XIX Seminário Nacional de Distribuição de Energia Elétrica

Documentos relacionados
Avaliação da Estabilidade de Sistemas de Distribuição Considerando a Presença de Elevada Penetração de Geração Distribuída

Planejamento e Operação de Microrredes Formadas pela Presença de Geração Distribuída

ESTUDO E ANÁLISE DE ESTABILIDADE TRANSITÓRIA PARA UM SISTEMA DE 9 BARRAS.

GERAÇÃO PRÓPRIA Conforme Portaria MME nº 44 de 11 de março de 2015

Análise de Estabilidade de Centrais de Geração Distribuída em Operação Isolada

Gerencia de Planejamento do Sistema GPS FORMULÁRIO DE SOLICITAÇÃO DE ACESSO

Controle de Sistemas Interligados. Prof. Glauco Nery Taranto Departamento de Engenharia Elétrica POLI/UFRJ

Estudo de Regime Permanente da Conexão de Geração Distribuída em Sistemas De Distribuição Desequilibrados

Capítulo 3. Modelagem da Rede Elétrica Estudada

Departamento de Engenharia Elétrica Conversão de Energia II Lista 7

ANÁLISE DA ESTABILIDADE TRANSITÓRIA DE UM SISTEMA COM GERAÇÃO EÓLICA

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA

Característica de Regulação do Gerador de Corrente Contínua com Excitação Independente

Controle de Sistemas Interligados. Prof. Glauco Nery Taranto Departamento de Engenharia Elétrica POLI/UFRJ

Agradecimentos. Este trabalho foi desenvolvido no âmbito do Programa de Pesquisa e Desenvolvimento Tecnológico do Setor de Energia Elétrica

1 Sistema Máquina-Barra in nita: apresentação e modelagem

4 Cálculo de Equivalentes Dinâmicos

Partes de uma máquina síncrona

1 Introdução. 1.1 Considerações Gerais

Critérios para Conexão de Geradores Assíncronos na Rede de Distribuição de Média Tensão

D03.01 Desenvolvimento de metodologias para o controle de tensão e fluxo de reativos em redes com presença de geração distribuída

Harmônicos em sistemas industriais: uma cooperação entre concessionária e consumidor

AULA 4 PROTEÇÃO DE GERADORES RAFAEL DE OLIVEIRA RIBEIRO 1

COMPORTAMENTO DOS GERADORES NA PRESENÇA DE CAPACITORES

Capítulo X. Cogeração distribuída. Análise financeira e de estabilidade de um sistema real após a conexão do sistema de cogeração

Estudo de perdas no Sistema Elétrico de Potência com presença de Geração Distribuída

Descrição do processo de Modelagem e Simulação em quatro etapas no ambiente AMESim

AULAS UNIDADE 1 MÁQUINAS ELÉTRICAS ROTATIVAS (MAE) Prof. Ademir Nied

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA GERADOR SÍNCRONO. Joaquim Eloir Rocha 1

COMPORTAMENTO DOS GERADORES NA PRESENÇA DE CAPACITORES Por Eng. Jose Starosta, MSc

XX Seminário Nacional de Distribuição de Energia Elétrica SENDI a 26 de outubro Rio de Janeiro - RJ - Brasil

Décimo Quinto Encontro Regional Ibero-americano do CIGRÉ Foz do Iguaçu-PR, Brasil 19 a 23 de maio de 2013

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA MOTOR SÍNCRONO. Joaquim Eloir Rocha 1

4 Cálculo de Equivalentes Dinâmicos

Modelagem de Aerogeradores em Estudos Elétricos

II. FORMULAÇÃO DO PROBLEMA

XVIII Seminário Nacional de Distribuição de Energia Elétrica. Aplicação de Disjuntores em Geradores de Média Potência

Análise da Estabilidade Angular de Sistemas de Geração Distribuída Conectados em Redes de Distribuição

SISTEMA NORMATIVO CORPORATIVO PADRÃO TÉCNICO CÓDIGO TÍTULO VERSÃO PT.DT.PDN GERAÇÃO INCENTIVADA 01 MARCELO POLTRONIERI ENGENHARIA-ES (DEEE)

Desenvolvimento de Elementos de Aerogeradores no DigSILENT PowerFactory TM para Simulação Dinâmica de Sistema Elétricos de Potência

Sistemas Elétricos de Potência 1 Lista de Exercícios No. 6

Modelo do Motor a Relutância Variável com Base na Energia Magnética Armazenada

Geração Distribuída no Atendimento a Cargas Conectadas em um Sistema Ilhado

ESTUDO E SIMULAÇÃO DE UMA MICRORREDE DE ENERGIA ELÉTRICA NOS MODOS CONECTADO E ISOLADO

COMUNICADO TÉCNICO Nº

Avaliação do comportamento dinâmico de sistemas de geração distribuída

INFLUENCE OF ITAIPU HVDC ON POWER SYSTEM DYNAMIC PERFORMANCE

XXII SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA

Normas Técnicas para Conexão de Mini GD. Definição da Solução de Mínimo Custo Global de Conexão. - Definição do Ponto de Conexão

MODELAGEM MATEMÁTICA E SIMULAÇÃO DO MOTOR BRUSHLESS 1

ANÁLISE DAS INFLUÊNCIAS DE VARIAÇÕES NOS GANHOS E CONSTANTES DE TEMPO EM UM REGULADOR DE FATOR DE POTÊNCIA UTILIZANDO O ATP-EMTP

Instalações Elétricas Prediais A ENG04482

COMISSIONAMENTO DO ESTABILIZADOR DE SISTEMA DE POTÊNCIA DA USINA DE ANGRA 1

ANÁLISE DO COMPORTAMENTO DINÂMICO DE UMA MÁQUINA SÍNCRONA E SEUS CONTROLES EM UM SISTEMA ELÉTRICO COM GERAÇÃO DISTRIBUÍDA VIA ATPDRAW

9º Fórum Nacional Eólico. P ro f. Ed n a rd o Pe re i ra d a Ro c h a

IMPACTO DE INTERHARMÔNICOS GERADOS PELA OPERAÇÃO DE FORNOS A ARCO EM FILTROS DE HARMÔNICOS: CASO REAL

USO DA ENERGIA EÓLICA NA COMPENSAÇÃO DE POTÊNCIA REATIVA NA REDE DE DISTRIBUIÇÃO

XVIII Seminário Nacional de Distribuição de Energia Elétrica. SENDI a 10 de outubro. Olinda - Pernambuco - Brasil

Capítulo VII. Sistemas de distribuição avaliação de cargas, sistemas e ativos

SIMULADOR DE REGULADOR DE VELOCIDADE PARA TURBINAS HIDRÁULICAS DE USINAS HIDRELÉTRICAS

Planejamento e Operação de Microrredes Formadas pela Presença de Geração Distribuída

Importância da Validação dos Modelos dos Sistemas de Excitação com Ensaios de Campo para Estudos de Transitórios Eletromecânicos

PEA 3420 : Produção de Energia. SISTEMAS HÍBRIDOS (Solar Eólico)

SISTEMAS ELÉTRICOS. CURTO CIRCUITO Aula 2 Prof. Jáder de Alencar Vasconcelos

Luis Fabiano 21/ago/2008. Rejeição de Cargas Inteligente

Avaliação de sobretensões em subestações isoladas a SF6 interconectadas por cabos

Capítulo II. Agrupamento de cargas e definições complementares

AVALIAÇÃO DOS EFEITOS DA CONEXÃO DE UMA UNIDADE GERADORA DISTRIBUÍDA A UM ALIMENTADOR DE 13,8 KV UTILIZANDO O ATP

Desempenho Dinâmico da Geração Distribuída Frente a Perturbações no SIN e de Manobras na Rede de Distribuição

ESTUDO DO IMPACTO DOS INTERHARMÔNICOS GERADOS PELA OPERAÇÃO DE FORNOS A ARCO EM FILTROS DE HARMÔNICOS: CASO REAL

Soluções. Compactas. PPE - Produto Padronizado ENERGY

CONEXÃO DE UMA MICRORREDE À REDE DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA: UM ESTUDO DE CASO

O milagre da multiplicação dos ampéres. Aspectos de ressonância harmônica.

Manual de Procedimentos da Operação


V SBQEE ESTUDO DO IMPACTO DOS INTERHARMÔNICOS GERADOS PELA OPERAÇÃO DE FORNOS A ARCO EM FILTROS DE HARMÔNICOS: CASO REAL

SOLUÇÕES EM QUALIDADE DE ENERGIA Soluções em média e alta tensão

Capitulo 5 Projeto dos Controladores

Página: 1 de 10 INTERCONEXÃO DE GERAÇÃO AO SISTEMA ELÉTRICO DA RGE SUL NTD

Modelagem e Análise de. Sistemas Elétricos em. Regime Permanente. Sérgio Haffner

ANEXO IX Leilão de Energia de Reserva 1º LER/2016 ANEXO IX MINUTA

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

ESTUDO DA VIABILIDADE ENERGÉTICA DE IMPLANTAÇÃO DE UMA USINA EÓLICA DE 100 KW PARA ABASTECER UMA COMUNIDADE RURAL ISOLADA 1

3 Análise do Efeito do Controle de Tensão em Geradores

XX Seminário Nacional de Distribuição de Energia Elétrica SENDI a 26 de outubro Rio de Janeiro - RJ - Brasil

XXVIII CENTRAIS HIDRELÉTRICAS

PROCEDIMENTOS EXPERIMENTAIS

ANÁLISE DE DESEMPENHO DE CONTROLADORES FUZZY APLICADOS AO CONTROLE SECUNDÁRIO DO SISTEMA DE GERAÇÃO DO AMAPÁ

9º ENTEC Encontro de Tecnologia: 23 a 28 de novembro de 2015

Gerador de Velocidade Média a Óleo Pesado (HFO Heavy Fuel Oil)

XIX Seminário Nacional de Distribuição de Energia Elétrica. Software Computacional de Perdas Técnicas de Energia PERTEC

CURSO DE ESPECIALIZAÇÃO EM SISTEMAS ELÉTRICOS - CESE - ÊNFASE TRANSMISSÃO

1 Introdução Descrição do Problema

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GRUPO DE ESTUDO DE PRODUÇÃO TÉRMICA E FONTES NÃO CONVENCIONAIS - GPT

REGULADOR COMPACTO PARA TURBINAS HIDRÁULICAS VOITH HYDRO

Manual de Procedimentos da Operação

Décimo Quinto Encontro Regional Ibero-americano do CIGRÉ Foz do Iguaçu-PR, Brasil 19 a 23 de maio de 2013

2 Revisão Bibliográfica

Controle de tensão em sistemas de distribuição com tensões desbalanceadas utilizando unidades eólicas de geração

4 Cálculo de Equivalentes Dinâmicos

Transcrição:

XIX Seminário Nacional de Distribuição de Energia Elétrica SENDI 2010 22 a 26 de novembro São Paulo - SP - Brasil Impacto da Geração Distribuída no Sistema Elétrico de Distribuição da Concessionária, Considerando-se Geração com Gás Natural, Biomassa e Eólica Giovani Bertarello Danusia Lima Flávio Ampessan RGE RGE RGE gbertarello@rge-rs.com.br dlima@rge-rs.com.br fampessan@rge-rs.com.br Cássio F. B. Nonenmacher José. A. B. Falleiros Waldyr Maurício RGE UPM UPM cnonenmacher@rge-rs.com.br jabfalleiros@uol.com.br waldyrmauricio@terra.com.br Palavras-chave Energias Renováveis Fontes Alternativas Geração Distribuída Modelagem de Geração Distribuída Simulações Dinâmicas Resumo Neste artigo são analisadas as conexões de unidades de GD - Geração Distribuída em alimentadores da rede da concessionária RGE - Rio Grande Energia. Foram estudadas as diferentes formas de produção de energia elétrica através de fontes renováveis: gás natural, biomassa (geração térmica) e eólica com simulações na plataforma computacional MatLab. Foram desenvolvidos sistemas de controle para as turbinas e uma modelagem da rede simplificados a fim de adaptá-los aos modelos do software MatLab. Os parâmetros utilizados na modelagem foram obtidos de fabricantes e através de ensaios de campo. Foram simuladas situações de regime permanente, alívio de carga, curto-circuito e ilhamento. Os resultados obtidos deverão servir de subsídio para a análise de pedidos de conexão de unidades de GD na rede da concessionária RGE. 1 - Introdução O projeto descrito neste artigo é uma continuação do trabalho que já lançou as bases gerais para estudos destinados à análise de pedidos de acesso de PCH s - Pequenas Centrais Hidrelétricas a redes de distribuição da RGE [1]. Surgiu a necessidade de ampliar o estudo para unidades de geração distribuída com outras fontes, principalmente eólica, biomassa e gás natural. Já existem unidades eólicas implantadas no Estado do Rio Grande do Sul, como o parque eólico de Osório [2] e a implantação de outras unidades encontra-se em fase de estudos e com solicitação de acesso na concessionária. 1/12

A pesquisa foi iniciada por uma revisão da literatura técnica para análise dos modelos existentes e para definir o estudo do comportamento dinâmico da rede. A partir deste estudo, foram definidos modelos de turbinas e sistemas de controle para cada tipo de geração: térmica, a gás e eólica, com parâmetros típicos. Visando obter embasamento mais completo para a modelagem adotada e respectivos parâmetros, os ajustes para as variáveis das turbinas e dos geradores foram feitos com dados reais fornecidos por fabricantes, neste caso a TGM e a WEG, recorrendo-se inclusive a ensaios em campo, como recurso adicional para aferição de valores. Dos ensaios de comissionamento de uma usina térmica (BIOPAV do grupo EQUIPAV de Birigui), foram obtidas todas as informações sobre os parâmetros do sistema de controle da turbina (da excitatriz, do regulador de velocidade e de tensão) e do gerador, a respeito da unidade ensaiada. A rede da RGE foi modelada em locais de prováveis pedidos de conexão, efetuando-se em seguida simulações, sempre com objetivo final de prover o corpo técnico da concessionária de recursos necessários à análise dos pedidos de acesso, tendo como base as informações tanto do acessante quanto da rede elétrica. Através de uma análise de partes do sistema elétrico real da RGE, constituída de alimentadores de 23 kv, foi verificado o efeito da conexão das várias formas de geração já mencionadas, utilizando-se nas simulações os modelos matemáticos desenvolvidos e os parâmetros reais das unidades geradoras. As simulações foram feitas em regime permanente e transitório, com foco principal no comportamento dinâmico dos geradores quando submetidos a pequenas perturbações (ex.: rejeição de carga) e a impactos de maior vulto: curto-circuito e ilhamento. 2 - Modelagem Matemática do Sistema 2.1 Geradores Para os geradores síncronos, foi adotada a modelagem normatizada pelo IEEE (modelo 4) [3], e baseada na transformada de Park. São dois tipos de geradores: o de pólos salientes para geração eólica e o de rotor liso para geração a gás e térmica. Quanto ao gerador assíncrono, uma das opções da geração eólica, o modelo também é clássico e assim como no caso do síncrono foi utilizada a modelagem já disponível no MatLab. 2.2 - Turbinas Sistema Motor Primário e Controle de Velocidade 2.2.1 - Geração a Gás O modelo utilizado nos estudos inclui estatismo e controle de velocidade, a modelagem da válvula e da bomba de combustível, bem como da turbina propriamente dita. Estes modelos são representados por funções de transferência, cujo diagrama de blocos é apresentado na Figura 1. 2/12

Figura 1 Diagrama de blocos do sistema de controle na geração a gás 2.2.2 - Geração Térmica Utilizando Biomassa Neste caso, o modelo do grupo gerador foi adaptado do modelo do Kundur [4] e apresenta módulos simples, sem o estágio de controle de temperatura. O modelo adotado é mostrado na Figura 2. Figura 2 Geração térmica (biomassa) Diagrama de blocos do sistema de controle 2.2.3 - Geração Eólica Foi utilizado o modelo existente na plataforma do MatLab / Simulink, descrito na Figura 3, o qual foi adaptado de forma a compatibilizá-lo com a rede estudada. A modelagem consiste de um sistema de equações que representam a relação da velocidade do vento com a potência mecânica fornecida ao gerador e o controle do pitch. Figura 3 Geração eólica Diagrama de blocos do modelo da turbina 3/12

2.4 - Sistema de Excitação Considerando-se o fato de existir grande variedade de tipos de sistema de excitação, desde os rotativos até os de estado sólido, neste projeto optou-se pela adoção de uma modelagem representada por uma função de transferência equivalente [5, 6]. A particularização para cada caso é feita pela modificação dos parâmetros. O diagrama de blocos completo, utilizado nas simulações é mostrado na Figura 4. Figura 4 Diagrama de blocos do sistema de excitação Este modelo foi utilizado em todos os tipos de geração estudados, exceto para a geração eólica com gerador assíncrono, já que este não possui sistema de excitação, assim, não tendo nenhuma função de controle de tensão e fornecimento de reativos. 3 - Modelagem Física do Sistema Os alimentadores escolhidos para as simulações foram: o Cerro Largo 204 (CLA-204) e o Vacaria 201 (VAC-201). Os dados do alimentador Cerro Largo 204, fornecidos pela RGE, são: 23kV; 38 km da SE até a GD e carga total: P=3205 kw e Q=844 kvar. Estão representados na Figura 5: a localização da unidade de GD, dois BC - Bancos de Capacitores na cor verde e um RT - Regulador de Tensão na cor laranja, que já estão instalados neste trecho e foram considerados no cálculo do circuito equivalente. Figura 5 Circuito alimentador Cerro Largo 204 4/12

A rede elétrica descrita na Figura 6 foi esquematizada como um circuito elétrico, onde a carga total foi dividida em 6 barramentos. Figura 6 Distribuição de carga do alimentador CLA-204 - "viga elétrica" Para simplificar a modelagem do alimentador no MatLab, foi feita uma redução do circuito dando origem, de acordo com a Figura 7. Figura 7 Diagrama unifilar simplificado de CLA-204 Em todas as simulações efetuadas foram adotados os esquemas simplificados, representados nas Figuras 8 e 12, com as diferentes unidades de geração distribuída conectadas a alimentadores de 23 kv da RGE. O circuito da Figura 8 representa o diagrama unifilar simplificado do alimentador CLA-204 no Simulink. Figura 8 Circuito equivalente de CLA-204 O circuito alimentador de Vacaria 201 está representado na Figura 9. 5/12

Figura 9 Circuito alimentador Vacaria 201 As características do alimentador Vacaria 201 são: 23kV; 57 km da SE até a GD e carga total: P=542,79 kw e Q=43,31 kvar. As cargas estão distribuídas conforme mostrado na Figura 10. Figura 10 Distribuição de carga do alimentador VAC-201 "viga elétrica" No diagrama unifilar simplificado da Figura 7 e da Figura 11, a barra 2 concentra a carga equivalente de cada alimentador. O circuito demonstrado na Figura 12 representa o desenvolvimento do diagrama unifilar da Figura 11 no Simulink. Figura 11 Diagrama unifilar simplificado de VAC-201 6/12

Figura 12 Circuito equivalente de VAC-201 Baseado no histórico de pedidos de acesso na concessionária RGE, a potência dos geradores foi escolhida para valores menores que 10 MVA. Também foi simulada a conexão de duas unidades de GD: uma PCH junto com uma unidade eólica, nos dois alimentadores, para se verificar a interação entre duas fontes como mostrado na Figura 13. Figura 13 Circuito equivalente das duas unidades de GD. 4 - Resultados e Análises das Simulações Foram realizadas diversas simulações em situação de regime permanente, curto-circuito trifásico, alívio de carga e ilhamento para cada modelo estudado. Neste artigo foram apresentados alguns casos selecionados para análise. As análises completas estão descritas no relatório técnico final do projeto. 7/12

4.1 - Resultados em Regime Permanente e Alívio de Carga Para a análise de regime permanente e alívio de carga estão sendo apresentadas somente as curvas de potência mecânica e velocidade do gerador, resultantes da simulação do modelo térmico de biomassa de CLA-204 e modelo térmico a gás de VAC-201. Inicialmente foi simulado o regime permanente do modelo térmico no alimentador CLA-204 e no instante de 5 segundos foi feita uma rejeição de carga de 44 %, simulada através da abertura da chave 1 (ver Figura 8), representada nas curvas de variação da potência mecânica e da velocidade do gerador por gráficos visualizados nas Figuras 14 e 15. Para o alimentador VAC-201 com o modelo a Gás, a rejeição de carga ocorreu no instante de 6 segundos e foi de aproximadamente 45% (Figura 15). Figura 14 Variação da potência mecânica em regime permanente e com rejeição de carga da usina térmica conectada no alimentador CLA-204 Figura 15 Variação da velocidade do gerador em regime permanente e com rejeição de carga da usina térmica conectada no alimentador CLA-204 Figura 16 Variação da potência mecânica com detalhe da oscilação do alívio de carga ampliado. Usina a gás conectada no alimentador VAC-201 Figura 17 - Variação da velocidade do gerador, com detalhe da oscilação do alívio de carga ampliado. Usina a gás conectada no alimentador VAC-201 8/12

4.2 - Resultados da Simulação de Curto-Circuito Para o estudo de curto-circuito foi simulada a hipótese de ocorrência de um curto-circuito trifásico aplicado no ponto da conexão da carga total concentrada. O curto foi de duração de 0,1 segundos em todas as simulações, o que significa que o curto é temporário, não causando ilhamento. A título de exemplo estão demonstrados alguns resultados da variação da potência mecânica e da velocidade, pois imediatamente após o curto-circuito os sistemas de controle atuam na velocidade, de modo a manter a potência mecânica o mais estável possível. No modelo da usina térmica a biomassa conectada no alimentador CLA-204 foi simulado um curtocircuito no instante de 5 segundos após a estabilidade do regime permanente. As oscilações estão representadas nas curvas da potência mecânica e da velocidade ilustradas pelas Figuras 18 e 19. Figura 18 - Resultado da variação da potência mecânica da usina térmica a biomassa conectada no alimentador CLA-204 após o curto-circuito Figura 19 - Resultado da variação da velocidade do gerador da usina térmica a biomassa conectada no alimentador CLA-204 após o curtocircuito No modelo da usina a gás conectada no alimentador VAC-201 foi simulado um curto-circuito no instante de 2 segundos após a estabilidade do regime permanente. No mesmo alimentador, com o modelo da usina eólica, o curto-circuito foi simulado no instante de 2,5 segundos. As oscilações da velocidade estão representadas nos gráficos das Figuras 20 e 21. Figura 20 - Resultados da variação de velocidade do gerador do modelo térmico a gás de VAC-201 após o curto-circuito Figura 21 - Resultados da variação de velocidade do modelo eólico assíncrono de VAC- 201 após o curto-circuito No modelo das duas usinas combinadas (eólica e PCH) e conectadas no alimentador CLA-204, foi simulado um curto-circuito no instante de 2 segundos após a estabilidade do regime permanente. As 9/12

oscilações da velocidade no gerador eólico e no gerador da PCH estão representadas nos gráficos das Figuras 22 e 23. Figura 22 - Resultados da variação de velocidade do gerador eólico do modelo eólico com PCH de CLA-204 após o curto-circuito Figura 23 - Resultados da variação de velocidade da PCH no modelo eólico com PCH de CLA-204 após o curto-circuito Constatou-se nas simulações que o resultado depende não só do tipo de geração e parâmetros adotados, mas também das características da rede. A forma de onda, para o caso de resposta estável, é sempre semelhante nos exemplos mostrados, sendo que a amplitude da oscilação é que varia. 4.3 - Resultados da Simulação de Ilhamento As simulações de ilhamento confirmaram a sua viabilidade somente quando associado a esquemas automáticos de alívio de carga. Mesmo com a existência de tais esquemas, não se pode garantir o sucesso do ilhamento já que nem sempre o sistema terá capacidade para atingir o equilíbrio necessário à manutenção da estabilidade da geração distribuída após a desconexão da SE Subestação com o restante do sistema. O gráfico contido nas Figuras 24 e 25 mostram as curvas de variação da potência mecânica e da velocidade do rotor, resultante de operação de ilhamento combinada com alívio parcial de carga de aproximadamente 45%. Neste caso, está demonstrado que o alívio não foi suficiente e causou a perda de sincronismo. Figura 24 - Resultados da potência mecânica na simulação de ilhamento do modelo térmico a gás de VAC-201 com alívio de carga parcial Figura 25 - Resultados da velocidade do gerador na simulação de ilhamento do modelo térmico a gás de VAC-201 com alívio de carga parcial 10/12

Apesar de condições de ilhamento não serem previstas pela concessionária, verificou-se a possibilidade da unidade de GD ser capaz de manter a estabilidade no circuito ilhado, desde que a carga seja compatível com a potência da unidade e existam condições de transmissibilidade. Nos gráficos apresentados nas Figuras 26 e 27 estão representadas as curvas de potência mecânica e da velocidade do gerador com alívio de carga de 48% no instante de 5 segundos, de valor condizente com a potência nominal do gerador no modelo térmico a biomassa do alimentador CLA-204, que oferece melhores condições de transmissibilidade, mesmo porque o circuito do alimentador VAC-201 é muito longo eletricamente. Figura 26 - Curva da potência mecânica do gerador no modelo térmico de biomassa de CLA- 204 após o ilhamento Figura 27 - Curva da velocidade do gerador no modelo térmico de biomassa de CLA-204 após o ilhamento 5 Conclusões e Considerações Finais Nos resultados obtidos neste trabalho foi possível observar que alguns alimentadores na RGE podem, num estudo a priori, receber unidades de GD, sem que estas deteriorem as condições atuais de funcionamento da rede existente, desde que se obedeçam as condições de transmissibilidade e do controle da potência reativa. Em análises específicas, com possíveis situações pós distúrbios, poderiam ser formuladas inúmeras hipóteses, das quais pode-se citar a seguinte: Caso haja a perda de sincronismo, pode-se recorrer a ajustes nos sistemas de controle. Se não for possível o ajuste, a solução é o desligamento temporário das unidades de GD, seguido de ressincronização das mesmas. Mesmo nesta última hipótese, poderá haver algum ganho em termos de confiabilidade, caso a ocorrência que causou o desligamento do alimentador tenha provocado um impedimento parcial do mesmo por um tempo razoavelmente longo. Esta e outras situações poderão ser passíveis de serem analisadas, dependendo das características do sistema no qual se fará a conexão das unidades de GD. As condições de sincronização e o sistema de proteção não foram objeto deste estudo. Cabe ressaltar que sempre que o tipo de análise aqui exposto não for suficientemente conclusivo quanto à certeza da viabilidade da aceitação de nova conexão, novos estudos e maior detalhamento e de alteração de projeto, deverão ser solicitados pela Concessionária ao acessante. 6 - Referências bibliográficas [1] Falleiros, J. A. B. et all; "Impactos da geração Distribuída no Sistema Elétrico de Distribuição da RGE". Caxias do Sul RS. Relatório Técnico P&D, 2008. [2] Ventos do Sul Energia; Parque Eólico de Osório. Dispo-nível em: http://www.osorio.rs.gov.br. Acesso em fev. 2008. 11/12

[3] Working Group on Prime Mover and Energy Supply. "Models for System Dynamic Performance Studies, Hydraulic Turbine and Turbine Control Models For System Pynamic Studies", IEEE Transactions on Power Systems, vol. 7, No. 1, February 1992. [4] KUNDUR, P.; Power System Stability and Control; Electric Power Research Institute, Power System Engineering Series, McGraw-Hill Inc., 1994 [5] OGATA, K.; Engenharia de Controle Moderno, vol. 4. ed. São Paulo: Prentice-Hall do Brasil, 2003. [6] NISE, Norman S. Engenharia de sistemas de controle, vol.3. Rio de Janeiro: Livros Técnicos e Científicos, 2004. 12/12