Produção de concreto autoadensável (CAA) com substituição parcial de cimento por metacaulim.

Documentos relacionados
Estudo do metacaulim para obtenção e produção de concreto autoadensável (CAA).

Professor do curso de Engenharia Civil da Universidade Regional Integrada do Alto Uruguai e das Missões em Santo Ângelo/RS

Comportamento de Elementos Estruturais de Concreto Auto-Adensável Protendidos

Propriedades dos concretos autoadensáveis produzidos no Brasil

Redução do custo da produção do concreto através da permuta de parte de brita por areia

Ensaio comparativo do concreto auto adensável com adição de 10% de cinza de casca de arroz sem controle de queima e sílica ativa

EFEITOS DA SUBSTITUIÇÃO DE FÍLER CALCÁRIO POR ROCHA FOSFÁTICA NA OBTENÇÃO DE CONCRETO AUTOADENSÁVEL 1

INFLUENCIA DO USO DE CINZA DE BIOMASSA DA CANA-DE-AÇÚCAR NO COMPORTAMENTO CONCRETOS AUTO-ADENSÁVEIS

AVALIAÇÃO DO DESEMPENHO DE CONCRETO AUTO-ADENSÁVEL COM ADIÇÃO DE RESÍDUOS DE CONSTRUÇÃO E DEMOLIÇÃO RESUMO

PRODUÇÃO DE CONCRETO DE ALTA RESISTÊNCIA (CAR) A PARTIR DE SEIXO DE RIO, COMO AGREGADO GRAÚDO, E A ADIÇÃO DE SÍLICA ATIVA

Efeito da adição de cinza da biomassa da cana-de-açúcar como finos no concreto auto-adensável

PRODUÇÃO DE CONCRETO COM USO DE AGREGADOS RECICLADOS ORIUNDOS DE RESÍDUOS DA CONSTRUÇÃO CIVIL 1

Influência da adição de metacaulim no comportamento reológico de concretos autoadensáveis

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CONCRETOS ESPECIAIS PROF. WELLINGTON MAZER

Estudo do teor de metacaulim em Concretos de Alto Desempenho (CAD).

6.1.1 Reologia, métodos de avaliação e classificação do CAA

Estudo da Aderência Aço e Concreto com RCD Cinza em Substituição aos Agregados Graúdos Usuais

Comparative assessment of self-compacting concretes (SCC) with fly ash and fine

AVALIAÇÃO DE ARGAMASSAS COMPOSTAS PELO CIMENTO PORTLAND CP IV-32 E PELA ADIÇÃO MINERAL DE METACAULIM PARA ELABORAÇÃO DE CONCRETO AUTO-ADENSÁVEL

ARGAMASSA PRODUZIDA COM AGREGADO DE PÓ DE PEDRA, AREIA, CIMENTO E CAL. Lillian Dias de Oliveira (1). Juzelia Santos da Costa(2).

CONSIDERAÇÕES SOBRE O PROCESSO DE PRODUÇÃO DE CONCRETO DE ALTO DESEMPENHO PARA ESTRUTURAS PRÉ- MOLDADAS

Concreto reodinâmico de elevada resistência mecânica e baixo consumo de cimento

Conteúdo Programático

DESENVOLVIMENTO DE CONCRETO AUTOADENSÁVEL COM ADIÇÃO DE RESÍDUO DE CORTE DE MÁRMORE E GRANITO

ESTUDO PARA UTILIZAÇÃO DE AREIA DE FUNDIÇÃO EM ELEMENTOS DE CONCRETO DE CIMENTO PORTLAND 1

ESTUDO DE DOSAGEM DE CONCRETOS PELO MÉTODO IPT/EPUSP

Conteúdo Programático

Pesquisa do DCEENG, vinculada ao projeto de pesquisa institucional da UNIJUÍ 2

Influência da pozolânicidade da adição no comportamento da resistência à compressão do concreto autoadensável

Conteúdo Programático

EXERCÍCIOS DE REVISÃO PARA A VF

AVALIAÇÃO DA VIABILIDADE TÉCNICA DA UTILIZAÇÃO DE RESÍDUO DE BLISTER EM CONCRETO NÃO ESTRUTURAL

APLICAÇÃO DE RESÍDUO DE CINZAS DE CARVÃO MINERAL APLICADOS NA PRODUÇÃO DE CONCRETOS E ARGAMASSAS

Palavras chave: concreto de alto desempenho, durabilidade, resíduo, resistência

INFLUÊNCIA DA ADIÇÃO DE FINOS DE PEDREIRAS NAS PROPRIEDADES MECÂNICAS E NA MICROESTRUTURA DO CONCRETO AUTO-ADENSÁVEL

O uso de resíduos como finos na fabricação do concreto auto adensável. Marco Antônio de Morais Alcântara Bruno Vendramini dos Santos

ARGAMASSAS E CONCRETOS DOSAGEM ABCP

ESTUDO DE DOSAGEM DE CONCRETOS COM MATERIAIS DISPONÍVEIS NA REGIÃO DE PELOTAS - RS

Conteúdo Programático

Concreto endurecido. Concreto fresco. Como se decide qual é o concreto necessário para uma utilização especifica?

VALORIZAÇÃO DA CINZA DE CALDEIRA DE INDÚSTRIA DE TINGIMENTO TÊXTIL PARA PRODUÇÃO DE ARGAMASSAS SUSTENTÁVEIS

CARACTERIZAÇÃO FÍSICA DOS MATERIAIS CONSTITUINTES PARA PRODUÇÃO DE CONCRETO DE ALTA RESISTÊNCIA (CAR)

DOSAGEM DE CONCRETO. DOSAGEM é o proporcionamento adequado. e mais econômico dos materiais: Cimento Água Areia Britas Aditivos

ANÁLISE DA UTILIZAÇÃO DA CINZA GERADA A PARTIR DO PROCESSO DE QUEIMA DO BAGAÇO DA CANA-DE-AÇÚCAR NA PRODUÇÃO DE CONCRETO

TÍTULO: ESTUDO COMPARATIVO DA REDUÇÃO DA PERMEABILIDADE DO CONCRETO ATRAVÉS DA ALTERAÇÃO DA COMPOSIÇÃO DE TRAÇOS

DOSAGEM DEFINIÇÃO. DOSAGEM é o proporcionamento. adequado e mais econômico de. materiais: cimento, água, agregados, adições e.

Estudo do Teor de Metacaulim em Concretos de Alto Desempenho

ANÁLISE DE CARBONATAÇÃO E CORROSÃO DE AÇO EM CONCRETO AUTOADENSÁVEL

ESTUDO DO EFEITO POZOLÂNICO DA CINZA VOLANTE NA PRODUÇÃO DE ARGAMASSAS MISTAS: CAL HIDRATADA, REJEITO DE CONSTRUÇÃO CIVIL E CIMENTO PORTLAND

Comparação do solo-cimento auto adensável convencional e com adição de sílica ativa

EXERCÍCIOS DE REVISÃO PARA A VF

Desenvolvimento de concretos para vedações verticais moldadas in loco

PROPRIEDADES DE CONCRETOS SUBSTITUINDO O AGREGADO MIÚDO POR RECICLADO CERÂMICO E O CIMENTO POR METACAULIM

Produção de Solo-Cimento Auto-Adensável utilizando resíduo de PET

Desenvolvimento de concreto colorido de alta resistência por meio do uso de pigmentos, cura térmica e pó de quartzo

PLANO DE AULA MACO II Professor Marcelo Cândido de Paula.

ESTUDO DA UTILIZAÇÃO DE RESÍDUO DE QUARTZO EM CONCRETO ALTERNATIVO

SUBSTITUIÇÃO PARCIAL DE AGREGADO MIÚDO POR PÓ DE PEDRA NA PRODUÇÃO DE CONCRETO

CONCRETO AUTO ADENSÁVEL: ESTUDO DA INFLUÊNCIA DE DIFERENTES TIPOS DE ADIÇÕES MINERAIS NA FLUIDEZ E NO COMPORTAMENTO REOLOGICO

Avaliação do Comportamento de Vigas de Concreto Autoadensável Reforçado com Fibras de Aço

MATERIAIS DE CONSTRUÇÃO CIVIL

Fundação Carmel itana Mário Pal mério MATERIAIS DE CONSTRUÇÃO CIVIL II DOSAGEM MÉTODO IPT. Professor: Yuri Cardoso Mendes

PROPRIEDADES MECÂNICAS DO CONCRETO ADICIONADO COM BORRACHA DE PNEUS MECHANICAL PROPERTIES OF TIRE RUBBER CONCRETE

Coordenação/Colegiado ao(s) qual(is) será vinculado: Engenharia Civil

Curso: Superior de Tecnologia em Controle de Obras - Disciplina: Concreto e Argamassa - Professor: Marcos Valin Jr Aluno: - Turma: 2841.

Autor. Acadêmico do 10º semestre de Engenharia Civil da Unijuí, 3

ARGAMASSAS E CONCRETOS DOSAGEM IPT

ESTUDO DA APLICABILIDADE DA ARGAMASSA PRODUZIDA A PARTIR DA RECICLAGEM DE RESÍDUO SÓLIDO DE SIDERURGIA EM OBRAS DE ENGENHARIA

BE2008 Encontro Nacional Betão Estrutural 2008 Guimarães 5, 6, 7 de Novembro de 2008

A INFLUÊNCIA DA SUBSTITUIÇÃO DE CIMENTO POR CINZA DO BAGAÇO DE CANA-DE-AÇÚCAR (CBC) EM CONCRETOS

ARGAMASSA PRODUZIDA COM AREIA, CIMENTO E SILICATO DE ALUMINIO.

Concreto nas primeiras idades. Prof. M.Sc. Ricardo Ferreira

ANÁLISE EXPERIMENTAL DO FOSFOGESSO COMO AGREGADO MIÚDO NA COMPOSIÇÃO DO CONCRETO

AGREGADOS MIÚDOS: A Importância dos Agregados Miúdos no Controle Tecnológico do Concreto

DOSAGEM DE CONCRETO COLORIDO DE ALTO DESEMPENHO CAD

Programa Analítico de Disciplina CIV360 Materiais de Construção Civil I

A ANÁLISE DA UTILIZAÇÃO DE RESÍDUOS DE CORPOS DE PROVA COMO AGREGADO RECICLADO PARA A PRODUÇÃO DE CONCRETO ECOLÓGICO DE APLICAÇÃO NÃO ESTRUTURAL

Sumário. 1 Concreto como um Material Estrutural 1. 2 Cimento 8

Dosagem Experimental do Concreto - Método IPT / EPUSP

ESTUDO DO USO DE RESÍDUOS DA CONSTRUÇÃO CIVIL EM CONCRETO PARA PAVIMENTAÇÃO

PLANO DE AULA MACO II Professor Marcelo Cândido de Paula.

12º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Guayaquil, 10 a 13 de Novembro de 2015

ANÁLISE COMPORTAMENTAL DA RESISTÊNCIA À COMPRESSÃO AXIAL DO CONCRETO COM PÓ DE VIDRO

Trabalho publicado na revista A CONSTRUÇÃO EM GOIÁS em outubro/ 2002

Capítulo 6 Conclusões e Sugestões 113

Dosagem dos Concretos de Cimento Portland

SUBSÍDIOS PARA PRODUÇÃO DE LADRILHOS E REVESTIMENTOS HIDRÁULICOS DE ALTO DESEMPENHO

CONCRETO AUTOADENSÁVEL DE BAIXA DENSIDADE PARA APLICAÇÃO EM PAINÉIS DE VEDAÇÃO PRÉ-FABRICADOS

SUBSTITUIÇÃO DO AGREGADO MIÚDO AREIA PELO AGREGADO MIÚDO DO BASALTO EM ARGAMASSA DE ASSENTAMENTO E REVESTIMENTO.

Estudo de Dosagens Visando Obter Concretos para Obras de Pequeno Porte

CARACTERIZAÇÃO DO CONCRETO AUTOADENSÁVEL APLICADO EM PAREDES DE CONCRETO MOLDADAS NO LOCAL CONFORME ABNT NBR 15823/2010

ANÁLISE DA ADERÊNCIA ENTRE O CONCRETO DESENVOLVIDO COM RESÍDUO DE CONSTRUÇÃO CIVIL E O AÇO

A Influência dos Tipos de Cura na Resistência Mecânica do Concreto

Acadêmico do Curso de Engenharia Civil da UNIJUÍ; 3

CONTROLE TECNOLÓGICO DO CONCRETO

Concreto autoadensável: características e aplicações

ANÁLISE DE ARGAMASSAS COM RESÍDUO DE CORTE DE ROCHAS ORNAMENTAIS

CONCRETO PRODUZIDO COM AGREGADO RECICLADO: DETERMINAÇÃO DAS PROPRIEDADES FÍSICAS

CONCRETO AUTO-ADENSÁVEL: AVALIAÇÃO DO EFEITO

Transcrição:

EIXO TEMÁTICO: ( ) Arborização e Florestas Urbanas ( ) APP Urbana ( ) Arquitetura da Paisagem ( ) Infraestrutura Verde ( ) Jardins, Praças e Parques (X) Tecnologia e bioconstrução ( ) Urbanismo Ecológico Produção de concreto autoadensável (CAA) com substituição parcial de cimento por metacaulim. Self-compacting concrete (SCC) with partial replacement of cement by metakaolin La producción de hormigón autocompactante (HAC) con sustitución parcial del cemento por metacaolín Alan Henrique Vicentini Mestrando, UNESP, Brasil vicentini.alanh@gmail.com Marlon Boldrin Belluzi Graduando, UNESP, Brasil mbbelluzi@yahoo.com.br Jorge Luís Akasaki Professor Adjunto, UNESP, Brasil akasaki@dec.feis.unesp.br 344

RESUMO Novos tipos de concretos estão sendo desenvolvidos com o avanço da tecnologia e estudos, os quais são chamados de concreto de alto desempenho. Nossa pesquisa se baseia no concreto autoadensável com adição do fino metacaulim, possuindo como características: fluidez, resistência a segregação e capacidade passante, possibilitando o concreto a se adensar sem a presença de vibração, somente pelo seu próprio peso. Serão realizados os seguintes ensaios no estado fresco: abatimento de tronco de cone, abatimento de tronco de cone de Abrams, Funil V e Caixa L, com o objetivo de medir a coesão, segregação, fluidez e capacidade passante do mesmo. Já para o estado endurecido: resistência à compressão e à compressão diametral, absorção de água por imersão e por capilaridade e módulo de elasticidade. PALAVRAS-CHAVE: Concreto autoadensável. Metacaulim. Adição mineral. ABSTRACT New types of concrete are being developed with the advancement of technology and studies, which are called high performance concrete. Our research is based on self-compacting concrete with the addition of fine metakaolin having the following characteristics: fluidity, segregation strength and passing ability, allowing the concrete to thicken without the presence of vibration, only by its own weight. The following tests will be performed on fresh: frustum abatement, trunk abatement Abrams cone, funnel V and L box, with the aim of measuring cohesion, segregation, flow and passing ability of it. As for the hardened state: compressive strength and diametral compression, water absorption by immersion and capillarity and modulus of elasticity. KEYWORDS: Self Compacting Concrete. Metakaloin. Mineral admixture. ABSTRACTO Los nuevos tipos de hormigón están siendo desarrollados con el avance de la tecnología y los estudios, que se denomina hormigón de altas prestaciones. Nuestra investigación se basa en el hormigón autocompactante con la adición de metacaolín fino que tiene las siguientes características: fluidez, resistencia a la segregación y la capacidad de paso, permitiendo que el hormigón se espese sin la presencia de vibración, sólo por su propio peso. Las siguientes pruebas se realizarán en fresco: reducción de tronco de cono, el tronco de reducción de cono de Abrams, embudo V y L efectivo, con el objetivo de medir la cohesión, la segregación, el flujo y la capacidad de paso de la misma. En cuanto al estado endurecido: resistencia a la compresión y la compresión diametral, la absorción de agua por inmersión y capilaridad y módulo de elasticidad. PALABRAS-CLABE: Hormigón Autocompactante. Metacaolín. Adición mineral. 345

1 INTRODUÇÃO A humanidade vem em crescente desenvolvimento e desde o surgimento do concreto, o mesmo vem sendo estudado e utilizado de forma esgotante, transformando-o em o material de construção mais utilizado no mundo, e consequentemente, é alavancado o uso de cimentos. O concreto convencional é composto, basicamente, por: cimento mais água, que é responsável pelo endurecimento da mistura e agregados, os quais fornecem resistência e tornam a mistura viável. Em uma dessas variações do concreto, Okamura (1997) desenvolveu um concreto que possuía alta resistência à segregação e excelente deformabilidade no estado fresco. Este novo concreto possuía alta fluidez, resistência a segregação, e capacidade passante as quais possibilitaram o concreto a se adensar sem a presença de vibração, somente pelo seu próprio peso, sendo o único responsável, a ação da gravidade. A este concreto, se deu o nome de autoadensável. Diferente do concreto convencional, o recém descoberto, possui dois novos materiais em sua composição, os quais são materiais finos e aditivos. Sendo ambos essenciais para sua formação, já que os finos dão a mistura, coesão e resistência a segregação, ocupando espaços que ficariam vagos, já os aditivos, modificam quimicamente, diminuindo a quantidade de água necessária a pasta e posteriormente, dando durabilidade e resistência ao concreto. Segundo Bauer (2000), com a extração e produção de cimento, cerca de uma tonelada de gás carbônico é jogado na atmosfera para cada tonelada de cimento produzido. Isso, nos dias de hoje, equivale a 5% do total de CO 2 que é jogado pra atmosfera, sendo então, a produção e extração de cimento, muito prejudicial ao meio ambiente, causando chuvas ácidas e poluição atmosférica. Alguns autores e pesquisadores acreditam que há possibilidade do efeito estufa ser causado pelo excesso de CO 2 na atmosfera, e que este efeito, desestabilize o clima terrestre, porém, faltam evidências e conhecimento sobre o assunto. Existem estudos que consistem em substituir o cimento parcialmente por adições mineiras, limitando a quantidade de gás carbônico liberado à atmosfera. Um desses minerais é o metacaulim, o qual será utilizado como substituinte mineral, no lugar do aglomerante, em porcentagens, no nosso estudo. Como material fino, o metacaulim vem ganhando mercado no Brasil e no mundo, e segundo a empresa METACAULIM DO BRASIL INDÚSTRIA E COMÉRCIO LTDA, (2011), metacaulim pode influenciar positivamente o concreto em vários aspectos, alguns itens serão citados: diminuição da porosidade e permeabilidade, reduzir a corrosão de armaduras, aumento da resistência à compressão.. 346

2 OBJETIVOS O objetivo primário desta pesquisa é estudar a viabilidade da produção de concreto autoadensável com utilização de metacaulim como material fino por meio do método de dosagem de Tutikian (2004). 3 METODOLOGIA 3.1 MATERIAIS Para a produção de concreto autoadensável foram utilizados: cimento Portland CP II-Z-32 como aglomerante, areia média natural como agregado miúdo, brita basáltica como agregado graúdo, metacaulim como adição mineral, utilizado na substituição de parte de cimento Portland e aditivo superplastificante a base de policarboxilato. As características químicas do cimento Portland e do metacaulim estão na Tabela 1. Tabela 1: Caracterização química do cimento e do metacaulim Cimento Portland CP II-Z-32 Especificações NBR 5736/NBR 11578 máx. Metacaulim Limites NBR 15.894 1 SiO 2 20,10-58,39 44,0%-65,0% Fe 2 O 3 3,07-2,71 - Al 2 O 3 5,18-35,47 32,0%-46,0% CaO 56,88-0,01 MgO 5,81 6,5 0,30 CaO+MgO<1,5% SO 3 3,16 4,0 - <1,5% Na 2 O 0,13 - - <0,5% K 2 O 0,76-1,44 <2,3% Equivalente Alcalino 0,62 - - - Cal livre em CaO 2,31 - - - Fonte: COMPANHIA ENERGÉTICA DE SÃO PAULO CESP 347

3.2 DESCRIÇÃO DO MÉTODO DE DOSAGEM O método de dosagem escolhido foi o proposto por Tutikian (2004), no qual ele propõe a confecção de concreto autoadensável com materiais da região, sendo economicamente viável. O método de Tutikian é baseado no método IPT/EPUSP (Helene e Terzian, 1992) para concretos convencionais, com adaptações para transformá-lo em autoadensável com adição de finos e aditivos. 3.2.1 ESCOLHA DOS MATERIAIS A escolha dos materiais foi feita conforme Tutikian (2004), sendo quaisquer materiais da região, desde que atendam condições básicas. Sendo assim, foram escolhidos os materiais da região de Ilha Solteira, sendo eles: agregado graúdo (brita basáltica) e miúdo (areia), cimento (Portland II-Z-32), Metacaulim (HP Ultra), aditivo (superplastificante à base de policarboxilato) e água, todos devidamente estudados e classificados segundo as normas regulamentadoras. 3.2.2 DETERMINAÇÃO DO TEOR DE ARGAMASSA Para determinação do teor de argamassa seca, partimos do método IPT/EPUSP, no qual nos deve-se partir de um teor de argamassa até que se encontre visualmente o melhor teor para o concreto. Nesta pesquisa, foi utilizado o traço 1:m, com m igual a 5, iniciando com o teor de argamassa de 50% variando de 1 em 1%. Com isso, foi obtido o teor de argamassa seca ideal de 52%, o qual permanecerá constante para todos os traços e famílias. A Tabela 2 contém os traços produzidos. Tabela 2: Materiais utilizados para determinação do teor de argamassa. Teor (%) C (kg) A (kg) B (kg) Água (kg) Acréscimo 50 6,67 13,33 20 3,8 C (kg) A (kg) Água (g) 51 6,8 14 20 3,8 0,13 0,67 1,24 52 6,94 14,72 20 3,8 0,14 0,72 1,3 53 7,25 16,23 20 3,8 0,31 1,51 1,32 348

3.2.3 CÁLCULO DOS TRAÇOS Após obtido o teor de argamassa fixo, foram escolhidos os traços a serem confeccionados, sendo eles, um rico (1:3), dois intermediários (1:4,5 e ) e um pobre (1:7,5). Estes traços foram confeccionados com duas substituições diferentes de finos e também, sem nenhuma adição. Os traços erência de cada família estão dispostos na Tabela 3. Tabela3: Dosagem do concreto erência. Teor (%) Traço Cimento Brita Areia Água 52 1 : 7,5 1 4,08 3,42 0,81 52 1 : 6 1 3,36 2,64 0,65 52 1 : 4,5 1 2,64 1,86 0,47 52 1 : 3 1 1,92 1,08 0,37 3.2.4 ADIÇÃO DO ADITIVO Tutikian (2004) sugere que a adição de aditivo seja feita experimentalmente, sendo uma porcentagem da massa do aglomerante, e que não deve ser levada em conta a segregação nesta etapa, pois ela será corrigida com a adição do fino, neste estudo, o metacaulim. De acordo com a norma regulamentadora (NBR 11768), a qual fornece intervalo de substituição, chegamos a um valor experimental de 1% da massa de aglomerante como a massa de aditivo ideal para todos os traços, a qual permanecerá fixa. 3.2.5 ADIÇÃO DO MATERIAL FINO Para corrigir a segregação, foi adicionado o metacaulim, o qual é um material fino, reativo e pozolânico. Com isto, o concreto precisará de uma maior quantidade de água, ou seja, deve-se aumentar a relação água/aglomerante. Contudo, é importante manter esta relação a menor possível, já que Tutikian (2004) afirma que com a menor relação a/ag, é possível se obter maior resistência e durabilidade. Nosso estudo fixou uma quantidade de metacaulim e experimentalmente dosamos a quantidade necessária de água para cada traço. Contudo, o CAA deve passar pelos ensaios de 349

trabalhabilidade dentro dos limites mínimo e máximos. A quantidade de metacaulim (MK) foi de 20 e 30% da massa do aglomerante. Foram executados oito traços de concreto autoadensável, sendo 4 deles para uma substituição de 20% de metacaulim e 4 para 30% de metacaulim. As famílias foram: um rico (1:3), dois intermediários (1:4,5 e ) e um pobre (1:7,5). Para a substituição de 20% da massa de aglomerante por metacaulim, foi realizada a dosagem da Tabela 4. Tabela 4: Dosagem do CAA com 20% de MK Teor (%) Traço Cimento Metacaulim Areia Brita Água 52 1 : 7,5 0.8 0.2 3,93 3,57 0,97 52 1 : 6 0.8 0.2 3,06 2,94 0,74 52 1 : 4,5 0.8 0.2 2,19 2,31 0,56 52 1 : 3 0.8 0.2 1,32 1,68 0,41 Já para a substituição de 30% da massa de aglomerante por metacaulim, foi realizada a dosagem que é indicada na Tabela 5. Tabela 5: Dosagem do CAA com 30% de MK Teor (%) Traço Cimento Metacaulim Areia Brita Água 52 1 : 7,5 0.7 0.3 3,93 3,57 1,05 52 1 : 6 0.7 0.3 3,06 2,94 0,82 52 1 : 4,5 0.7 0.3 2,19 2,31 0,66 52 1 : 3 0.7 0.3 1,32 1,68 0,52 3.2.6 ENSAIOS REALIZADOS Para analisar as características do concreto fresco, foram realizados ensaios normatizados. Para o concreto convencional (erência) foi realizado o abatimento de tronco de cone, para 350

analisar a consistência do mesmo. Já para o CAA, os ensaios foram realizados para verificar a trabalhabilidade do mesmo, que consiste em: coesão, fluidez, segregação e capacidade passante. Os ensaios são descritos na Tabela 6. Todos foram feitos com equipamentos disponíveis no Laboratório de Engenharia Civil da UNESP de Ilha Solteira. Tabela 6: Ensaios de caracterização reológica dos CAAs Ensaio Norma vigente Avalia Valores aceitos Espalhamento de cone de Abrams (Slump Flow Test) NBR 15823-2 Fluidez e resistência à segregação Entre 600 e 750 mm Ensaio da caixa-l (L-Box Test) NBR 15823-4 Habilidade passante Entre 0,8 e 0,9 Ensaio de funil V (V-Funnel Test) NBR 15823-5 Viscosidade e fluidez Entre 5 e 10 segundos Os ensaios realizados no estado endurecido estão dispostos na Tabela 7. Tabela 7: Ensaios realizados no estado endurecido Ensaio Norma respectiva Idades Resistência à compressão axial NBR 5739 7, 28 e 56 dias Resistência à compressão diametral NBR 7222 7, 28 e 56 dias Absorção de água por imersão NBR 9778 7, 28 e 56 dias Absorção de água por capilaridade NBR 9779 7, 28 e 56 dias Módulo de elasticidade NBR 8522 7, 28 e 56 dias 4 RESULTADOS 4.1 ENSAIOS NO ESTADO FRESCO Após confecção dos concretos erências, ainda no estado fresco, foi realizado o ensaio do abatimento de tronco de cone, tendo todos os resultados dentro da faixa esperada, de 100 mm ± 10 mm, como indica a Tabela 8. 351

Tabela 8: Ensaio do abatimento de tronco de cone para o concreto erência. Traço Ensaio de Slump (mm) 1 : 7,5 96,7 1 : 6 106,7 1 : 4,5 110 1 : 3 95 Após confecção dos CAAs, ensaios de trabalhabilidade foram realizados a fim de medir a fluidez, coesão, capacidade passante e a segregação do concreto. Os resultados estão nas Tabelas 9 e 10. Tabela 9: Resultados dos ensaios realizados no CAA com substituição de 20% de MK por aglomerante Traço Slump flow (mm) L-box (h2/h1) V-Funnel 1 : 3 650 0,947 8 1 : 4,5 650 0,85 4 1 : 6 630 0,79 5 1 : 7,5 500 0,722 3 Tabela10: Resultados dos ensaios realizados no CAA com substituição de 30% de MK por aglomerante Traço Slump flow (mm) L-box (h2/h1) V-Funnel (s) 1 : 3 650 0,875 3 1 : 4,5 680 0,989 2,4 1 : 6 635 0,84 3 1 : 7,5 610 0,94 3 Com estes resultados, verifica-se que o concreto erência possui uma aparência mais rígida, pois o mesmo, não é autoadensável e necessita de vibração para adensá-lo. O teste do abatimento de cone ficou dentro do esperado para todos os intervalos, cujo intervalo é de 90 a 110 mm. Já o concreto autoadensável, em alguns ensaios, possuiu valores fora do intervalo convencional, o qual é de 600 a 800 mm, como o slump flow do traço 1:7,5 com 20% de MK. Todos os valores do V-Funnel ficaram fora do intervalo proposto, sendo de 5 segundos, exceto os traços 1:3 e com 20% de MK. Já no L-box, os valores ficaram no intervalo de 0,8 a 1. 352

Tensão (MPa) ISBN 978-85-68242-26-1 4.2 ENSAIOS NO ESTADO ENDURECIDO Os resultados de resistência à compressão axial estão dispostos na Figura 1. Figura 1: Gráfico correlacionando os traços pelas médias de resistência à compressão 70 60 50 40 30 20 10 0 1:3 1:3 1:3 1:4,5 1:4,5 1:4,5 1:7,5 1:7,5 1:7,5 7 dias 28 dias 56 dias Destacamos o alto valor de resistência à compressão obtida pelo traço 1:3 com 20% de substituição de metacaulim, tendo como resultado praticamente 60 MPa. Podemos atribuir este alto valor de resistência, ao preenchimento dos espaços vazios feito pelo material fino metacaulim. Também notamos, para todos os traços, um ganho da resistência ao passar da idade do traço. Por fim, podemos observar que os traços com 20 e 30% de substituição de metacaulim obtiveram resistências iguais ou maiores que a erência, mostrando que a substituição teve um efeito positivo na estrutura rígida. Os resultados de resistência à compressão diametral estão dispostos na Figura 2. 353

Tensão(MPa) Tensão (MPa) ISBN 978-85-68242-26-1 Figura 2: Gráfico correlacionando os traços pelas médias de resistência à compressão diametral 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0 1:3 1:3 1:3 1:4,5 1:4,5 1:4,5 1:7,5 1:7,5 1:7,5 7 dias 28 dias 56 dias Podemos notar na Figura 2 que a resistência à compressão diametral se elevou conforme a idade do concreto aumentava. Também, notamos que nos traços intermediários e no mais rico, os resultados foram próximos ao da erência. Já no traço pobre, o resultado ficou abaixo da erência, que podemos explicar pelo fato de possuir pouco material ligante, deixando-o menos rígido. Destacamos o traço com mk 30, obtendo resultados maiores que o erência aos 28 e 56 dias, demonstrando um grande ganho de resistência. Os resultados de módulos de elasticidade estão dispostos na Figura 3. Figura 3: Gráfico correlacionando os traços pelas médias do módulo de elasticidade. 50 40 30 20 10 0 1:3 1:3 1:3 1:4,5 1:4,5 1:4,5 1:7,5 1:7,5 1:7,5 28 dias 354

Absorção(%) ISBN 978-85-68242-26-1 Pela pouca variação que ocorre no módulo de elasticidade em diferentes idades, o ensaio foi feito aos 28 dias. Notamos que os resultados foram padronizados, nos quais as maiores tensões suportadas foram pelas erências, seguido dos traços substituídos por 20% de metacaulim e por fim os de 30%. Os resultados de absorção de água por imersão estão dispostos na Figura 4. Figura 4: Gráfico correlacionando os traços pelas médias da absorção de água por imersão. 12 10 8 6 4 2 0 1:3 1:3 1:3 1:4,5 1:4,5 1:4,5 1:7,5 1:7,5 1:7,5 7 dias 28 dias 56 dias Podemos observar que os traços intermediários e o rico atenderam a norma que limita a absorção em 6%, exceto em alguns casos na idade de 7 dias, como no 1:3 com 30% de substituição de metacaulim por cimento, o com 20 e 30% de substituição, também aos 7 dias. Já o traço pobre obteve resultados acima deste valor. Podemos atribuir este alta absorção ao fato do traço possuir pouco aglomerante, ou seja, poucos finos para ocupar os vazios. Os resultados de absorção de água por capilaridade estão dispostos na Figura 5. 355

Absorção capilatidade (g/cm²) ISBN 978-85-68242-26-1 Figura 5: Gráfico correlacionando os traços pelas médias da absorção de água por capilaridade. 1,8 1,6 1,4 1,2 1 0,8 0,6 0,4 0,2 0 1:3 1:3 1:3 1:4,5 1:4,5 1:4,5 1:7,5 1:7,5 1:7,5 7 dias 28 dias 56 dias Já na absorção por capilaridade, podemos observar uma tendência de aumento de absorção quanto maior a idade do traço. Porém, os resultados se aproximaram e em alguns casos até foram menores que o erência, mostrando-nos que o fino do metacaulim ajuda a ocupar vazios e diminuir a absorção por capilaridade. Os traços e 1:7,5 com 30% de substituição obtiveram resultados muito maiores que o da erência, podendo ser atrelado a erros de tendência, prática, teoria ou de experimento. 5 CONCLUSÃO Este trabalho teve como objetivos produzir concreto autoadensável utilizando metacaulim e determinar o melhor teor de substituição de cimento pelo material, de forma a se produzir um concreto autoadensável com boas propriedades. Através do método de Tutikian (2004), conseguimos determinar um teor de argamassa ideal para os concretos, o qual foi de 52%. Também, experimentalmente, determinamos a porcentagem de aditivo comparada ao aglomerante em relação a massa, que foi de 1%. As substituições de fino (metacaulim) por cimento, foram de 20 e 30%, mantendo constante a massa de aglomerante. Com isso, tivemos condições de realizar as famílias de concreto e ensaia-los conforme sua consistência e trabalhabilidade, e também, nos CAAs, verificamos sua coesão, segregação, fluidez e capacidade passante. Para o estado fresco, verificamos no CCV (erência) a consistência pelo ensaio de abatimento de tronco de cone. Todos os traços ficaram dentro do intervalo delimitado. Já no CAA, tivemos alguns problemas conforme os ensaios. Contudo, no geral, o ensaio de abatimento de tronco 356

de cone de Abrams obteve valores dentro do esperado para a maioria dos traços, mostrando assim, que o concreto possuía pouca segregação e se mostrou bastante coeso. Já para o estado endurecido, os ensaios mostraram que os finos do metacaulim ajudam a ocupar os vazios do concreto, pois houve uma tendência de a absorção tanto por imersão, quanto por capilaridade, diminuírem conforme adiciona-se o fino. Os resultados de absorção por imersão ficaram dentro da norma, exceto no traço pobre, o que já era esperado pela falta de aglomerante. Já na absorção por capilaridade, apenas dois traços apareceram com resultados fora do esperado, sendo muito maiores que o esperado pelo erência, sendo eles o e 1:7,5 com 30% de substituição de metacaulim por cimento. Por fim, concluímos que o metacaulim causou uma fluidez no concreto, que o auxiliou a se tornar CAA, também, diminuiu os espaços vazios com o preenchimento com material fino, diminuindo a absorção e podendo causar um aumento na durabilidade. Também, contribuiu para variação na resistência e no módulo de elasticidade do concreto, sendo que para a compressão simples (maior utilidade do concreto), houve um aumento significativo dos valores de tensões. Logo, foi viável a confecção de concreto autoadensável com metacaulim com os materiais disponíveis na região de Ilha Solteira SP. AGRADECIMENTO Agradeço ao Conselho Nacional de Desenvolvimento Científico e Tecnológico, pela bolsa estudantil concedida ao discente para o desenvolvimento do estudo. REFERÊNCIAS BIBLIOGRÁFICAS ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. 15823: Concreto autoadensável. Rio de Janeiro, 2010. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 5739: Concreto Ensaio de compressão de corpos de prova cilíndricos. Rio de Janeiro, 2007. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 8522 Concreto - Determinação do módulo estático de elasticidade à compressão. Rio de Janeiro, 2008. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 9778: Argamassa e concreto endurecidos Determinação da absorção de água, índice de vazios e massa específica. Rio de Janeiro, 2005. 357

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7222 Argamassa e Concreto Determinação da Resistência a tração por compressão diametral de corpos-de-prova cilíndricos. Rio de Janeiro, 1994. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 9778 Argamassa e concreto endurecido Determinação da absorção de água por imersão Índices de vazios e massa específica. Rio de Janeiro, 1987. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 9779 Argamassa e concreto endurecido Determinação da absorção de água por capilaridade. Rio de Janeiro, 1995. BAUER, L. A. F. MATERIAIS DE CONSTRUÇÃO. 5. ed. Uberlândia: Ltc, 2000. p.447 HELENE, P. Dosagem dos concretos de cimento Portland. In: Concreto: ensino, pesquisa e realizações. Ed: G.C. ISAIA. São Paulo, volume, capítulo 15, pg.440-470, 2005. METACAULIM DO BRASIL (São Paulo). FICHA DE INFORMAÇÃO DE SEGURANÇA DE PRODUTOS QUÍMICOS - FISPQ (NBR 14725/2002). Jundiaí, 2011. OKAMURA, H. Self-compacting High-performance concrete. In: Concrete International, v. 19, n.7 p. 50-52, Julho 1997. PETERSSEN, B.G; REKNES, K. Advances in self-compacting concrete with lignosulphonate superplasticizer. In: fourth International RILEM Symposium on Self-compacting Concrete. Chicago, EUA, 2005. TUTIKIAN, B. F. Método para dosagem de concretos auto-adensáveis. 2004. 149 f. Dissertação (Mestrado) - Curso de Engenharia Civil, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2004. TUTIKIAN, B. F. Proposição de um método de dosagem experimental para concretos autoadensáveis. 2007. 163 f. Tese (Doutorado) - Curso de Engenharia Civil, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2007. TUTIKIAN, B. F.; DAL MOLIN, D. C. Concreto auto-adensável. Porto Alegre: Pini, 2008. 144 p. VON PAUMGARTTEN, M. D. Concreto auto-adensável com materiais encontrados na região de Belém. 2010. 69 f. TCC (Graduação) - Curso de Engenharia Civil, Universidade da Amazônia, Belém, 2010. 358