LISTA EXERCÍCIOS SPHS 2017 PROFESSOR DANIEL COSTA DOS SANTOS

Documentos relacionados
Sistemas de Aproveitamento de Água da Chuva. Daniel Costa dos Santos Professor do DHS/UFPR

Sistemas Prediais de Águas Cinzas. Prof. Daniel Costa dos Santos

MATERIAL COMPLEMENTAR DO LIVRO: SISTEMAS PREDIAIS HIDRÁULICOS E SANITÁRIOS: PROJETOS PRÁTICOS E SUSTENTÁVEIS QUESTÕES VERÓL VAZQUEZ MIGUEZ

Instalações Prediais Hidráulico-Sanitárias: Princípios Básicos para Elaboração de Projetos

ÁGUAS PLUVIAIS INSTALAÇÕES HIDROSANITARIAS

Sistemas Prediais de Águas Pluviais

TH 030- Sistemas Prediais Hidráulico Sanitários

PHD 0313 Instalações e Equipamentos Hidráulicos

TH 030- Sistemas Prediais Hidráulico Sanitários

INSTALAÇÕES PREDIAIS DE ÁGUA PLUVIAL CONCEITOS E DIMENSIONAMENTO

1 ENUNCIADO 2 DADOS 3 RESOLUÇÃO. 3.1 Dimensionamento da Fossa Séptica Volume: V = N (C.T + K. L f )

Saneamento Urbano II TH053

- Terreno argiloso com baixa permeabilidade; - Lençol freático com nível alto; - Pequena área disponível para a construção do sistema de tratamento.

MEMORIAL DESCRITIVO E DE CÁLCULO HIDROSSANITÁRIO

MEMORIAL INSTALAÇÕES SANITÁRIAS SISTEMA DE TRATAMENTO DE ESGOTO OBRA ESCOLAR MONTE CARLO SC

Instalações Hidráulicas Prediais

TH 030- Sistemas Prediais Hidráulico Sanitários

Aproveitamento de água de chuva Cristelle Meneghel Nanúbia Barreto Orides Golyjeswski Rafael Bueno

MEMORIAL REFERENTE AO PROJETO AO SISTEMA DE TRATAMENTO DE ESGOTO SANITÁRIO NA PROMOTORIA DO ESTADO - MT EM PRIMAVERA DO LESTE.

9 Tanques sépticos e tratamentos complementares

Dimensionamento - Sistema Predial de água Fria. Instalações Hidrossanitárias Profª Bárbara Silvéria

Instalações Hidráulicas Prediais

Unidade: Instalações prediais de coleta e condução de águas. Unidade I: pluviais

Saneamento Urbano TH419

PHD 313 HIDRÁULICA E EQUIPAMENTOS HIDRÁULICOS

SISTEMA DE TRATAMENTO INDIVIDUAL DE ESGOTO SANITÁRIO

Instalações Hidráulicas e o Projeto de Arquitetura 9ª edição

Instalações Hidráulicas/Sanitárias Água Pluvial

Resumo. Introdução. Metodologia. Palavras-chave: Reúso. Águas Cinzas. Esgoto.

1 INSTALAÇÕES PREDIAIS DE ÁGUA FRIA

Voluntário do projeto de pesquisa PIBIC e Acadêmico do curso de Engenharia Civil da Unijuí. 3

2.1.1 Volume: V = N (C.T + K. L f )

Instalações Hidráulicas/Sanitárias Água Fria (Parte 2)

Universidade Federal do Espírito Santo

Aula 21 Sistemas individuais de tratamento de esgotos

ESTUDOS DE CASO. Análise de Consumo de Água: Condomínio nio Residencial em Florianópolis. Marina Vasconcelos Santana Orientação: Enedir Ghisi

MINISTÉRIO PÚBLICO DO TRABALHO Procuradoria Geral Departamento de Administração Coordenação de Arquitetura e Engenharia

Figura 4.1: Concepção de um Sistema de Abastecimento de Água

ESTRUTURA DO TRABALHO E EXERCÍCIOS EXEMPLO

SISTEMAS PREDIAIS DE ESGOTAMENTO SANITÁRIO. Professor Daniel Costa dos Santos

TIPO DE REATORES

Métodos de Dimensionamento de Reservatórios rios de Água Pluvial em Edificações

SENAI SERVIÇO NACIONAL DE APRENSIZAGEM INDUSTRIAL DEPARTAMENTO REGIONAL DE MATO GROSSO CNPJ: / MEMORIAL DESCRITIVO

TRATAMENTO DE EFLUENTES P/ REUSO & Engo. Ricardo Teruo Gharib 2012

Prof. Me. Victor de Barros Deantoni

Dimensionamento Preliminar de Reservatório de Águas Pluviais para o Prédio do Instituto de Recursos Naturais (Irn- Unifei) 1

PHD 0313 Instalações e Equipamentos Hidráulicos

INTRODUÇÃO INTRODUÇÃO INTRODUÇÃO UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE CONSTRUÇÃO CIVIL CONSTRUÇÃO CIVIL IV

ESTIMATIVA DE APROVEITAMENTO DE ÁGUA PLUVIAL PARA FINS NÃO POTÁVEIS: ESTUDO DE CASO NA UNIVERSIDADE ESTADUAL DA PARAÍBA LOCALIZADA EM ARARUNA - PB

Dispositivos de autolimpeza

INSTALAÇÕES PREDIAIS DE ÁGUA FRIA - DADOS PARA PROJETO

Instalações hidráulicas e o projeto de arquitetura - 11ª ed

SEGURANÇA JURÍDICA E REGULAMENTAÇÕES AMBIENTAIS

Aula 01:Instalações Prediais- Esgotos Sanitários- Introdução. Professora: Msc. Maria Cleide Oliveira Lima

MEMORIAL DESCRITIVO E DE CÁLCULO HIDROSSANITÁRIO

MEMORIAL DESCRITIVO E DE CÁLCULO HIDRO-SANITÁRIO

Orientações para instalação. domiciliar do sistema de FOSSA E SUMIDOURO

MANUAL DE INSTALAÇÃO

IV-046 POTENCIALIDADE DE REÚSO RESIDENCIAL UTILIZANDO FONTES ALTERNATIVAS DE ÁGUA

CERTIFICAÇÃO LEED. Prof. Fernando Simon Westphal Sala

ÁGUAS PLUVIAIS. d) a estabilidade da vazão de esgotos, que é muito mais crítica, no sistema separador absoluto é maior.

ESTUDO DA VIABILIDADE DE UM SISTEMA DE APROVEITAMENTO DE ÁGUA PLUVIAL PARA FINS NÃO POTÁVEIS EM UM SUPERMERCADO

CALHA PET CONSTRUÇÃO DE CALHAS DE GARRAFA PET PARA APROVEITAMENTO DA ÁGUA DA CHUVA E REDUÇÃO DE RESÍDUOS SÓLIDOS

TÉCNICO EM EDIFICAÇÕES INSTALAÇÕES HIDROSSANITÁRIAS AULA 04. Elaboração: Roberta Fontenelly Engenheira Civil 2017

Esgotos Sanitários Ventilação e Dimensionamento

UTILIZAÇÃO DE ÁGUA DE CHUVA EM TERMINAL RODOVIÁRIO DE POMBAL - PB

REÚSO DE ÁGUAS CINZAS PARA FINS NÃO POTÁVEIS EM UM CONDOMÍNIO MULTIFAMILIAR NO MUNICIPIO DE NOVA IGUAÇU

Aula 04:Dimensionamento dos Componentes do Sistema Predial de Esgotos Sanitários

13 passos. para executar um pavimento. permeável e armazenar água da chuva

COMUNICAÇÃO TÉCNICA Nº Aproveitamento de água de chuva no meio urbano: aspectos técnicos e legais

IMPORTÂNCIA DO REÚSO DE ÁGUAS E DO APROVEITAMENTO DA ÁGUA DE CHUVA ÁGUA = RECURSO VITAL E FINITO!!! Má distribuição; Poluição; Desperdícios; Vazamento

Prof. Me. Victor de Barros Deantoni

Reservatórios: 01 reservatório de 1000 litros de capacidade em fibra de vidro.

Observar a carta topográfica da área sob estudo na Figura 01.

Aproveitamento de Águas Pluviais (Dimensionamento do Reservatório)

APROVEITAMENTO DA ÁGUA DE CHUVA

LEITURA E INTERPRETAÇÃO DE PROJETOS DE CONSTRUÇÃO CIVIL

SISTEMAS INTEGRADOS: APROVEITAMENTO DE ÁGUA PLUVIAL E DRENAGEM NA FONTE

PHD 313 HIDRÁULICA E EQUIPAMENTOS HIDRÁULICOS

MÉTODOS DE DIMENSIONAMENTO E SIMULAÇÃO PARA RESERVATÓRIOS DE ÁGUA PLUVIAL

Aproveitamento de água de chuva para fins não potáveis: Proposta de um sistema para uma residência no município de Chapecó SC

INSTALAÇÕES HIDRÁULICAS PREDIAIS

Faculdade de Engenharia Civil, Arquitetura e Urbanismo Departamento de Arquitetura e Construção. Gestão da água

Instalações Hidráulicas/Sanitárias Água Fria (Parte 2)

Aula 02:Componentes do Sistema Predial de Esgotos Sanitários. Professora: Msc. Maria Cleide R. Oliveira Lima

PROJETO TÉCNICO DE FUNCIONAMENTO DO SISTEMA DE TRATAMENTO DO ESGOTO SANITÁRIO

Proposta de implantação de sistema de reuso de água pluvial para uso em um lava rodas Claudia Azevedo Karine de Andrade Almeida Virginia Guerra Valle

Decreto que regulamenta o artigo 115 do Código de Obras de Guarulhos

Engenharia Civil Disciplina: Hidráulica / Instalações Hidráulicas

MANUAL DE INSTALAÇÃO

INSTALAÇÕES HIDRÁULICAS E PREDIAIS. Professor: Eng Civil Diego Medeiros Weber.

DETERMINAÇÃO DO BALANÇO HÍDRICO COMO PARTE DO ESTUDO DE VIABILIDADE DE UM SISTEMA DE APROVEITAMENTO DE ÁGUA PLUVIAL EM ESTABELECIMENTO INDUSTRIAL

Componentes de instalação do sistema

INSTALAÇÕES HIDRÁULICAS PREDIAIS

PERMITIDO O USO DE CALCULADORA CIENTÍFICA

MANEJO DE ÁGUAS PLUVIAIS EM GUARULHOS 1. O Manejo de Águas Pluviais compreende: quantidade, qualidade e ecossistema aquático.

Aproveitamento de água de chuva em áreas urbanas para fins não potáveis - Requisitos

Transcrição:

I Considerando um lote de 500m 2 de área de captação de águas pluviais, estimar os volumes de detenção conforme diversos métodos. Após, discutir peculiaridades dos métodos que conduzem a resultados diferentes ainda que para a mesma área. 1º Método: Curitiba (Decreto nº 176 de 2007) Equacionamento: V = k I A onde V: volume do reservatório; K: constante dimensional (K=0,20); I: intensidade da chuva (I = 0,080 m/h); A: área. Estimativa: V = 0,2 0,08m/h 500m 2 = 8,00 m 3 ; 2º Método: Curitiba (Fendrich, R. 2002) Equacionamento: V=Vr A onde V: volume do reservatório ; Vr: volume a reservar (20,5 mm/m 2 = 20,5 l/m 2 ); A: área de captação Estimativa: V = Vr A ; V = 20,5 l m 2 500 m 2 ; V = 10.250 L = 10,25 m 3 3º Método: São Paulo (Lei nº 13.276 de 2002) Equacionamento: V=0,15 Ai IP t onde V: volume do reservatório (m 3 ); Ai: área impermeabilizada (m 2 ); IP: índice pluviométrico (IP = 0,06 m/h); t: tempo de duração da chuva (t = 1 hora) Estimativa: V=0,15 Ai IP t ; V=0,15 500 m 2 0,06mh 1h; V=4,5m 3 4º Método: Rio de Janeiro (Decreto nº 23.940 de 2004) Equacionamento: V= k Ai h onde V: volume do reservatório (m 3 ); k: coeficiente de abatimento (K=0,15); Ai: área impermeabilizada (m 2 ); h: altura da chuva (correspondente a 0,06 m nas Áreas de Planejamento 1, 2 e 4 e a 0,07 m nas Áreas de Planejamento 3 e 5) Estimativa: Para as Áreas de Planejamento 1, 2 e 4:V=0,15 500 m 2 0,06m ; V=4,5m 3 Para as Áreas de Planejamento 3 e 5:V=0,15 500 m 2 0,07m; V=5,25m 3 Discussão Comparativa sobre os Métodos:... II Dimensionar um reservatório de aproveitamento de água de chuva para atender a demanda de água não potável em uma residência de classe média, localizada no município de Florianópolis/SC, com as seguintes características: 1 Dados Número de habitantes 5 Número de banheiros 1 Área de jardim 10 m² Área impermeável 5 m² Área do telhado 60 m² Coeficiente de escoamento 0,8 Precipitação anual Florianópolis (INMET/2005) 1.808 mm/ano 2 Cálculo das demandas não potáveis (QNP): Adotar, para o cálculo das demandas não potáveis: Vaso sanitário Rega de jardim Lavagem da área impermeabilizada 6l/descarga 5 descargas/d Perdas por vazamento de 10% 3,0 L/m²/dia 8 utilizações/mês 4,0 L/m²/dia 8 utilizações/mês

2.1 Cálculo das demandas internas (QINT): Esta demanda compreende apenas o uso em vaso sanitário. QINT = QVS ; QVS=5x6x5x(1+10/100) = 165L/d ; QINT =165L/d QINT = 4.950 L/mês ; QINT = 4,95 m³/mês 2.2 Cálculo das demandas externas (QEXT): As demandas externas correspondem à utilização da água na rega de jardim e na lavagem de áreas impermeabilizadas. Utilizando a equação 3.11, temos que: QEXT = QJD + QAI ; QJD = (10x3x8)/30 = 8 L/d ; QAI = (5x4x8)/30 = 5,33 L/d QEXT = (8 + 5,33)L / d ; QEXT = 13,33 L / d QEXT = 400 L / mês ; QEXT = 0,40 m3 / mês Logo, a QNP será: QNP = (QINT + QEXT) ; QNP = (165 + 13,33)L/d ; QNP = 178,33L/d QNP = 5350/mês ; QNP = 5,35m³/mês 3 Cálculo da estimativa da produção de água de chuva na residência (QAC) A estimativa da produção de água de chuva é feita por meio do Método Racional. QAC = A x P x C ; QAC = 60 x 1,8 x 0,8 ; QAC = 86,4 m³/ano ; QAC = 7,20 m³/mês 4 Descarte da água de lavagem do telhado Considerando o descarte de água na razão de 1L/m² de telhado, com uma cobertura de 60m², temos: Vdescarte = 60 m² x 1,0 L/m² ; Vdescarte= 60 L ; Vdescarte = 0,06 m³ 5 Cálculo do volume do reservatório Considere, para o cálculo do reservatório, um DS de 10 dias, resultado de uma série histórica de 10 anos, aplicado à região de Florianópolis/SC, fornecida pelo INMET. VRES = QNP x DS ; VRES = 178,33 L/d x 10 d ; VRES = 1.783,3 L Adotar: VRES = 2,0 m³ Com este volume de reservatório, será possível armazenar água de chuva para atender as demandas da residência num período de 10 dias sem a ocorrência de chuvas na região. III Estimar volume de reservatórios de água da chuva em casa residencial unifamiliar, localizada no Bairro Boqueirão. As características da construção são as seguintes (Fendrich, 2002): 1 Dados - Casa de alvenaria com 1 pavimento; Moradores = 5 pessoas; - Área do telhado = 110 m² = A C (Área de coleta das águas pluviais); - Áreas de calçadas e de garagem = 76 m²; Bacias sanitárias = 1 ( 12//descarga). - Número de automóveis = 1 - Área de jardim com plantas = 45 m² 2 Dimensionamento 2.1 Fendrich (2002)

- Volume do reservatório de armazenamento das águas pluviais: V = A. 20,5; V = 110 x 20,5 = 2,30 m³ - Volume do reservatório de auto limpeza do telhado: V = 110 x 1,0 = 110 I 2.2 Método de Rippl Chuva média mensal (mm) Área da Captação (m²) Volume de chuva mensal (m³) Demanda variável mensal (m³) % para aproveitamento Diferença entre volume de chuvademanda Diferença Acumulada Obs Meses Janeiro 203,8 110 17,97 19 7,6 10,37 - E* Fevereiro 163,9 110 14,42 20 8 6,42 - E Março 135,5 110 11,92 32 12,8-0,88-0,88 D* Abril 79,8 110 7,02 30 12-4,98-5,86 D Maio 114,8 110 10,1 22 8,8 1,3-4,56 S Junho 104 110 9,15 19 7,6 1,55-3,01 S Julho 99,2 110 8,73 20 8 0,73-2,28 S Agosto 78,8 110 6,9 19 7,6-0,7-2,98 D Setembro 139,8 110 12,3 23 9,2 3,1 0,12 E Outubro 128,6 110 11,32 20 8 3,32 3,44 E Novembro 116,5 110 10,25 23 9,2 1,05 4,49 E Dezembro 146,9 110 12,93 30 12 0,93 5,42 E *E: Excesso; D: Déficit Logo o volume será de aproximadamente 6,0 m 3. 2.3 Método Inglês: V= 0,05. P. A ; Onde: P = precipitação média anual, em milímetros; A = área do telhado em projeção, em metros quadrados; V = volume de água aproveitável e o volume de água da cisterna, em litros. V= 0,05 * 1511,2 * 110m² = 8312 L ; V = 8,3 m³ 2.4 Dimensionamento Método Alemão V ADOTADO = Mínimo( V ou D) * 0,06 onde: V = volume aproveitável de água de chuva anual, em litros; D = demanda anual da água não potável, em litros; V ADOTADO = volume de água do reservatório, em litros. V = 1511,2 mm / ano * 110 m² / 1000 * 0,8 = 133 m³/ano D = D T * D bs ; D = [(23,08)*12] * 0,4 = 111 m³/ano Como D < V; V MÍNIMO = 111 m³/ano ; V ADOTADO = 111 * 0,06 = 6,7 m³ 2.5 Dimensionamento Azevedo Neto V = 0,042 *P *A*T onde: P = precipitação média anual, em milimetros; T = número de meses de pouca chuva ou seca; A = área do telhado em projeção, em metros quadrados; V = volume de água aproveitável e o volume de água do reservatório, em litros. P = 1511,2mm/ano ; P M ÉDIA = 25,19mm/mês ; P 80% P MÉDIA = 100,74mm T (P 100,74) = 3 meses (abril, julho e agosto) V = 0,042 * 1511,2 * 110 * 3 = 20945,2 L = 20m³

2.6 Dimensionamento pelo Número dias sem chuva: V = 0,4 * D T * D S D T = Demanda total D S = Dias secos Para Ds = 10 dias, onde: V = 0,4 * 23,8 * 10 dias / 30 dias = 3,17m³ IV Estimar volume de reservatórios de água da chuva em casa residencial multifamiliar (Fendrich, 2002): 1 Dados Consumo em condomínio residencial vertical multifamiliar. - Características da Construção: - Edifício de 6 pavimentos, com 2 apartamentos/andar, construído em concreto armado, em 1992; - Moradores = 43 pessoas; - Área do telhado = 245 m² = A C (Área de coleta das águas pluviais); - Áreas de calçadas, pavimentações e de garagens = 330 m²; - Bacias sanitárias = 36 ( 12l/descarga); - Não possui hidrômetros individuais. - Áreas pavimentadas das garagens, do playground e das calçadas = 370 m² (2 lavagens/ mês com 5 l/m²) - Área de jardim com plantas = 50 m² ( 2 irrigações/mês com 5 l/m²) - Bacias sanitárias = 36 (12 l/descarga). A utilização das águas pluviais é possível em apenas bacias sanitárias ( 1 na casa do zelador e 6 no 1 andar) - Número de automóveis = 16 (possível 1 lavagem/mês com 300 l/lavagem) 2 Dimensionamento 2.1 Dimensionamento por Fendrich, 2002 - Volume do reservatório de armazenamento das águas pluviais: V = 245 x 20,5 = 4.530 l= 5,00 m³ (Bairro Boqueirão) - Volume do reservatório de auto limpeza do telhado: V = 245 x 0,5 = 120 I Custo de instalação do sistema de utilização das águas pluviais em condomínio residencial multifamiliar com A C = 245 m² 2.2 Dimensionamento Método Inglês: V= 0,05 P A Onde: P = precipitação média anual, em milímetros; A = área do telhado em projeção, em metros quadrados; V = volume de água aproveitável e o volume de água da cisterna, em litros. V= 0,05 * 1511,2 * 245m² = 18512,2 L ; V = 18,5 m³

2.3 Dimensionamento Método Alemão V ADOTADO = Mínimo( V ou D) * 0,06 Onde: V = volume aproveitável de água de chuva anual, em litros; D = demanda anual da água não potável, em litros; V ADOTADO = volume de água do reservatório, em litros. V = 1511,2 mm / ano * 245 m² / 1000 * 0,8 = 296,2 m³/ano D = D T * D bs ; D = 3072 * 0,4 = 1229 m³/ano Como D < V; V MÍNIMO = 296,2 m³/ano ; V ADOTADO = 296,2 * 0,06 = 6,144m³ = 17,8 m³ 2.4 Dimensionamento Azevedo Neto V = 0,042 *P *A*T Onde: P = precipitação média anual, em milimetros; T = número de meses de pouca chuva ou seca; A = área do telhado em projeção, em metros quadrados; V = volume de água aproveitável e o volume de água do reservatório, em litros. P = 1511,2mm/ano P M ÉDIA = 25,19mm/mês ; P 80% P MÉDIA = 100,74mm ; T (P 100,74) = 3 meses (abril, julho e agosto) ; V = 0,042 * 1511,2 * 245 * 3 = 46650,8 L = 46m³ 2.5 Dimensionamento Número dias sem chuva: V = 0,4 * D T * D S Onde: D T = Demanda total ; D S = Dias secos; Ds = 10 dias ; V = 0,4 * 256 * 10 dias / 30 dias = 34,14m³ V Calcular o volume do reservatório de água de chuva para atender a demanda de água para o uso em vaso sanitário e na lavagem de áreas externas, em um edifício de 4 pavimentos, com 4 apartamentos tipo por andar e 2 dormitórios, localizado em Florianópolis/SC. (PHILLIPPI, PROSAB 4): 1 Dados Número de pavimentos 4 Número de apartamentos por pavimento 4 Número de habitantes por apartamento 4 Número de banheiros 1 Área impermeável 100 m² Área do telhado 160 m² Coeficiente de Escoamento 0,8 Precipitação anual Florianópolis (INMET/2005) 1.808 mm/ano 2 Dimensionamento das calhas e condutores O dimensionamento das calhas e condutores deve seguir os critérios da NBR 10.844/89 da ABNT, para Instalações Prediais de Águas Pluviais. 3 Cálculo das demandas não potáveis Para o cálculo das demandas não potáveis utiliza-se a equação 3.9, após a determinação das demandas internas e externas da edificação. Adotar, para o cálculo das demandas não potáveis:

Vaso sanitário Lavagem da área impermeabilizada 6l/descarga 5 descargas/d Perdas por vazamento de 10% 4,0 L/m²/dia 8 utilizações/mês 3.1 Cálculo das demandas internas: QINT =2112L/d 3.2 Cálculo das demandas externas: QEXT =106,67 L/d 3.3 Cálculo das demandas não potáveis: QNP = QNP = 2188,67/d ; QNP = 66,56m³/mês 4 Cálculo da estimativa da produção de água de chuva QAC = A x P x C ; QAC = 160m² x 1,8m/ano x 0,8 ; QAC = 230,4 m³/ano ; QAC = 19,20 m³/mês 5 Descarte da água de lavagem do telhado Para uma área de telhado de 160 m² e descarte de 1L/m² de área de cobertura, tem-se: Vdescarte = 160 m² x 1L/m² ; Vdescarte= 160 L ; Vdescarte = 0,16 m³ 6 Cálculo do volume do reservatório Considere, para o cálculo do reservatório, um DS de 10 dias, resultado de uma série histórica de 10 anos, aplicado à região de Florianópolis/SC, fornecida pelo INMET. VRES = QNP x DS ; VRES = 2.218,67 L/d x 10 d ; VRES = 22.186,7 l ; VRES = 22 m³ VI Dimensionar uma estação de tratamento de águas cinza (ETAC) para atender a demanda de água para o uso em vaso sanitário e na lavagem de áreas externas, em uma residência típica de classe média. Para este exemplo de dimensionamento foi utilizado um filtro de brita para o tratamento da água cinza, uma desinfecção com pastilhas de cloro e reservação do efluente tratado para posterior bombeamento e uso com capacidade para atender a demanda no vaso sanitário e lavagem de áreas externas de uma residência unifamiliar composta por 5 habitantes. (GONÇALVES, PROSAB 4) 1 Dados 1.1 Demandas não potáveis 1.2 Demandas internas: QINT =165,0L/d 1.2 Demandas externas: QEXT =106,67L/d 1.2.2 Demanda total de água não potável: QNP =65,56m³/mês 2 Estimativa da produção de água cinza Serão adotados os seguintes dados para cálculo da produção de água cinza: Lavatório Chuveiro Tanque Máquina de Lavar Vazão Duração Freqüência L/min min/hab.dia dia 20 4 1 L/min min/hab.dia banho/hab 20 10 2 L/min min/d dia 20 5 1 Litro/ciclo ciclo/dia 108 1

Produção Individual Lavatório Chuveiro Tanque Máquina de Lavar 20x4x1x5 = 400L/dia 20x10x2x5 = 2000L/dia 20x1x5 = 100L/dia 108x1 = 108L/dia DEMANDA TOTAL 2.608 l/d 0,030l/s 0,109m³/h 78,24m³/mês 3 Dimensionamento do Filtro de brita A partir dos dados de demanda, pode-se dimensionar o filtro de brita para o tratamento da água cinza, que neste caso, o filtro será circular. Tem-se então: A = Q / TAS ; D = (A x 4 / ) 1/2 Onde: A = área superficial; D = diâmetro em metros; Q = 2.608 litros/dia(2,6 m³/dia); TAS = taxa superficial aplicada de 200 L / m².dia (0,2 m³ / m².dia); A = 2,6 / 0,2 D = (13,0 x 4 / )1/2 ; A = 13,0 m³ D = 2,74 m A altura da camada filtrante deverá ser de 70 cm e a brita é classificada como brita n 2. 4 Desinfecção A cloração poderá ser feita em uma caixa de passagem, desde que a pastilha de hipoclorito de sódio fique em contato com o efluente 30 minutos ou mais. 5 Reservatórios 5.1 Reservatório Inferior de Água Cinza Tratada Esta unidade receberá o efluente do tratamento das Águas Cinza. Para o seu dimensionamento foi adotado como volume útil, 60% ou três quintos do volume total necessário para abastecer a unidade sanitária durante 2 dias consecutivos. Será utilizado um conjunto motor-bomba para bombeamento destas águas ao Reservatório de Água para Reúso (RIAC). Volume Total de Reservação = Q(litros/dia) x 2(dias) Volume Total de Reservação = 2.600 x 2 = 5.200 litros V(CAR)= 3/5 x 5.200 litros = 3.120 litros 5.2 Reservatório Superior de Água Cinza Tratada Para seu dimensionamento foi adotado como volume útil, 40% ou dois quintos do volume total necessário para abastecer a unidade sanitária durante 2 dias consecutivos. Volume Total de Reservação = Q(litros/dia) x 2(dias) Volume Total de Reservação = 2.600 x 2 = 5.200 litros V(RSAC)= 2/5 x 5.200 litros = 2.080 litros

VII Para um edifício de 12 andares com 250 pessoas dimensionar um sistema de água cinza composto por um tanque séptico seguido de tratamento complementar para remoção de matéria orgânica (filtro anaeróbio ou filtro biológico) e para desinfecção, este composto por filtro de areia e cloração e vazão per capita diária de contribuição de água cinza na ordem de 40 L/hab.dia. Considerar a taxa de DBO AC = 150mg/L e a taxa de eficiência do tanque séptico de E% DBO = 40%. 1 Dimensionamento do Tanque Séptico a) Contribuição diária total (C ): C = C x n o de pessoas ou habitantes na edificação. C = 40 L/hab.dia x 250 pessoas = 10.000L/dia = 10m³/dia = 0,12 L/s b) Período de detenção (T): Tabela 2 NBR 7229. Td = 0,5 dia c) Taxa de acumulação de lodo digerido (k): Tabela 3 NBR 7229. k = 65 d) Contribuição de lodo fresco (L f ): TABELA 1 NBR 7229. L f = 1L/hab.dia e) Volume útil do tanque séptico: V = 1000 + N.(C.T+ K.L f ) V= 1000 + 250(40 x 0,5dia + 65 x 1) = 22250m³ Esse volume é o volume útil do tanque, respectivo ao volume de ocupado pelo esgoto que está sendo tratado. O volume seco, aquele que não está em contato com o tanque, deve ser somado ao útil para se obter o volume total. 2 Tratamento Complementar para Remoção da Matéria Orgânica (FAn ou FB) 2.1 Filtro Anaeróbio O equacionamento básico é o seguinte: V 1,6. N. C. T onde, V volume do filtro; N número de contribuintes; C contribuição por contribuinte T tempo de detenção V = 1,2 x 250 x 40 x 0,5 = 8.000L = 8m³ OU 2.2 Filtro Biológico Considere o filtro biológico sendo um tratamento secundário e trabalhe com uma TAH igual a 10 m 3 /m 2.dia e uma altura de 1,5 m. Dimensione também o decantador secundário. Área A = Q / TAH, sendo A a área da seção transversal do filtro biológico. A = 10m³/dia = 1m 10m³/m².dia Diâmetro: Calcular em função da área A. D = 1,13 m Verificar a COV de DBO. COV = Q (m³/dia) x DBO (mg/l) = 10 x 90 = 0,6 kg. DBO (1000 x V ) 1000 x 1,5 m³.dia Faixa recomenda: 0,6 a 1,8 kgdbo/m³.dia Decantador Secundário: TES = Q / A DS, sendo TES a Taxa de Escoamento Superficial e A DS a área do decantador secundário. O valor de TES encontra-se na faixa de 16 a 24 m 3 /m 2.dia, para vazão média de esgoto. A área é A DS = 10 / 16 = 0,6m².

3 Tratamento para desinfecção 3.1 Filtro de Areia TF = Q / A; TF = 1,7 m³/m².dia A = 10 = 0,6m² 6 3.2 Cloração Uma tubulação de água cinza conduz 0,12 litros/s, cuja demanda de Cloro medida é 0,7 mg/litro. Está previsto o emprego de um composto de Cloro com 30% de Cloro, devendo-se manter um residual de 0,5 mg/litro após a desinfecção. Para tanto, realizar os cálculos de dosagem e de gasto de composto. a) Vazões de que tem: 0,12 litros/s ou 7,2 litros/min ou 0,0072 m³/min ou ainda 43,2 L/hora b) Quantidade de composto de Cloro a aplicar: (0,7 mg/litro + 0,5 mg/litro) = 4g/m³ 0,3 Por minuto = 0,0072 m³/min x 4g/m³ = 0,0288 g/min c) Solução preparada de Cloro: Se forem preparados 20 litros de solução de composto a 2% ter-se-á 19,6 litros de água e 0,4 kg de composto. Assim, cada litro de solução terá 20 gramas de composto ou 20 x 0,30 = 6 gramas de Cloro. Como tem-se de aplicar 0,96 g/min resulta que a quantidade de solução a aplicar será: 0,0288 = 0,0048 litro de solução/min 6 Como se tem 20 litros de solução ela será suficiente para; 20 = 4168 minutos = 69 horas = 3 dias 0,0048 Verifica-se periodicamente o cloro residual e aumenta-se ou reduz-se a quantidade de solução aplicada. 5 Volume do reservatório: V DEM = V OFERTA V R = 10m³ para atender 1 dia. DBO = 150mg/L E% = 40 DBO TS DBO=90mg/L F AN ou FB FA Cloração R AC

VIII Para o município de Goiânia, para uma área de cobertura e 50 m 2 : 1 Estimar a vazão a ser drenada para uma chuva de duração de 5,0 minutos; Resposta: 148,30 l/min 2 Verificar se a capacidade da respectiva calha atende a vazão a ser drenada. Adotar os seguintes dados: material: aço galvanizado; altura da lâmina: 5,0 cm; K = 60.000; largura = 10,0 cm; declividade = 0,5 %; Resposta: 164,88 l/min ; Atende! 3 Estimar o diâmetro do condutor vertical, considerando para o mesmo: comprimento = 3,0 m; calha com saída em aresta viva; altura da lâmina = 5,0 cm. Resposta: 75 mm 4 Estimar o diâmetro e a declividade do condutor horizontal que atende a respectiva calha. Deve ainda ser considerado que uma área de piso de 8,0 m de comprimento e 5,0 m de largura, além de uma parede de 4,0 m de altura e 2,0 m de largura, interceptam águas pluviais e as conduzem ao mesmo condutor. Resposta: Q drenada = 248,30 l/min; Diâmetro = 100 mm ; I = 1,0 % XIX Verificar se uma calha de 30,00 cm de largura e 20,0 cm de altura útil comporta a vazão drenada de uma área de 1000 m 2. Considerar que a calha será de concreto liso, terá declividade de 0,5 % e que o escoamento será à meia seção. Para a estimativa da precipitação observar que a área em questão está localizada em Porto Alegre e que o período de retorno é de 5,0 anos. Caso a calha não suporte a vazão a ser drenada, propor soluções para que a calha apresente a capacidade de drenagem necessária. Resposta: Q drenada = 2430 l/min ; Q capacidade da calha = 2241 l/min ; Não atende! X Qual a área máxima a ser drenada para uma calha com as seguintes dimensões: Largura = 20,00 cm ; Altura Útil = 14,50 cm ; Material: concreto fundido no local ( n = 0,02) ; Declividade = 1,00 % ; Precipitação Específica Local = 0,042 l/s.m 2 Resposta: A = 524 m 2 XI Uma coluna de ventilação de 75 mm e 55 m de comprimento ventila um tubo de queda de 100 mm que recebe descargas de bacias sanitárias. Dado isto, quantas bacias sanitárias, no máximo, podem ser conectadas a este tubo de queda para que a ventilação seja eficiente? Resposta: 23,33 23 bacias sanitárias XII Um condutor vertical de águas pluviais de 2,0 m de comprimento deve drenar uma vazão de 1200 l/min. Dado que a conexão entre a calha e este condutor vertical é em aresta viva, e que a altura da lâmina de água nesta calha é de 70,0 mm, determinar o diâmetro necessário para um condutor vertical em PVC. Resposta: Diâmetro = 150 mm

XIII Um trecho de subcoletor recebe a descarga de 03 tubos de queda, aos quais estão conectados os seguintes aparelhos sanitários de uma edificação residencial: TQ1: 5 bacias sanitárias e 5 lavatórios; TQ2: 5 lavatórios e 5 chuveiros; TQ3: 5 tanques e 5 máquinas de lavar roupas de 30 kg. Portanto, para uma declividade de 1,0 %, defina o diâmetro do trecho. Resposta: 100 mm. XIV Dimensionar um tanque séptico seguido de sumidouro para um edifício de apartamentos cujos dados característicos são os seguintes: N o de Pavimentos: 04 ; N o de Apartamentos por Pavimento: 02 ; Tipo de Solo do Lote: Areia com coeficiente de infiltração de 90 l/m 2.d ; Temperatura : o C ; Número de Limpezas por Ano: 01. Resposta: Volume do Tanque Séptico = 12, 6 m 3 ; Diâmetro: 2,83 m ; Altura Ùtil = 2,0 m. ; Número de Sumidouros = 5,81 6 unidades (admitindo cada sumidouro tendo iguais volume, diâmetro e altura do tanque séptico).