1. Computação Evolutiva
|
|
|
- Aurélia Peres
- 7 Há anos
- Visualizações:
Transcrição
1 Computação Bioinspirada Computação Evolutiva Prof. Renato Tinós Programa de Pós-Graduação Em Computação Aplicada Depto. de Computação e Matemática (FFCLRP/USP)
2 2 Computação Bioinspirada Algoritmos Genéticos Introdução Elementos de Algoritmos Genéticos (AGs) Projeto de AGs Exemplos
3 3 Computação Bioinspirada // Baseada em [Goldberg, 1989]... /* Definição de constantes */ defina maxpop = 100 // tamanho maximo da populacao defina tamcrom = 30 // tamanho do cromossomo /* Definição dos tipos de dados */ tipo_de_dado alelo : booleana tipo_de_dado cromossomo : alelo[tamcrom] tipo_de_dado individuo : { tipo de dado populacao :... // tipo de dado que os alelos // podem assumir (poderia ser // outros tipos como real e // inteiro) crom : cromossomo // cromossomo fitness : real // funcao de avaliacao pai1, pai2, jcross : inteiro } individuo[maxpop] // indice dos pais e ponto de // crossover
4 4 Computação Bioinspirada /* Definição da variáveis globais */ declare popvelha, popnova : população declare poptam, lcrom, gen, maxgen : inteiro declare pcross, pmutacao, somafitness : real declare nmutacao, ncross : inteiro declare media, max, min : real // tipos usados nas estatisticas // tipos usados nas estatisticas...
5 5 Computação Bioinspirada /* Programa principal */ procedimento ag( ) gen 0 inicialização ( ) // procedimento para inicialização // das variáveis e da população faça gen gen + 1 // número de gerações geração ( ) estatística( poptam, max, media, min, somafitness, popnova) impressão ( ) // proc. para impressão na tela popvelha popnova enquanto ( gen maxgen )
6 6 Computação Bioinspirada procedimento geração( ) declare j, pai1, pai2, jcross : inteiro j 1 faça // Escolha dos Pais pai1 seleção( poptam, somafitness, popvelha ) pai2 seleção( poptam, somafitness, popvelha ) // Reproducao crossover( popvelha[ pai1 ].crom, popvelha[ pai2 ].crom, popnova[ j ].crom, popnova[ j+1 ].crom, lcrom, ncross, nmutacao, &jcross, pcross, pmutacao ) // Filho j popnova[ j ].fitness calcfitness( popnova[ j ].crom, lcrom ) popnova[ j ].pai1 pai1 // pai 1 do filho j popnova[ j ].pai2 pai2 // pai 2 do filho j popnova[ j ].jcross jcross // ponto de crossover do filho j // Filho j + 1 popnova[ j+1 ].fitness calcfitness( popnova[ j+1 ].crom, lcrom ) popnova[ j+1 ].pai1 pai1 // pai 1 do filho j popnova[ j+1 ].pai2 pai2 // pai 2 do filho j popnova[ j+1 ].jcross jcross // ponto de crossover do filho j j j + 2 enquanto ( j poptam) // incremento do índice da populacao
7 7 Computação Bioinspirada função seleção( poptam : inteiro ; somafitness : real ; pop : população ) : inteiro declare randomico, somaparcial : real declare j : inteiro somaparcial 0 j 0 randomico rand(0,1) * somafitness faça j j + 1 somaparcial somaparcial + pop[ j ].fitness enquanto (somaparcial < randomico e j < poptam) retorne ( j ) // gera o ponto de parada da roleta // rand(l,r) gera um variável aleatória real // entre [ l, r ] com distribuição uniforme
8 8 Computação Bioinspirada procedimento crossover( pai1, pai2, filho1, filho2 : cromossomo ; lcrom, ncross, nmutacao, jcross : inteiro; pcross, pmutacao : real) declare j : inteiro se ( rand(0,1) pcross ) jcross randint( 1, lcrom-1 ) // gera o ponto de crossover // randint(l,r) gera um variável aleatória // inteira entre [ l, r ] com distrib. uniforme // contador de crossovers ncross ncross + 1 senão jcross lcrom fim se para j 1 até j jcross filho1[ j ] mutacao( pai1[ j ], pmutacao, nmutacao ) filho2[ j ] mutacao( pai2[ j ], pmutacao, nmutacao ) fim para se ( jcross < lcrom ) para j jcross+1 até j lcrom filho1[ j ] mutacao( pai2[ j ], pmutacao, nmutacao ) filho2[ j ] mutacao( pai1[ j ], pmutacao, nmutacao ) fim para fim se
9 9 Computação Bioinspirada função mutacao( alelovalor : alelo ; pmutacao : real ; nmutacao : inteiro ) : inteiro se ( rand(0,1) pmutacao ) nmutacao nmutacao + 1 retorne (!alelovalor ) senão retorne ( alelovalor ) fim se // contador de mutações // not alelovalor // se os alelos assumissem valores // inteiros, deveria // retornar um numero inteiro aleatorio
10 10 Computação Bioinspirada /* Calcula estatísticas da população */ procedimento estatística( poptam : inteiro ; max, media, min, somafitness : real ; pop : populacao) declare j : inteiro somafitness pop[ 1 ].fitness min pop[ 1 ].fitness max pop[ 1 ].fitness // soma do fitness da população // mínimo valor de fitness da população // máximo valor de fitness da população para j 2 até j poptam somafitness somafitness + pop[ j ].fitness se (pop[ j ].fitness > max ) max pop[ j ].fitness fim se se (pop[ j ].fitness < min ) min pop[ j ].fitness fim se fim para media somafitness / poptam // média de fitness da população
11 11 Computação Bioinspirada Exemplo 2.4. Achar o máximo da função f ( z ) = ( z ) 10 Sendo z um número inteiro positivo entre 0 e (2 30-1) [Goldberg, 1989] Observações Se um esquema enumerativo é utilizado, deve-se analisar 2 30 possíveis soluções se o tempo de análise de cada solução for de 1 ms, então serão necessários cerca de 2 anos para a análise de todas as soluções Se a função for normalizada entre 0 e 1, então apenas 1,05 % das possíveis soluções resultam em valores da função maiores que 0,9
12 12 Computação Bioinspirada Exemplo 2.4. Algoritmo Genético Função de avaliação fitness ( z i ) = ( z i / z max ) 10 Varia entre 0 e 1 Decodificação Vetor de bits x i com dimensão 30 Exemplo: x i = [ ] T O vetor de bits é decodificado para números inteiros z i = x i (1) x i (2) x i (3) x i (30) 2 29
13 13 Computação Bioinspirada Exemplo 2.4. AG: função de avaliação /* Calculo da função de avaliação f (z) = (z/z max ) 10 */ função calcfitness( crom : cromossomo ; lcrom : inteiro ) : real declare zmax, z : real zmax z = decodificação( crom, lcrom ) // fator de normalização // o máximo valor de z é (ver próx. slide) // decodifica o vetor de bits em um valor int // fenótipo (pode assumir outros tipos) retorne ( potência( z / zmax,10 ) )
14 14 Computação Bioinspirada Exemplo 2.4. AG: decodificação /* Decodifica um vetor de bits em um número inteiro */ função decodificação( vetor : cromossomo ; lbits : inteiro ) : inteiro declare j, valor, potdedois : inteiro potdedois 1 valor 0 para j 1 até j lbits se ( vetor[ j ] ) valor valor + potdedois fim se potdedois 2*potdedois fim para retorne ( valor )
15 15 Computação Bioinspirada Exemplo 2.4. Ver [Goldberg, 1989] AG: parâmetros poptam = 30 pcross = 0,6 pmutação = 0,0333
16 16 Computação Bioinspirada Exemplo 4.4.
17 17 Computação Bioinspirada Exemplo 4.4.
18 18 Computação Bioinspirada Comentários Referências Goldberg, D. E. Genetic algorithms in search, optimization, and machine learning. Addison- Wesley Pub. Co., 1989 Capítulo 3
1. Computação Evolutiva
Computação Bioinspirada - 5955010-1 1. Computação Evolutiva Prof. Renato Tinós Programa de Pós-Graduação Em Computação Aplicada Depto. de Computação e Matemática (FFCLRP/USP) 2 Computação Bioinspirada
3. Resolução de problemas por meio de busca
Inteligência Artificial - IBM1024 3. Resolução de problemas por meio de busca Prof. Renato Tinós Local: Depto. de Computação e Matemática (FFCLRP/USP) 1 Principais Tópicos 3. Resolução de problemas por
Otimização. Algoritmos Genéticos. Teoria da Evolução. Otimização
Algoritmos Genéticos Otimização São técnicas de busca e otimização. É a metáfora da teoria da evolução das espécies iniciada pelo Fisiologista e Naturalista inglês Charles Darwin. Desenvolvido por John
Algoritmo Genético. Teoria da Evolução Princípio seguido pelos AGs
Algoritmo Genético Técnica de busca e otimização. Metáfora da teoria da evolução das espécies iniciada pelo Fisiologista e Naturalista inglês Charles Darwin. Desenvolvido por John Holland (1975) e seus
Introdução a Algoritmos Genéticos
Introdução a Algoritmos Genéticos Tiago da Conceição Mota Laboratório de Inteligência Computacional Núcleo de Computação Eletrônica Universidade Federal do Rio de Janeiro Outubro de 2007 O Que São? Busca
Algoritmos Genéticos. Estéfane G. M. de Lacerda DCA/UFRN Outubro/2008
Estéfane G. M. de Lacerda DCA/UFRN Outubro/2008 Introdução São técnicas de busca e otimização. É a metáfora da teoria da evolução das espécies iniciada pelo Fisiologista e Naturalista inglês Charles Darwin.
Técnicas de Inteligência Artificial
Universidade do Sul de Santa Catarina Ciência da Computação Técnicas de Inteligência Artificial Aula 9 Algoritmos Genéticos Max Pereira Algoritmos Genéticos Algoritmos Genéticos São técnicas de busca e
1. Computação Evolutiva
Computação Bioinspirada - 5955010-1 1. Computação Evolutiva Prof. Renato Tinós Programa de Pós-Graduação Em Computação Aplicada Depto. de Computação e Matemática (FFCLRP/USP) 2 Computação Bioinspirada
Computação Evolutiva Eduardo do Valle Simões Renato Tinós ICMC - USP
Computação Evolutiva Eduardo do Valle Simões Renato Tinós ICMC - USP 1 Principais Tópicos Introdução Evolução Natural Algoritmos Genéticos Aplicações Conclusão 2 Introdução http://www.formula-um.com/ Como
Codificação das variáveis: binária Iniciação da população: aleatória Avaliação: função aptidão Operadores. Critério de parada: número de gerações
AG Simples/Canônico (AGS) AG introduzido por Holland Funciona bem para problemas de otimização simples e/ou de pequenas dimensões A maior parte da teoria dos AGs está baseada no AGS Utilidade didática
Computação Evolutiva. Computação Evolutiva. Principais Tópicos. Evolução natural. Introdução. Evolução natural
Computação Evolutiva Eduardo do Valle Simões Renato Tinós ICMC - USP Principais Tópicos Introdução Evolução Natural Algoritmos Genéticos Aplicações Conclusão 1 2 Introdução Evolução natural http://www.formula-um.com/
Algoritmos Genéticos. Pontos fracos dos métodos tradicionais. Características de alguns problemas. Tamanho do espaço de busca- Ex. caixeiro viajante:
Algoritmos Genéticos Prof. Luis Otavio Alvares INE/UFSC Características de alguns problemas Tamanho do espaço de busca- Ex. caixeiro viajante: 10 cidades: 181.000 soluções 20 cidades: 10.000.000.000.000
Algoritmos Genéticos
Algoritmos Genéticos Roteiro Introdução Algoritmos Genéticos Otimização Representação Seleção Operadores Genéticos Aplicação Caixeiro Viajante Introdução Algoritmos Genéticos (AGs), são métodos de otimização
ALGORITMOS GENÉTICOS. Adair Santa Catarina Curso de Ciência da Computação Unioeste Campus de Cascavel PR
ALGORITMOS GENÉTICOS Adair Santa Catarina Curso de Ciência da Computação Unioeste Campus de Cascavel PR Fev/2018 Introdução Algoritmos Genéticos são algoritmos heurísticos de busca, que utilizam regras
Sistemas Inteligentes if684. Germano Vasconcelos Página da Disciplina:
Sistemas Inteligentes if684 Germano Vasconcelos [email protected] Página da Disciplina: www.cin.ufpe.br/~îf684/ec 1 1 Algoritmos Genéticos 2 Algoritmos Genéticos n Técnicas de busca e otimização n Metáfora
Técnicas de Inteligência Artificial
Universidade do Sul de Santa Catarina Ciência da Computação Técnicas de Inteligência Artificial Aula 9 Algoritmos Genéticos Max Pereira Algoritmos Genéticos São técnicas de busca e otimização. Uma metáfora
Inteligência Artificial
Inteligência Artificial Aula 6 Algoritmos Genéticos M.e Guylerme Velasco Roteiro Introdução Otimização Algoritmos Genéticos Representação Seleção Operadores Geneticos Aplicação Caixeiro Viajante Introdução
1. Computação Evolutiva
Computação Bioinspirada - 5955010-1 1. Computação Evolutiva Prof. Renato Tinós Depto. de Computação e Matemática (FFCLRP/USP) 1 1.7. Outras Metaheurísticas Populacionais 1.7.1. Metaheurísticas Populacionais
1. Computação Evolutiva
Computação Bioinspirada - 5955010-1 1. Computação Evolutiva Prof. Renato Tinós Programa de Pós-Graduação Em Computação Aplicada Depto. de Computação e Matemática (FFCLRP/USP) 2 Computação Bioinspirada
4. Algoritmos de Busca em Vetores
Introdução à Computação II 5952011 4. Algoritmos de Busca em Vetores Prof. Renato Tinós Local: Depto. de Computação e Matemática (FFCLRP/USP) 1 Principais Tópicos 4.1. Introdução 4.2. Busca Linear 4.2.1.
GT-JeDi - Curso de Desenv. de Jogos IA para Jogos. Gustavo Pessin 2007
GT-JeDi - Curso de Desenv. de Jogos IA para Jogos Gustavo Pessin 2007 Cronograma Base conceitual Exemplo: Achando o máximo de uma função... Como criar uma pequena aplicação: Exercício-Exemplo [Animal selvagem...]
Algoritmos Genéticos. 1 Semestre de Cleber Zanchettin UFPE - Universidade Federal de Pernambuco CIn - Centro de Informática
Algoritmos Genéticos 1 Semestre de 2015 Cleber Zanchettin UFPE - Universidade Federal de Pernambuco CIn - Centro de Informática 1 2 Introdução Darwin Naturalistas: cada espécie havia sido criada separadamente
Algoritmo Genético. Inteligência Artificial. Professor: Rosalvo Ferreira de Oliveira Neto
Algoritmo Genético Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Introdução 2. Conceitos Básicos 3. Aplicações 4. Algoritmo 5. Exemplo Introdução São técnicas de busca
Algoritmos Genéticos e Evolucionários
Algoritmos Genéticos e Evolucionários Djalma M. Falcão COPPE/UFRJ PEE e NACAD [email protected] http://www.nacad.ufrj.br/~falcao/ http://www.nacad.ufrj.br/~falcao/ag/ag.htm Resumo do Curso Introdução
Otimização com Algoritmos Genéticos no MATLAB. Prof. Rafael Saraiva Campos CEFET-RJ
Otimização com Algoritmos Genéticos no MATLAB Prof. Rafael Saraiva Campos CEFET-RJ Conteúdo do Mini-Curso PARTE 1 Teoria PARTE 2 Prática Conteúdo do Mini-Curso PARTE 1 Teoria 1.1. Conceitos Básicos de
Inteligência Artificial
Inteligência Artificial Prof. Kléber de Oliveira Andrade [email protected] Algoritmos Genéticos Conteúdo Introdução O Algoritmo Genético Binário Noções de Otimização O Algoritmo Genético com Parâmetros
Modelos Evolucionários e Tratamento de Incertezas
Ciência da Computação Modelos Evolucionários e Tratamento de Incertezas Aula 01 Computação Evolucionária Max Pereira Motivação Se há uma multiplicidade impressionante de algoritmos para solução de problemas,
Computação Evolutiva. Prof. Eduardo R. Hruschka (Slides baseados nos originais do Prof. André C. P. L. F. de Carvalho)
Computação Evolutiva Prof. Eduardo R. Hruschka (Slides baseados nos originais do Prof. André C. P. L. F. de Carvalho) Principais Tópicos Computação Evolutiva Algoritmos Genéticos Codificação Função de
Algoritmos Genéticos. Texto base: Stuart Russel e Peter Norving - Inteligência Artificial
Algoritmos Genéticos Texto base: Stuart Russel e Peter Norving - Inteligência Artificial junho/2007 Algoritmo Genético Uma variante da busca em feixe estocástica Estado sucessor gerado pela combinação
Inteligência Artificial. Algoritmos Genéticos. Aula I Introdução
Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação Inteligência Artificial Algoritmos Genéticos Aula I Introdução Roteiro Introdução Computação Evolutiva Algoritmos
4. Algoritmos de Busca em Vetores
Introdução à Computação II 5952011 4. Algoritmos de Busca em Vetores Prof. Renato Tinós Local: Depto. de Computação e Matemática (FFCLRP/USP) 1 Principais Tópicos 4.1. Introdução 4.2. Busca Linear 4.2.1.
Computação 1 - Python Aula 8 - Teórica: Estrutura de Repetição : for 1/ 10
Computação 1 - Python Aula 8 - Teórica: Estrutura de Repetição : for 1/ 10 Estrutura de Repetição while Estrutura que permite a repetição de um conjunto de comandos. Até o momento vimos o while: while
4 Implementação Computacional
4 Implementação Computacional 4.1. Introdução Neste capítulo é apresentada a formulação matemática do problema de otimização da disposição das linhas de ancoragem para minimizar os deslocamentos (offsets)
Computação Evolutiva. Aula 4 Usando AEs Prof. Tiago A. E. Ferreira
Computação Evolutiva Aula 4 Usando AEs Prof. Tiago A. E. Ferreira Roteiro Exemplos: Problema das 8 rainhas Comportamentos Típicos dos AE CE no contexto da Otimização Global Relembrando Na Aula Passada,
APLICAÇÃO DE ALGORITMOS BIO-INSPIRADOS EM CONTROLE ÓTIMO
APLICAÇÃO DE ALGORITMOS BIO-INSPIRADOS EM CONTROLE ÓTIMO Profa. Mariana Cavalca Baseado em: Material didático do Prof. Dr. Carlos Henrique V. Moraes da UNIFEI Curso de verão da Profa. Gisele L. Pappa Material
Introdução aos Algoritmos Genéticos
Introdução aos Algoritmos Genéticos Prof. Matheus Giovanni Pires EXA 868 Inteligência Artificial Não-Simbólica B Universidade Estadual de Feira de Santana 2 Algoritmos Genéticos: Introdução Introduzidos
Algoritmos Genéticos. Luis Martí LIRA/DEE/PUC-Rio. Algoritmos Genéticos
Luis Martí LIRA/DEE/PUC-Rio Baseado nas transparências dos professores: Teresa B. Ludermir (UFPE) Ricardo Linden (CEPEL) Marco Aurélio Pacheco (PUC-Rio) Conteúdo! Introdução! O Algoritmo Genético Binário!
Estratégias Evolutivas EEs. Prof. Juan Moisés Mauricio Villanueva
Estratégias Evolutivas EEs Prof. Juan Moisés Mauricio Villanueva [email protected] www.cear.ufpb.br/juan Estratégias Evolutivas Desenvolvidas por Rechenberg e Schwefel, e estendida por Herdy, Kursawe
ESTIMAÇÃO DE PARÂMETROS DE SISTEMAS NÃO LINEARES UTILIZANDO ALGORITMOS GENÉTICOS
Anais do IX Congresso Brasileiro de Redes Neurais /Inteligência Computacional (IX CBRN) Ouro Preto 25-28 de Outubro de 2009 Sociedade Brasileira de Redes Neurais ESTIMAÇÃO DE PARÂMETROS DE SISTEMAS NÃO
Exemplo de Aplicação de Algoritmos Genéticos. Prof. Juan Moisés Mauricio Villanueva cear.ufpb.br/juan
Exemplo de Aplicação de Algoritmos Genéticos Prof. Juan Moisés Mauricio Villanueva [email protected] cear.ufpb.br/juan Estrutura do Algoritmo Genético Algoritmo genético Inicio t = 0 inicializar P(t)
Otimização a Múltiplos Objetivos de Dispositivos Eletromagnéticos pelo Método dos Elementos Finitos. Luiz Lebensztajn
Otimização a Múltiplos Objetivos de Dispositivos Eletromagnéticos pelo Método dos Elementos Finitos Luiz Lebensztajn Otimização a Múltiplos Objetivos Quando há necessidade de Otimização a Múltiplos Objetivos?
Algoritmos genéticos Abordagem unificada de algoritmos evolutivos simples
Introdução Inspiração biológica Histórico da computação evolutiva Algoritmo evolutivo simples Programação evolutiva Estratégias evolutivas Algoritmos genéticos Abordagem unificada de algoritmos evolutivos
Metahuerísticas: Algoritmos Genéticos. Sistemas de Informação/Ciências da Computação UNISUL Aran Bey Tcholakian Morales, Dr. Eng.
Metahuerísticas: Algoritmos Genéticos Sistemas de Informação/Ciências da Computação UNISUL Aran Bey Tcholakian Morales, Dr. Eng. (Apostila 8) Meta-heurísticas Classificação de métodos heurísticos: os métodos
2. Redes Neurais Artificiais
Computação Bioinspirada - 5955010-1 2. Redes Neurais Artificiais Prof. Renato Tinós Depto. de Computação e Matemática (FFCLRP/USP) 1 2.5. Support Vector Machines 2.5. Support Vector Machines (SVM) 2.5.2.
3 Algoritmos Genéticos
Algoritmos Genéticos Algoritmos Genéticos (AGs) constituem um mecanismo de busca adaptativa que se baseia no princípio Darwiniano de seleção natural e reprodução genética [101]. AGs são tipicamente empregados
2. Redes Neurais Artificiais
Computação Bioinspirada - 5955010-1 2. Redes Neurais Artificiais Prof. Renato Tinós Depto. de Computação e Matemática (FFCLRP/USP) 1 2.2. Perceptron 2.2.1. Introdução 2.2.2. Funcionamento do perceptron
Gerador de grade de horários com Algoritmos Genéticos
Gerador de grade de horários com Algoritmos Genéticos Rodrigo Correia Prof. Roberto Heinzle, Doutor - Orientador Roteiro da apresentação Introdução Objetivos Fundamentação teórica Tecnologias utilizadas
Algoritmos Genéticos. Princípio de Seleção Natural. Sub-áreas da Computação Evolutiva. Idéias básicas da CE. Computação Evolutiva
Computação Evolutiva Algoritmos Genéticos A computação evolutiva (CE) é uma área da ciência da computação que abrange modelos computacionais inspirados na Teoria da Evolução das Espécies, essencialmente
Aplicação da Metaheurística Algoritmos Genéticos na solução do problema das n Rainhas
Aplicação da Metaheurística Algoritmos Genéticos na solução do problema das n Rainhas Resumo Gardiego Luiz da Silva 1 Henrique Faria de Oliveira 2 Faculdade
3 Otimização Evolucionária de Problemas com Restrição
3 Otimização Evolucionária de Problemas com Restrição 3.1. Introdução Este capítulo resume os principais conceitos sobre os algoritmos evolucionários empregados nesta dissertação. Primeiramente, se fornece
Aluno do Curso de Graduação em Ciência da computação da UNIJUÍ, bolsista PROBIC/FAPERGS, 3
ESTUDO E EXPLORAÇÃO DE ALGORITMOS GENÉTICOS: UMA SOLUÇÃO PARA PROBLEMAS DE OTIMIZAÇÃO NO CONTEXTO DE INTEGRAÇÃO DE APLICAÇÕES 1 STUDY AND EXPLORATION OF GENETIC ALGORITMS: A SOLUTION TO OPTIMIZATION PROBLEMS
Algoritmos Genéticos
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Algoritmos Genéticos Aluno: Fabricio Aparecido Breve Prof.: Dr. André Ponce de Leon F. de Carvalho São Carlos São Paulo Maio
Reconhecimento de Padrões
Reconhecimento de Padrões André Tavares da Silva [email protected] Roteiro da aula Conceitos básicos sobre reconhecimento de padrões Visão geral sobre aprendizado no projeto de classificadores Seleção
Otimização. Unidade 6: Algoritmo Genético. Jaime Arturo Ramírez. 7. Teoria do processo evolutivo num GA. 8. Aspectos avançados
Otimização Jaime Arturo Ramírez Conteúdo 1. Introdução 2. Analogia de mecanismos de seleção natural com sistemas artificiais 3. Algoritmo genético modelo 4. Um GA simples 5. Representação, genes e cromossomos
Sistemas Neurais Híbridos: Redes Neurais Artificias e Algoritmos Genéticos. Leonardo Nascimento Ferreira
Sistemas Neurais Híbridos: Redes Neurais Artificias e Algoritmos Genéticos Leonardo Nascimento Ferreira Conteúdo Algoritmo Genético Representação Seleção Reprodução Redes Neurais Evolucionárias Vantagens
- Computação Evolutiva -
- Computação Evolutiva - Prof. Dr. Cícero Garrozi DEINFO - UFRPE PPGIA@UFRPE [email protected] Site da disciplina: http://cicerog.blogspot.com Sumário Situando a Computação Evolucionária Metáfora principal
INTRODUÇÃO À INTELIGÊNCIA COMPUTACIONAL. Aula 06 Prof. Vitor Hugo Ferreira
Universidade Federal Fluminense Escola de Engenharia Departamento de Engenharia Elétrica INTRODUÇÃO À INTELIGÊNCIA COMPUTACIONAL Aula 06 Prof. Vitor Hugo Ferreira Representação por cromossomos Codificação
C o m p u t a ç ã o M ó v e l. André Siqueira Ruela
C o m p u t a ç ã o M ó v e l André Siqueira Ruela Sumário Revisão sobre AGs. Codificação de uma Rede Neural. AG em treinamento supervisionado. AG em treinamento não supervisionado. Revisão: Algoritmos
Implementação De Um Algoritmo Genético Codificado Para A Solução do Problema do Caixeiro Viajante
Implementação De Um Algoritmo Genético Codificado Para A Solução do Problema do Caixeiro Viajante 1 Resumo Neste trabalho será realizada a codificação do algoritmo genético para a solução do problema do
Utilização de Algoritmos Genéticos para Interpolação de Valores de Medição de Termoresistênicias (RTD)
Utilização de Algoritmos Genéticos para Interpolação de Valores de Medição de Termoresistênicias (RTD) Marcos A. A. de Oliveira 1, José F. M. do Amaral 2, Jorge L. M. do Amaral 3 1 UERJ / Laboratórios
Metaheurísticas Populacionais Baseado no livro METAHEURISTICS - From Design to Implementation El-Ghazali Talbi. Gustavo Peixoto Silva
Metaheurísticas Populacionais Baseado no livro METAHEURISTICS - From Design to Implementation El-Ghazali Talbi Gustavo Peixoto Silva 23 de Junho de 2014 Conteúdo 1 Metaheurísticas Singulares 3 1.1 Busca
GA Conceitos Básicos. Capítulo 3 Prof. Ricardo Linden
GA Conceitos Básicos Capítulo 3 Prof. Ricardo Linden Algoritmos Evolucionários Algoritmos evolucionários usam modelos computacionais dos processos naturais de evolução como uma ferramenta para resolver
Algoritmos Genéticos
Algoritmos Genéticos Introdução Um Algoritmo Genético (AG), conceitualmente, segue passos inspirados no processo biológico de evolução natural segundo a teoria de Darwin Algoritmos Genéticos seguem a idéia
Pós-Graduação em Engenharia de Automação Industrial SISTEMAS INTELIGENTES PARA AUTOMAÇÃO
Pós-Graduação em Engenharia de Automação Industrial SISTEMAS INTELIGENTES PARA AUTOMAÇÃO AULA 06 Algoritmos Genéticos Sumário Introdução Inteligência Artificial (IA) Algoritmos Genéticos Aplicações de
