining. Sumário
Introdução ao Data Mining Instituto Nacional de Estatística 20-24 de Abril de 2009 Módulo 1 - Data Warehousing e Data Mining - André Falcão ([email protected]) Graça Gaspar ([email protected]) Sumário Data-mining
Gerência de Projetos de TI
Gerência de Projetos de TI Grade Curricular Unidade de aprendizagem Ementas Carga horária Semestre 1 Business Intelligence Gerência de Qualidade de Software Métodos e Práticas na Engenharia de Requisitos
Mineração de Dados - Contextualização. Fonte: Prof. Fabrício J. Barth -
Mineração de Dados - Contextualização Fonte: Prof. Fabrício J. Barth - http://fbarth.net.br/ Mineração de Dados - Contextualização Uso da informação Síntese do conhecimento; Manter, disseminar, organizar,
Mapa Mental de Data Warehouse Definições e Características
Mapa Mental de Data Warehouse Definições e Características Um data warehouse (ou armazém de dados, ou depósito de dados no Brasil) é um sistema de computação utilizado para armazenar informações relativas
Descoberta de Conhecimento em Bancos de Dados - KDD
Descoberta de Conhecimento em Bancos de Dados - KDD Professor: Rosalvo Ferreira de Oliveira Neto Disciplina: Inteligência Artificial Tópicos 1. Definições 2. Fases do processo 3. Exemplo do DMC 4. Avaliação
Práticas de Contagem. - Data Warehouse. - Workflow. - Mudança de tipo. - Drop-down. - Mudança de tamanho de campo. - Mudança de domínio
FATTO Consultoria e Sistemas - www.fattocs.com.br 1 Práticas de Contagem - Data Warehouse - Workflow - Mudança de tipo - Drop-down - Mudança de tamanho de campo - Mudança de domínio FATTO Consultoria e
Material Complementar - BI. Grinaldo Lopes de Oliveira Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas
Material Complementar - BI Grinaldo Lopes de Oliveira ([email protected]) Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas Business Intelligence - Conceito Coleta de dados a partir
Rodada #1 Análise de Informações
Rodada #1 Análise de Informações Professora Patrícia Quintão Assuntos da Rodada ANÁLISE DE INFORMAÇÕES: 1 Dado, informação, conhecimento e inteligência. Dados estruturados e não estruturados. Dados abertos.
INTELIGÊNCIA EMPRESARIAL Apresentação do Plano de Ensino. Luiz Leão
Luiz Leão [email protected] http://www.luizleao.com Introdução A Inteligência Empresarial está ligada a gestão organizacional e à redução da incerteza através da busca do conhecimento para auxiliar na
SQL. Processamento Analítico de Dados Profa. Dra. Cristina Dutra de Aguiar Ciferri Prof. Dr. Ricardo Rodrigues Ciferri
SQL Processamento Analítico de Dados Profa. Dra. Cristina Dutra de Aguiar Ciferri Prof. Dr. Ricardo Rodrigues Ciferri Arquitetura de 3 Camadas esquema operações conceitual metáfora do cubo de dados Cube
DATA WAREHOUSE. Rafael Ervin Hass Raphael Laércio Zago
DATA WAREHOUSE Rafael Ervin Hass Raphael Laércio Zago Roteiro Introdução Aplicações Arquitetura Características Desenvolvimento Estudo de Caso Conclusão Introdução O conceito de "data warehousing" data
Banco de Dados - Senado
Banco de Dados - Senado Exercícios OLAP - CESPE Material preparado: Prof. Marcio Vitorino OLAP Material preparado: Prof. Marcio Vitorino Soluções MOLAP promovem maior independência de fornecedores de SGBDs
Tópicos Especiais em Informática Fatec Indaiatuba
Prof. Dr. Dilermando Piva Jr Fatec Indaiatuba [1] [2] Dado: qualquer elemento identificado em sua forma bruta que, por sí só, não conduz a uma compreensão de determinado fato ou situação. Informação: é
O que não pode faltar em seus projetos de BI. Neimar Chagas
O que não pode faltar em seus projetos de BI Neimar Chagas Consultor de Business Intelligence e Professor. Especialista em projetos de BI com Pentaho. Especialista em Integração de Dados e Data Warehouse
Blog:
Contatos: E-mail: [email protected] Blog: http://profanadeinformatica.blogspot.com. br/ Facebook: https://www.facebook.com/anapinf Livro Informática para Concursos Teoria e Questões - 3a
Roger Pereira dos Santos DATA WAREHOUSE COM INTEGRAÇÃO DE BUSINESS INTELLIGENCE
Roger Pereira dos Santos DATA WAREHOUSE COM INTEGRAÇÃO DE BUSINESS INTELLIGENCE Assis 2015 Roger Pereira dos Santos DATA WAREHOUSE COM INTEGRAÇÃO DE BUSINESS INTELLIGENCE Trabalho de Conclusão de Curso
Sistemas de Apoio à Decisão (SAD) - Senado
Sistemas de Apoio à Decisão (SAD) - Senado DW OLAP BI Ilka Kawashita Material preparado :Prof. Marcio Vitorino Sumário OLAP Data Warehouse (DW/ETL) Modelagem Multidimensional Data Mining BI - Business
SBC - Sistemas Baseados em Conhecimento
Siglas, Símbolos, Abreviaturas DW - Data Warehouse KDD Knowledge Discovery in Database MD Mineração de Dados OLAP - On-line analytical processing SBC - Sistemas Baseados em Conhecimento 1. INTRODUÇÃO O
dimensionais fundamentos de DW
Tabelas fato e tabelas dimensionais fundamentos de DW Modelagem dimensional é uma disciplina de design que transpassa a modelagem relacional e a realidade de dados de texto e números (Kimball) Se comparado
Data Warehouse Granularidade. rogerioaraujo.wordpress.com twitter: @rgildoaraujo - [email protected] 1
Data Warehouse Granularidade rogerioaraujo.wordpress.com twitter: @rgildoaraujo - [email protected] 1 Granularidade A granularidade de dados refere-se ao nível de sumarização dos elementos e de detalhe
EAD-0750 INTELIGÊNCIA DE NEGÓCIOS. Prof. Sérgio Luiz de Oliveira Assis
H3 EAD-0750 INTELIGÊNCIA DE NEGÓCIOS Prof. Sérgio Luiz de Oliveira Assis [email protected] 07 Agenda 1. Visão Geral do Processo ETL 2. Características da área staging 3. A fase 1 do ETL Carga do DW 4.
Sistemas de Apoio à Decisão
Sistemas de Informação e Bases de Dados 2012/2013 Sistemas de Apoio à Decisão Alberto Sardinha Sumário! Processo ETL! Exemplo de ETL com o SQL Server Integration Services (SSIS)! Referências Raghu Ramakrishnan,
BANCO DE DADOS DISTRIBUÍDOS e DATAWAREHOUSING
BANCO DE DADOS DISTRIBUÍDOS e DATAWAREHOUSING http://www.uniriotec.br/~tanaka/tin0036 [email protected] Introdução a Data Warehousing e OLAP Introdução a Data Warehouse e Modelagem Dimensional Visão
Banco de dados. Prof. Emiliano S. Monteiro
Banco de dados Prof. Emiliano S. Monteiro Processamento de transações Sistema monousuário x multiusuário Um SGBD é monousuário se no máximo um usuário puder utilizá-lo de cada vez. Um SGBD é multiusuário
Business Intelligence Inteligência Corporativa
Business Intelligence Inteligência Corporativa Conhece-te a ti mesmo Pedro Domingues [email protected] Tel. 3091-3612 Agosto / 2012 Pedro Domingues 1 Roteiro Noticias do Gartner; Conceito e Benefícios; Modelagem
20/3/2012. Gerenciamento Estratégico de Dados. Gerenciamento Estratégico de Dados. Gerenciamento Estratégico de Dados. Prof. Luiz A.
Prof. Luiz A. Nascimento Principais ferramentas: Banco de Dados ERP (módulo BI) ETL Data Mart Data Warehouse Data Mining Planilha Eletrônica OLAP OLAP 1 Classificação das ferramentas: Construção extração
Adriano Maranhão BUSINESS INTELLIGENCE (BI),
Adriano Maranhão BUSINESS INTELLIGENCE (BI), BUSINESS INTELLIGENCE (BI) O termo Business Intelligence (BI), popularizado por Howard Dresner do Gartner Group, é utilizado para definir sistemas orientados
Sistemas de Apoio a Decisão
Sistemas de Apoio a Decisão (Inteligência nos Negócios - Business Inteligente) Sistemas de Informação/Ciências da Computação Aran Bey Tcholakian Morales, Dr. Eng. (Apostila 2) Apresentação A tecnologia
Inteligência nos Negócios (Business Inteligente)
Inteligência nos Negócios (Business Inteligente) Sistemas de Informação Sistemas de Apoio a Decisão Aran Bey Tcholakian Morales, Dr. Eng. (Apostila 4: OLAP) Fundamentação da disciplina Analise de dados
UNIVERSIDADE DE CAXIAS DO SUL Centro de Computação e Tecnologia da Informação Curso de Bacharelado em Sistemas de Informação
UNIVERSIDADE DE CAXIAS DO SUL Centro de Computação e Tecnologia da Informação Curso de Bacharelado em Sistemas de Informação Rafael de Souza Vieira IMPLANTAÇÃO DE BUSINESS INTELLIGENCE NO SISTEMA NL GESTÃO
Tomada de Decisão Estratégica
EXERCÍCIO N N Tópico Tópico 1 2 Sistemas Tomada de de Informação Decisão Estratégica nos negócios DCC133 Introdução a Sistemas de Informação TÓPICO 2 Tomada de Decisão Estratégica Prof. Tarcísio de Souza
10 FORMAS ESTATÍSTICA MODELAGEM PARA USAR
10 FORMAS PARA USAR MODELAGEM ESTATÍSTICA Introdução Conheça um pouco mais sobre algumas modelagens estatísticas e como você pode implantar dentro da sua organização A análise preditiva é capaz de descobrir
Data Warehousing: Conceitos Básicos e Arquitetura
Data Warehousing: Conceitos Básicos e Arquitetura Profa. Dra. Cristina Dutra de Aguiar Ciferri Prof. Dr. Ricardo Rodrigues Ciferri Visão do Mercado Crescimento explosivo do uso da tecnologia de data warehousing
