5 Análises de estabilidade 5.1. Introdução

Documentos relacionados
ANÁLISE NUMÉRICA 3D DA ESTABILIDADE DE TALUDES DE GRANDE ALTURA EM MINAS A CÉU ABERTO

Aula 1 Taludes e Movimentos de Massa. CIV 247 OBRAS DE TERRA Prof. Romero César Gomes

METODOLOGIA PARA AVALIAÇÃO DE ESTABILIDADE DE ESCAVAÇÕES EM MEIOS DESCONTÍNUOS, A PARTIR DE TESTEMUNHOS DE SONDAGEM SEMI-ORIENTADOS

1 Introdução 1.1. Generalidades

3 Aspectos Geológicos e Geotécnicos

6. Análise de Estabilidade

Caracterização Geomecânica de Maciços Rochosos: da Teoria à Prática. Prof. André Assis (UnB)

7 Simulação numérica de prova de carga em placa sobre solo residual

4 Modelo Constitutivo de Drucker-Prager para materiais rochosos

FACULDADE DE TECNOLOGIA DE ALAGOAS ENGENHARIA CIVIL FUNDAÇÕES I. Prof. MsC. Roberto Monteiro

Universidade Privada de Angola Faculdade de Engenharia Departamento de Construção Civil

6 DESLIZAMENTO EM LODALEN, NORUEGA (1954)

Departamento de Engenharia Civil. Geologia de Engenharia. Teste de Avaliação 07/11/2007 Duração: 2 horas. Nome

BARRAGENS DE TERRA E DE ENROCAMENTO AULA 3. Prof. Romero César Gomes - Departamento de Engenharia Civil / UFOP

Notas de aulas de Mecânica dos Solos II (parte 13)

4 Resumo dos Conceitos do Método de Equilíbrio Limite e Análise Numérica

Tabela de cargas, projetos de fundações e a revisão da. Frederico F. Falconi

CLASSIFICAÇÃO DO MATERIAL ROCHA - revisão

ESTABILIDADE DE TALUDES

3 Provas de Carga Instrumentadas

COMPARAÇÃO DO IMPACTO GERADO PELO DESMONTE DE ROCHAS COM EXPLOSIVOS EM ROCHA DURA E ROCHA BRANDA NA MOVIMENTAÇÃO DE ESTRUTURAS

6 Resultado dos Ensaios de Caracterização Mecânica de Rocha

5 Resultados de Fadiga

AULA 13: ESTADO DE TENSÕES E CRITÉRIOS DE RUPTURA. Prof. Augusto Montor Mecânica dos Solos

Figura 1.1 Vista panorâmica da barragem de Lower San Fernando (

MUROS DE CONTENÇÃO E ESTABILIDADE DE TALUDES. Trabalho Prático

Capítulo 2 Tração, compressão e cisalhamento

SERVIÇO PÚBLICO FEDERAL

Capacidade de Carga Geotécnica de Fundações

Uma Discussão sobre a Atuação do Peso Próprio na Geração de Forças Resistentes em Certos Casos de Rupturas em Cunha

Capítulo 4 Propriedades Mecânicas dos Materiais

IST- OBRAS GEOTÉCNICAS Mestrado em Engenharia Civil 4º Ano - 2º Semestre 1º Exame 30 de Junho de 2009 Sem consulta Duração do exame: 2h30

6 Alteamento da barragem de rejeito Limonar Peru 6.1. Descrição

TECNOLOGIA DE CONTROLE NUMÉRICO GEOMETRIA DA FERRAMENTA

Solicitações Não Drenadas

UFABC- Universidade Federal do ABC- PROEXT 2011/2012. Gestão de Riscos Geológicos em Ambiente Urbano: Escorregamentos e Processos Correlatos

CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE ENGENHARIA CIVIL. Profª Aline Cristina Souza dos Santos

3. Descrição do Campo em estudo

Caderno de Estruturas em Alvenaria e Concreto Simples

Controle de Obras Mecânica dos solos

CONCEITOS PARA USO DO SOLIDWORKS SIMULATION

Capítulo 3: Propriedades mecânicas dos materiais

Escola Politécnica da Universidade de São Paulo PEF 2409 Geotecnia Ambiental. Análise de estabilidade de taludes

Princípios da Mecânica Força

CARACTERIZAÇÃO E CLASSIFICAÇÃO DE MACIÇOS ROCHOSOS

ESTIMATIVA DO COMPORTAMENTO MECÂNICO DA CAMADA DE CARVÃO BONITO EM MINAS SUBTERRÂNEAS DE SANTA CATARINA

Estabilidade de Encosta em Tálus na PCH Monte Serrat. João Raphael Leal Karin Rodrigues Baran Engevix Engenharia

4 Fluxo na barragem de terra de Macusani - Peru

DE / GC4 / CLC RELATO DA EXECUÇÃO DE TÚNEL NATM EM MACIÇO DE ALTERAÇÃO DE ROCHA NA LINHA 4 AMARELA DO METRÔ

4 Estabilidade de taludes

Para análise e solução dos problemas mais importantes de engenharia de solos é necessário o conhecimento das características de resistência ao

5 Análise de Confiabilidade

CLASSIFICAÇÃO DE MACIÇOS ROCHOSOS CLASSIFICAÇÃO DE MACIÇOS ROCHOSOS

Notas de aulas de Mecânica dos Solos II (parte 11)

5 Simulação numérica dos muros reforçados

PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1

BOMBEIROS VOLUNTÁRIOS DE CABANAS DE VIRIATO

1 Introdução 1.1 Definição do Problema

Estruturas de Contenção Parte 1. Marcio Varela

4 Previsão da capacidade de suporte

Ensaios Mecânicos de Materiais. Compressão. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Capítulo 4 - MATERIAIS DE ESTUDO

Tópicos Especiais de Mecânica dos Solos

Estruturas em rochas: Dobras, falhas e outros registros. Prof. Marcel Sena Disciplina: Geologia (65)

Sabesp. Profº Douglas Couri Jr. MUROS DE ARRIMO. Construção Pesada

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE MINAS, METALÚRGICA E DE MATERIAIS - PPGEM

3.1. Geologia Regional

Critérios de ruptura e Ensaios de Resistência ao Cisalhamento

2 Influência da temperatura na estabilidade de talude em rocha

Introdução Conceitos Básicos e Parâmetros

Resistência dos Materiais

RETROANÁLISE DO MOVIMENTO DE MASSA EM TALUDE ESTUDO DE CASO.

1 Introdução 1.1.Motivação e objetivos

APLICAÇÃO DO CRITÉRIO DE RUPTURA DE HOEK-BROWN NA ANÁLISE DE ESTABILIDADE DE TALUDES

Mecânica dos Solos e Fundações PEF a Aula. Estruturas de Contenção Empuxo de Terra Teorias Clássicas Efeito da Água

Rem: Revista Escola de Minas ISSN: Escola de Minas Brasil

3 Teoria do Método dos Elementos Discretos 3.1. Introdução

R.T. Eng. Geotécnico Prof. Edgar Pereira Filho CORTINAS DE CONTENÇÃO

RESISTÊNCIA AO CISALHAMENTO EXERCÍCIOS PROPOSTOS QUESTÕES TEÓRICAS

1. Embasamento teórico

MUROS DE ARRIMO. Tipos Drenagem Estabilidade Dimensionamento

Peso especifico aparente é a razão entre o peso da amostra e o seu volume:

4 Mecanismos de Fratura

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL GEOTECNIA III

NOMENCLATURA E GEOMETRIA DAS FERRAMENTAS DE CORTE

Capacidade de Carga Geotécnica de Fundações

Faculdade Novos Horizontes. Mecânica dos Solos 1 Curso de Engenharia Civil CAPÍTULO 1. Introdução à Mecânica dos Solos Histórico

2 Tipos de Escorregamentos em Maciços Rochosos

4 Estabilidade de Taludes em Barragens de Terra 4.1. Introdução

5 Análise de estabilidade dos taludes de escavação

LISTA DE EXERCÍCIOS ÁREA 1. Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02

Notas de aulas de Mecânica dos Solos II (parte 8)

Estabilidade de Taludes

FUNDAMENTOS DE GEOLOGIA. Movimentos de Massa. Definição Fatores Influentes Tipos de Movimento de Massa Medidas Mitigadoras

ESTUDO DA CURVA CARACTERÍSTICA DE SOLOS COMPACTADOS

Curso de Dimensionamento de Estruturas de Aço Ligações em Aço EAD - CBCA. Módulo

4 Modelagem Numérica. 4.1 Método das Diferenças Finitas

MUROS DE ARRIMO. Tipos Drenagem Estabilidade Dimensionamento

4 Validação do uso do programa ABAQUS

5. Análise dos deslocamentos verticais

Transcrição:

5 Análises de estabilidade 5.1. Introdução Nos taludes de mineração a céu aberto é importante considerar não apenas a estabilidade em relação à vida útil da mina, mas também durante o processo de escavação, que devem ser garantidas para evitar acidentes que comprometam a saúde dos trabalhadores, prejuízos ao meio ambiente e riscos financeiros à atividade econômica. Na mineração Pampa de Pongo a escavação é feita por meio de desmonte a fogo, mas nesta pesquisa as forças dinâmicas decorrentes das cargas explosivas não serão consideradas. A quantificação da estabilidade de um talude é dada por um índice denominado fator de segurança (FS) que relaciona a resistência ao cisalhamento, ao longo de uma potencial superfície de colapso, com as tensões cisalhantes atuantes geradas, neste caso específico de mineração, pelo peso das rochas e correspondentes variações causadas pelo processo de escavação. A Associação Brasileira de Normas Técnicas, pela norma NBR 11682/91 Estabilidade de Taludes, apresenta os valores mínimos de fatores de segurança listados na Tabela 5.1 em função do potencial de risco contra danos materiais, ambientais e perda de vidas humanas. As análises de estabilidade foram feitas para as fases de escavação 4 (144m), 6 (216m), 8 (288m), 10 (360m), 12 (432m), 14 (504m), 16 (576m), 18 (648m), 20 (720m), 22 (792m), 24 (864m) e 26 (936m) empregando os métodos de equilíbrio limite (método das fatias) e dos elementos finitos considerando o critério de ruptura de Mohr-Coulomb para as litologias do maciço rochoso envolvidas nas análises.

105 Tabela 5.1 - Fatores de segurança mínimos para estabilidade de taludes (ABNT NBR 11682/91) Nível de segurança contra perda de vidas humanas Alto Médio Baixo Nível de segurança contra danos materiais e ambientais Alto 1,5 1,5 1,4 Médio 1,5 1,4 1,3 Baixo 1,4 1,3 1,2 Nota 1: No caso de grande variabilidade dos resultados de ensaios geotécnicos, os fatores de segurança da tabela acima devem ser majorados em 10%. Alternativamente, pode ser usado o enfoque semi-probabilístico indicado no Anexo D da referida norma. Nota 2: No caso de estabilidade de lascas/blocos rochosos, podem ser utilizados fatores de segurança parciais, incidindo sobre os parâmetros ɣ, c e ϕ, em função das incertezas sobre estes parâmetros. O método de cálculo deve ainda considerar um fator de segurança mínimo de 1.1. Este caso deve ser justificado pelo engenheiro civil geotécnico. Nota 3: Esta tabela não se aplica aos casos de rastejo, voçorocas, ravinas e queda ou rolamento de blocos. 5.2. Método de equilíbrio limite: resistência ao cisalhamento direcional O critério tradicional de resistência de Hoek e Brown assume o maciço rochoso como um meio isotrópico formado por grupo de blocos de rocha intacta separado por descontinuidades sem direções preferenciais. No entanto é possível definir um conceito de resistência direcional para maciços rochosos fraturados (Read & Stacey, 2009) nas análises de estabilidade por método de equilíbrio limite: inicialmente admite-se o maciço rochoso isotrópico e com base no critério generalizado de Hoek & Brown (2002) são determinados os parâmetros de resistência isotrópicos equivalentes (Figura 5.1); se não houver famílias de descontinuidades que mergulhem em direção subparalela ao talude, a resistência ao cisalhamento do maciço rochoso pode ser considerada igual ao valor determinado na condição anterior de isotropia; se existir uma ou mais famílias de descontinuidades mergulhando subparalelamente à face do talude, então a resistência ao cisalhamento nesta direção é assumida como a resistência ao cisalhamento das descontinuidades e na direção normal como a resistência ao cisalhamento isotrópica equivalente,

106 O conceito de resistência direcional busca estabelecer zonas de fraqueza com espessuras equivalentes às descontinuidades, seguidas de zonas de transição onde a resistência do maciço depende das propriedades da descontinuidade e da rocha intacta adjacente. Figura 5.1 - Efeitos de descontinuidades paralelas ao talude na resistência ao cisalhamento do maciço rochoso - a magnitude da resistência direcional para uma orientação é proporcional à distância radial da origem até a curva vermelha (adaptado de Read & Stacey, 2009). A resistência ao cisalhamento de descontinuidades pode ser estimada de acordo com o seguinte procedimento sugerido por Read & Stacey (2009): (a) se as descontinuidades são persistentes e contínuas no talude, as propriedades de resistência ao cisalhamento podem ser determinadas pelo critério de Patton (Patton, 1966), critério Barton-Bandis (Barton 1973, 1976; Barton et al,1990) ou ensaios de laboratório; (b) se as descontinuidades são não persistentes, com as descontinuidades interrompidas por ligações ou pontes de rocha (Figura 5.2) a resistência ao cisalhamento aumenta de forma considerável. No presente trabalho as descontinuidades são admitidas como persistentes. Para uma discussão mais detalhada de descontinuidades não persistentes o leitor deve consultar, por exemplo, Jennings (1970), Einsteis et al. (1983) ou Wittke (1990). Uma vez que a resistência ao cisalhamento de descontinuidades tenha sido identificada como persistente, a resistência direcional do maciço rochoso pode ser determinada da seguinte maneira:

107 Figura 5.2 - Descontinuidades persistentes e não persistentes, as últimas com plano de fraqueza interrompido por pontes de rocha (adaptado de Wittke, 1990). a) para cada conjunto de descontinuidades subparalelas à face do talude se considera a existência de uma zona frágil adjacente à falha, com abertura angular a ± a (Figura 5.3) onde a é o ângulo de inclinação aparente da falha e a a semiabertura angular desde a ponta da fratura, geralmente assumida como ±5 na ausência de informações coletadas em campo. O ângulo de inclinação aparente pode ser determinado com auxílio de programas computacionais, como o DIPS da RocScience, para análises e visualizações de estruturas geológicas. Figura 5.3 - Definição do ângulo de mergulho provável e da zona de descontinuidade equivalente (adaptado de Read & Stacey, 2009).

108 b) algumas descontinuidades, como falhas secundárias, podem apresentar uma zona de alteração vizinha, chamada zona de transição, onde a resistência ao cisalhamento é inferior à da rocha intacta (Figura 5.4 e Figura 5.5). Nesta zona de transição se admite que os parâmetros de resistência de Mohr-Coulomb possam ser estimados por 1 (5.1) tan tan 1 tan (5.2) onde e são a coesão e o ângulo de atrito da zona de transição, respectivamente, c e os valores de coesão e ângulo de atrito das pontes de rocha, se existentes, e a coesão e ângulo de atrito da falha j. O coeficiente de transição varia de 0 a 1 dependendo das características da zona de transição. A zona de transição deve ser identificada considerando a espessura da zona de alteração junto à descontinuidade observada em campo, mas na ausência destas informações é tipicamente considerado um valor de ±10, além da zona frágil, para delimitar a zona de transição (Figura 5.4 e Figura 5.5). No presente trabalho, as propriedades de resistência direcional nas várias litologias da mineração Pampa de Pongo estão listadas na tabela 5.1, com os parâmetros do critério de Mohr-Coulomb calculados com as Eqs. 5.1 e 5.2. Em virtude de não haver informações sobre espessuras das zonas de alteração junto às falhas, foram admitidas espessuras uniformes de 2m, 3m e 4m, na zona de transição sucessivamente, em cada lado das descontinuidades, com o objetivo de verificar a influência das mesmas nos resultados de estabilidade de taludes por método de equilíbrio limite. Os valores de ângulos de semiabertura descrito na Figura 5.3 (tipicamente ±5 ) não foram utilizados em virtude do grande comprimento das falhas produzirem espessuras irrealistas. Constatou-se, após várias verificações numéricas, que o fator de segurança não foi significativamente influenciado pelas espessuras acima, e para as análises de estabilidade apresentadas a seguir pelo método de equilíbrio limite foi admitido uma espessura constante da zona de alteração em ambos os lados das falhas de 4 m e 2 m de espessura para zona da falha.

109 Figura 5.4 - Definição de uma zona de transição (adaptado de Read & Stacey, 2009). Figura 5.5 - Definição da resistência direcional de um maciço rochoso que contem dois conjuntos de descontinuidades. As descontinuidades do conjunto 1 são não persistentes e incluem pontes de rochas (maior resistência) enquanto que as descontinuidades do conjunto 2 são persistentes e apresentam uma zona de alteração (adaptado de Read & Stacey, 2009).

110 Tabela 5.2 - Propriedades de Resistência Direcionar ao Cisalhamento da seção 1-1. Zona de transição Descontinuidade Unidade Coesão (KPa) Ângulo de atrito ( ) VI B VIA III B III A II VI B VIA II B III A II C (KPa) Φ ( ) Brecha - - 2040 2540 - - - 31,6 31,6-80 28 Calcário e Dolomita - - 290 724 1256 - - 31,8 29 28,2 80 28 Metavulcânico - 502,5 2117,5 - - - 27,6 26,0 - - 80 28 Intrusivo - - 2165 - - - - 25,5 29,7-80 28 Siltito e Arenito - 465 - - - - 30,0 - - 80 28 Andesito - 2367 936 763,5 - - 26,5 38,5 45,8 80 28 Vulcânico 740 1802,5 571,5 3677,5 3677,5 27,01 23,65 35,86 30,7-80 28

111 5.3. Fatores de segurança As Figuras 5.6 e 5.7 mostram as potenciais superfícies de colapso para a última etapa de escavação do talude na seção 1-1 (fase 24 correspondente à profundidade de 869m), obtidas por método de equilíbrio limite (método de Morgentern-Price com programa computacional Slide da RocScience) e método dos elementos finitos (programas Phase2, Plaxis 2D, Plaxis 3D), com os respectivos valores dos coeficientes de segurança, na condição de ausência e de existência de continuidades no maciço rochoso. As formas da superfície de colapso determinadas nas diferentes análises são bastante semelhantes entre si, passando preferencialmente ao longo de descontinuidades nos casos em que a existência destas é admitida (Figura 5.7). Observa-se também que as potenciais superfícies de ruptura não passam pelo pé do talude. Os valores dos fatores de segurança variam no intervalo entre 1,26 a 1,32 (sem descontinuidades) decaindo para o intervalo entre 1,12 a 1,23 (com descontinuidades). Os valores de FS computados em análises 2D para as diversas fases de escavação na seção 1-1 estão listados na Tabela 5.2. De acordo com os valores estabelecidos pela NBR 11682/91 (Tabela 5.1) o fator de segurança para as análises com descontinuidades no maciço rochoso, na última (e atual) etapa de escavação, é preocupante pelo fato de ser inferior ao valor mais baixo recomendado. As Figuras 5.8 e 5.9 apresentam a variação do fator de segurança nas quatro seções avaliadas (1-1, 2-2, 3-3 e 4-4) observando-se valores pouco inferiores para o caso de existência de descontinuidades. Os cálculos executados com os diferentes programas computacionais para análises 2D e 3D mostram mesmas tendências de variação do fator de segurança com a profundidade e pouca dispersão dos resultados obtidos. De maneira geral, os valores determinados pelo método dos elementos finitos são ligeiramente superiores nas análises 3D, como esperado, o que justifica que a maioria das análises de estabilidade de taludes em problemas geotécnicos seja feita com a hipótese mais conservadora de estado plano de deformação. As Figuras 5.10 a 5.13 ilustram a influência das descontinuidades do maciço rochoso na variação dos valores do fator de segurança com a profundidade de escavação.

112 Na última etapa de escavação os decréscimos relativos máximos nos fatores de segurança foram de 9,6% (seção 1-1), 6,1% (seção 2-2), 6.9% (seção 3-3) e 3.3% (seção 4-4). Tabela 5.3 Fatores de segurança ao longo da profundidade de escavação da seção 1-1. Descrição Fase Profundidade (m) Fator de segurança Phase2 Plaxis 2D Slide Plaxis 3D Seção 1-1 Sem descontinuidades Com descontinuidades Fase 04 113 4,48 4,31 4,60 4,83 Fase 06 185 2,70 2,60 3,02 2,85 Fase 08 256 2,15 2,14 2,14 2,26 Fase 10 329 1,90 1,93 1,87 2,01 Fase 12 401 1,73 1,72 1,69 1,86 Fase 14 473 1,72 1,67 1,67 1,75 Fase 16 545 1,60 1,60 1,58 1,66 Fase 18 617 1,53 1,47 1,50 1,49 Fase 20 689 136 1,33 1,39 1,39 Fase 22 761 1,26 1,25 1,32 1,30 Fase 24 869 1,26 1,24 1,32 1,28 Fase 04 113 4,21 4,21 4,58 4,41 Fase 06 185 2,59 2,56 3,02 2,69 Fase 08 256 1,90 1,95 2,14 2,08 Fase 10 329 1,80 1,76 1,86 1,86 Fase 12 401 1,64 1,61 1,68 1,72 Fase 14 473 1,60 1,56 1,63 1,66 Fase 16 545 1,53 1,50 1,47 1,57 Fase 18 617 1,37 1,36 1,37 1,43 Fase 20 689 1,25 1,23 1,25 1,31 Fase 22 761 1,17 1,15 1,20 1,26 Fase 24 869 1,17 1,12 1,19 1,23

113 Figura 5.6 Superfície aproximada de ruptura sem presença de descontinuidades (deslocamentos totais). a) Slide, b) Phase2, c) Plaxis 2D e d) Plaxis 3D.

114 Figura 5.7 Superfície aproximada de ruptura com presença de descontinuidades (deslocamentos totais). a) Slide, b) Phase2, c) Plaxis 2D e d) Plaxis 3D.

Figura 5.8 - Variação dos fatores de segurança com a profundidade nas seções 1-1 (topo) e 2-2 (base). 115

Figura 5.9 - Variação dos fatores de segurança com a profundidade nas seções 3-3 (topo) e 4-4 (base). 116

Figura 5.10 - Influência das descontinuidades no fator de segurança da seção 1-1. 117

118 Figura 5.11 - Influência das descontinuidades no fator de segurança da seção 2-2.

119 Figura 5.12 - Influência das descontinuidades no fator de segurança da seção 3-3.

120 Figura 5.13 - Influência das descontinuidades no fator de segurança da seção 3-3.