1) Estrutura geral da fibra óptica

Documentos relacionados
1) Estrutura geral da fibra óptica

DISPERSÃO. Esse alargamento limita a banda passante e, consequentemente, a capacidade de transmissão de informação na fibra;

Ondas - 2EE 2003 / 04

Comprimento de onda ( l )

1 Fibra óptica e Sistemas de transmissão ópticos

SISTEMAS ÓPTICOS. Atenuação e Dispersão

Sistemas Ópticos Características das Fibras

Meios físicos. Par Trançado (TP) dois fios de cobre isolados

Cabeamento Estruturado CAB Curso Técnico Integrado de Telecomunicações 7ª Fase Professor: Cleber Jorge Amaral

SISTEMAS ÓPTICOS FIBRAS ÓPTICAS

SISTEMAS ÓPTICOS. Atenuação e Dispersão

Evolução dos sistemas de comunicação óptica

SISTEMAS DE COMUNICAÇÕES ÓPTICAS. A atenuação experimentada pelos sinais luminosos propagados através de uma fibra

DUARTE DA ROSA RELATÓRIO TÉCNICO TRABALHO DE MEIOS DE TRANSMISSÃO

Atenuações em Fibras Ópticas

IEAv - CTA Divisão de Física Aplicada EFA Sub-Divisão de Eletromagnetismo EFA-E Grupo de Eletromagnetismo Computacional

PROBLEMAS DE FIBRAS ÓPTICAS

TIPOS DE FIBRA FIBRA MULTIMODO ÍNDICE DEGRAU. d 1. diâmetro do núcleo de 50 µm a 200 µm. (tipicamente 50 µm e 62,5 µm) d 2

CAB Cabeamento Estruturado e Redes Telefônicas

1 Fibra Óptica e Sistemas de transmissão ópticos

I-3 Sistemas de Comunicação Digital Meios de Transmissão

Fibra óptica. Professor: Cleber Jorge Amaral

Resolução dos exercícios propostos do livro texto referente a primeira etapa do curso Rodrigo César Pacheco

Plano de Aula: Fibra Ótica e Estruturas de Cabeamento para Redes 1/2 CABEAMENTO - CCT0014


Cabeamento Estruturado em Fibra Óptica

Módulo III Guias de Ondas. Guias de Ondas Retangulares Guias de Ondas Circulares

Cap Ondas Eletromagnéticas

Microondas I. Prof. Fernando Massa Fernandes. Sala 5017 E

CABO OPTICO CFOA-AS : ABNT

CABO OPGW LUX XS mm²

PLANO DE ENSINO EMENTA

CABO OPTICO CFOA-AS (ABNT), AUTOSUSTENTADO PARA VÃO ATÉ 200m

CABO OPTICO CFOA-AS - PADRÃO ABNT CL

PARTE 1: PROPAGAÇÃO DE ONDAS E A FIBRA ÓPTICA -

Parte 3. Edson dos Santos Moreira Professor do Dep. de Sistemas de Computação

Projeto de enlaces óticos. Pedro de Alcântara Neto Projeto de rede ótica 1

Resolução de exercícios Parte 1

Questão 1 Questão 2 Questão 3 Questão 4

Problema 1 [5.0 valores] I. Uma linha de transmissão com

CABO OPTICO CFOA-AS (ABNT CL), AUTOSUSTENTADO PARA VÃO ATÉ 200m E PADRÃO DE COR DE TUBOS ABNT COLORIDO

Redes de Computadores.

SISTEMAS ÓPTICOS. Fabricação de Fibras Ópticas

CFOA-DER-G (ABNT) ESPECIFICAÇÃO TÉCNICA. Tipo do Produto

Acopladores, Circuladores, Filtros, Multiplexadores, Demutiplexadores Compensadores de Dispersão

CABO OPTICO CFOA-AS (ABNT), AUTOSUSTENTADO PARA VÃO ATÉ 200m

Fibra Óptica Cap a a p c a id i a d d a e d e d e d e t r t an a s n mi m t i i t r i i n i f n o f r o ma m ç a ão ã

Aula de Programas 4. Introdução

MINISTÉRIO DA EDUCAÇÃO

PSI 3481 SISTEMAS ÓPTICOS E DE MICRO- ONDAS. Fibras Ópticas

CABO OPTICO CFOA-AS (ABNT CL), AUTOSUSTENTADO PARA VÃO ATÉ 200m E PADRÃO DE COR DE TUBOS ABNT COLORIDO

SISTEMAS ÓPTICOS. Prof. Márcio Henrique Doniak e Saul Silva Caetano

Além dos componentes básicos que acabamos de estudar temos outros componentes que fazem parte de um sistema de comunicação.. Entre eles destacamos:

Fonte luminosas e Fotodetectores

CABO OPTICO CFOA-DDR (PFV) - PADRÃO ABNT

PEA-5716 COMPONENTES E SISTEMAS DE COMUNICAÇÃO E SENSOREAMENTO A FIBRAS ÓPTICAS

II-2 Meios de transmissão

1 Teoria da Dispersão dos Modos de Polarização PMD

CABO OPTICO CFOA-AS TS (ABNT), TOTALMENTE SECO E AUTOSUSTENTADO PARA VÃO ATÉ 200m

Faculdade de Tecnologia e Ciências

PTC2459 Sistemas de Comunicação Cristiano Panazio &

CABO ÓPTICO SPEED STAR ASU80/120

Dispositivos e Sistemas Optoelectrónicos Teórico-prática 5 de Novembro de Questões

Camada Física. Exemplo: RS-232 ou EIA-232. Redes Aplicação Apresentação Sessão Transporte Rede Enlace Físico. Codificação de Sinais Digitais

Mídias Físicas Utilizadas Cabo Coaxial e Par Trançado. Prof. Alexandre Beletti Ferreira. Cabo Coaxial

0.5 dbkm e coeficiente de dispersão cromática

CABO OPTICO CFOA-DD (ABNT), PARA DUTOS

4º Bimestre Instrumentos usados em REDES de Telecomunicações

25 Problemas de Óptica

PSI 3481 SISTEMAS ÓPTICOS E DE MICRO- ONDAS. Fibras Ópticas

3. (Ufrgs 2015) Na figura abaixo, um raio luminoso i, propagando-se no ar, incide radialmente sobe placa semicircular de vidro.

Cabo Óptico Aéreo Totalmente Seco - AS-S TS ABNT

Filtros, Multiplexadores, Demutiplexadores Compensadores de Dispersão

CABO OPTICO CFOA-AS TS (ABNT CL), TOTALMENTE SECO E AUTOSUSTENTADO PARA VÃO ATÉ 200m E PADRÃO DE COR DE TUBOS ABNT COLORIDO

Fontes Emissoras Ópticas

COMPANHIA ESTADUAL DE GERAÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA ÁREA DE TRANSMISSÃO DIVISÃO DE TELECOMUNICAÇÕES PORTO ALEGRE, 2007

PUC-RIO CB-CTC. G1 FÍSICA MODERNA Turma: 33-A. Nome Legível: Assinatura: Matrícula:

Cabeamento Estruturado CAB Curso Técnico Integrado de Telecomunicações 7ª Fase Professor: Cleber Jorge Amaral

5 Configurações 3D (5.1) onde (5.2) (5.3)

31/05/17. Ondas e Linhas

GRADUAÇÃO EM ENGENHARIA ELETRÔNICA. FÍSICA IV Óptica e Física Moderna. Prof. Dr. Cesar Vanderlei Deimling

A miniaturização chega à infraestrutura - a tecnologia dos microcabos e microdutos

CABO ÓPTICO SPEED STAR DROP FIGURA 8

II-2 Meios de transmissão

Interbits SuperPro Web

OPTIC-LAN AR PFV - ABNT

PUC-RIO CB-CTC G1 Gabarito - FIS FÍSICA MODERNA Turma: 33-A Nome Legível: Assinatura: Matrícula:

2 Sensores a fibra: LSPR

Exercícios Refração -1.

CABO ÓPTICO SPEED STAR AS80

COMPONENTES E SISTEMAS DE COMUNICAÇÃO E SENSOREAMENTO A FIBRAS ÓPTICAS 4ª AULA FIBRAS ÓPTICAS ESPECIAIS. Prof. Dr. Josemir Coelho Santos

4 SIMULAÇÃO TEÓRICA DOS GUIAS DE ONDA

CABO OPTICO CFOA-DD (ABNT CL), PARA DUTOS COM PADRÃO DE COR DE TUBOS ABNT COLORIDO

CABO OPTICO CFOA-DD (ABNT CL), PARA DUTOS COM PADRÃO DE COR DE TUBOS ABNT COLORIDO

FIBER-LAN-AR (PFV) INDOOR/OUTDOOR (CFOT-EOR) - ABNT

Redes de Computadores. Topologias

Desde de 1982 no mercado, a Ilsintech sempre buscou produzir soluções extremamente

Transcrição:

UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA Tecnologia de Fibras Ópticas Prof. Cláudio Kitano Ilha Solteira, julho de 2017 1) Estrutura geral da fibra óptica

20 μm Woman hair * Joseph C. Palais, Fiber Optic Communications, Prentice Hall, 1988.

Redução da atenuação óptica no vidro ao longo da história: Atenuação: db/km Causa perda de potência óptica. A energia luminosa é absorvida/ espalhada/ dissipada. 0-2 -1 10-0.2 Entre 1966 e 1979: after 1km 10-0,02

Atenuação em meios transparentes: OBS: 30 db = a potência caí a 1 milésimo do seu valor inicial. Variação do índice de refração do vidro (sílica fundida) com o comprimento de onda:

Estrutura da fibra óptica: core cladding jacket revestimento fiber head optical fiber cable hole of a needle needle point recipiente com água lanterna luz guiada John Tyndall, 1870

Revestimento: Acrilato (proporciona resistência à curvaturas acentuadas) Cladding

2) Fibras monomodo e multimodos

Degrau Gradual Degrau Multimode (MM) versus singlemode (SM) fiber optic * VECSEL vertical-external-cavity surface-emitting-laser

3) Janelas de transmissão

perda, db/km 6 5 4 3 2 1 a janela ~ 2,5 db/km; 0,85 μm 2 a janela ~ 0,5 db/km; 1,3 μm pico de absorção OH - 3 a janela ~ 0,25 db/km 1,55 μm 1 0 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 UV comprimento de onda, μm IV Distributed FeedBack Atenuação em função do comprimento de onda

Atenuação em função do comprimento de onda: Tecnologia atual da fabricação de vidros (sílica, SiO 2 ).

4) Perfis de modos de propagação Campo evanescente em Fibras Ópticas A reflexão interna, para ângulos de incidência superiores ao ângulo crítico, vem acompanhada por uma onda evanescente a fim de satisfazer as condições de contorno na interface. É natural se esperar que tal tipo de campo também surja durante as sucessivas reflexões no interior da fibra óptica. Na verdade, como a fibra óptica tem simetria cilíndrica em torno do eixo de propagação da luz no seu interior, o fenômeno ocorre, mas o campo evanescente na região da casca da fibra óptica deve ser calculado usando-se a teoria de ondas guiadas. Segundo essa teoria, existe mais de uma forma da luz se propagar na fibra, sendo os respectivos campos denominados de modos LP mn. Esses modos são soluções discretas da equação de onda de Helmholtz, e podem ser associados aos diferentes ângulos que os raios em zigue-zague formam com o eixo longitudinal.

Assim, o modo fundamental LP 01 está associado a um raio com propagação quase colinear com o eixo da fibra. O modo LP 11 está associado a um ângulo de zigue-zague um pouco maior, o modo LP 21 a um ângulo ainda maior, e assim por diante. Esses campos exibem uma distribuição de campo ao longo do plano transversal ao eixo da fibra. O modo LP 01 tem amplitude de campo máxima no centro do núcleo, o qual decai radialmente em direção à casca. A fim de satisfazer as condições de contorno na interface núcleo-casca, existe um campo evanescente na região de casca. Na figura, este campo está relacionado com um pequeno rabicho do perfil de campo que penetra levemente na casca. O modo LP 01 exibe um único máximo e seu perfil tem o formato semelhante a um sino. Observando a fibra pelo topo, vê-se um perfil na forma de círculo (devido a simetria circular). O modo LP 21 exibe dois picos (máximos) e dois vales (mínimos) na direção azimutal, e, pelo menos um máximo na direção radial. Basicamente, a nomenclatura dos modos LP mn é tal que existem m máximos na direção azimutal e pelo menos n máximos na direção radial. Portanto, o modo LP 83 exibe oito máximos e oito mínimos na direção azimutal, e, pelo menos três máximos na direção radial. Quando uma fibra é projetada para acomodar no máximo um modo, o modo fundamental LP 01, ela é chamada de fibra monomodo. Quando é projetada para acomodar mais modos, é denominada de fibra multimodos.

O tamanho do rabicho é tanto maior (penetra mais na casca) quanto maior a ordem do modo na fibra. Na Figura estão ilustrados os perfis (vista lateral) dos modos LP 01, LP 11 e LP 02. O tamanho do rabicho é menor para o modo LP 01, cresce para o modo LP 11 e é ainda maior para o modo LP 02. Segundo a teoria, um modo é tanto mais confinado no interior do núcleo quanto menor for o comprimento da sua calda evanescente; isto significa que ele está mais preso dentro do núcleo. Modos TE, TM, EH e HE:

TE: 1, TM: 1, EH: 2, HE 2

Modos LP mn : dispersion curves for LP modes

Modos Linearmente (LP) polarizados Intensity pattern

LP modes: Optical intensity pattern projected onto a plane screen LP modes: Optical intensity pattern projected onto a plane screen

LP modes: Optical intensity pattern projected onto a plane screen LP modes: Optical intensity pattern projected onto a plane screen

Modos LP degenerados (modos ortogonais)

5) Curvaturas em fibras ópticas

Curvaturas: Se houver algum tipo de perturbação na fibra, o primeiro modo a perder energia para o exterior é o modo de calda mais alongada, ou seja, o modo de ordem mais alta. Modos de ordens superiores são menos confinados que o fundamental; o modo fundamental é o modo mais confinado.

Se houver algum tipo de perturbação na fibra, o primeiro modo a perder energia para o exterior é o modo de calda mais alongada, ou seja, o modo de ordem mais alta. Modos de ordens superiores são menos confinados que o fundamental; o modo fundamental é o modo mais confinado. Uma curvatura (a perturbação) na fibra pode fazer com um raio que se propaga em zigue-zague (modo superior) saia da condição de reflexão interna total. Próximo á região de curvatura, o ângulo de incidência pode ficar menor que o ângulo crítico. Ocorre refração do raio, o qual é transmitido para o exterior da fibra; haverá perda de potência para o exterior. Uma explicação alternativa, é que a curvatura na fibra encurta o rabicho de um lado (interno) e o alonga do outro (externo). Se, no lado em que o rabicho se alonga, este se aprofunda tanto que atinge o exterior da casca, então, haverá fuga de energia para fora da fibra.

Uma explicação alternativa, é que a curvatura na fibra encurta o rabicho de um lado (interno) e o alonga do outro (externo). Se, no lado em que o rabicho se alonga, este se aprofunda tanto que atinge o exterior da casca, então, haverá fuga de energia para fora da fibra. Na fotografia, observa-se a irradiação de luz para fora da fibra devido a uma curvatura, principalmente, dos modos de ordem superior 6) Acopladores direcionais

Campo evanescente em taper de fibra óptica

Processo de fabricação:

Star coupler (híbrida)

7) Dispersão na fibra óptica a. Dispersão Modal Ocorre em fibras multimodos; Cada modo se propaga com diferentes velocidades longitudinais; Não ocorre em fibras monomodo.

b. Dispersão Cromática (Material) É resultado da largura de linha finita da fonte óptica; Laser DFB tem largura de linha entre 40 e 50 MHz; Dependência do índice de refração com o comprimento de onda; A velocidade em cada comprimento de onda é diferente;

c. Dispersão de Guia de Onda É importante em guia monomodo; Uma parte do campo guiado encontra-se na casca (evanescente); A casca tem menor índice de refração: maior velocidade; É função do tamanho do núcleo, geometria, comprimento de onda e largura de linha da fonte.

8) Compensação da dispersão

Para fibra monomodo operando em 1300 nm. Total Para fibra monomodo operando em 1550 nm. Dispersão elevada 1300 nm Dispersão nula 1550 nm

Deslocar a curva de dispersão para a direita; Dopar a fibra com (GeO 2 ); Atuar na dispersão de guia de onda alterando-se o perfil de índice de refração do núcleo; Triangular dispersion shift (DSF Dispersion Shift Fiber) Quadrupole-clad dispersion flattened (NZDSF Non-Zero Dispersion Shift Fiber) Para 1300 nm Matchedcladding Depressedcladding Triangular DSF Para 1550 nm Quadrupole NZDSF

NZDSF baixo perfil de dispersão entre 1300 e 1600 nm Aplicações em DWDM *DWDM Dense Wavelength-Division Multiplexing 9) Emendas em fibras ópticas

Máquinas antigas Problemas e dificuldades:

Máquinas recentes Máquinas recentes

Processo de remoção do revestimento: Mergulhar a fibra em diclorometano ou acetona; Usar um alicate descascador de revestimento. Clivador de fibra óptica:

Emenda (splice) por fusão:

LID Local Light Injection and Detection:

LID Local Light Injection and Detection: L-PAS = Lens-Profile Alignment System:

LID Local Light Injection and Detection: Problemas com limpeza (pré-fusion):

Alinhamento automático: Pré-fusão: Fusão: 10) Métodos de fabricação

Método do duplo cadinho: Double Crucible Method Método do deposição de vapor químico (CVD = Chemical Vapor Deposition): Deposição externa

Método do deposição de vapor axial (VAD = Vapor Axial Deposition): Deposição externa

Método do deposição interna (MCVD = Modified Chemical Vapor Deposition):

Puxamento:

Fiber optic preforms: Fiber optic preforms:

Fiber optic preforms: