Questão 1 NOTE E ADOTE: Resposta. c) O intervalo de tempo t 2, em s, entre o instante



Documentos relacionados
Considerando essas informações, estime: a) O intervalo de tempo t 1

Especial Universidades FUVEST ( )

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

Questão 1. Questão 2. Resposta

GABARITO DO SIMULADO DISCURSIVO

FÍSICA. Questões de 01 a 04

Física FUVEST ETAPA. ε = 26 cm, e são de um mesmo material, Resposta QUESTÃO 1 QUESTÃO 2. c) Da definição de potência, vem:

18 a QUESTÃO Valor: 0,25

Fuvest ª fase FÍSICA

=30m/s, de modo que a = =3m/s2. = g sen(30 o ), e substituindo os valores, tem-se. = v B

Questão 57. Questão 58. alternativa D. alternativa C. seu mostrador deverá indicar, para esse mesmo objeto, o valor de

Tânia observa um lápis com o auxílio de uma lente, como representado nesta figura:

= R. Sendo m = 3, kg, V = 3, m/s e R = 0,45m, calcula-se a intensidade da força magnética. 3, (3, ) 2 = (N) 0,45

Questão 1. Questão 2. Resposta. Resposta

FISICA. Justificativa: Taxa = 1,34 kw/m 2 Energia em uma hora = (1,34 kw/m 2 ).(600x10 4 m 2 ).(1 h) ~ 10 7 kw. v B. v A.

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo.

Questão 57. Questão 58. Questão 59. alternativa C. alternativa C

IME º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de?

ATENÇÃO ESTE CADERNO CONTÉM 10 (DEZ) QUESTÕES E RESPECTIVOS ESPAÇOS PARA RESPOSTAS. DURAÇÃO DA PROVA: 3 (TRÊS) HORAS

FUVEST a Fase - Física - 06/01/2000 ATENÇÃO

Questão 46. Questão 47. Questão 48. alternativa E. alternativa C

FÍSICA - Grupos H e I - GABARITO

-----> V = 73,3V. Portanto: V2 = 73,3V e V1 = 146,6V, com isso somente L1 brilhará acima do normal e provavelmente queimará.

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

γ = 5,0m/s 2 2) Cálculo da distância percorrida para a velocidade escalar reduzir-se de 30m/s para 10m/s. V 2 2

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

a) os módulos das velocidades angulares ωr NOTE E ADOTE

1 Analise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra.

a) Estime o intervalo de tempo t 1 , em segundos, que a bola levou para ir do ponto A ao ponto B. b) Estime o intervalo de tempo t 2

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo

P R O V A DE FÍSICA II

Questão 1. Questão 2. Resposta

Física Aplicada PROF.: MIRANDA. 2ª Lista de Exercícios DINÂMICA. Física

física EXAME DISCURSIVO 2ª fase 30/11/2014

Resolução O período de oscilação do sistema proposto é dado por: m T = 2π k Sendo m = 250 g = 0,25 kg e k = 100 N/m, vem:

E irr = P irr T. F = m p a, F = ee, = C N. C kg = m/s 2.

( ) ( ) ( ( ) ( )) ( )

1 m 2. Substituindo os valores numéricos dados para a análise do movimento do centro de massa, vem: Resposta: D. V = ,2 V = 8 m/s

Capítulo 4 Trabalho e Energia

FÍSICA - 1 o ANO MÓDULO 11 EQUILÍBRIO: DO PONTO MATERIAL E CORPO EXTENSO REVISÃO

UNIGRANRIO 2) (UNIGRANRIO) O sistema abaixo encontra-se em equilíbrio sobre ação de três forças

Questão 37. Questão 38. alternativa B. alternativa E

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P p = = (N/m 2 ) A 0,20.

Hoje estou elétrico!

= + + = = + = = + 0 AB

Resolução Comentada CEFET/MG - 2 semestre 2014

RESOLUÇÕES DA PROVA DE FÍSICA UFC PROFESSOR Célio Normando

9) (UFMG/Adap.) Nesta figura, está representado um bloco de peso 20 N sendo pressionado contra a parede por uma força F.

1 a QUESTÃO: (1,5 ponto) Avaliador Revisor

1 a QUESTÃO: (2,0 pontos) Avaliador Revisor

s t 2) V m s = V m . t = (km) s 7, km

Questão 46. o diagrama horário da velocidade escalar, cuja ilustração correta para esse movimento. a) d)

Seu pé direito nas melhores Faculdades FUVEST 23/11/2008

(Desconsidere a massa do fio). SISTEMAS DE BLOCOS E FIOS PROF. BIGA. a) 275. b) 285. c) 295. d) 305. e) 315.

Pelo princípio da independência dos movimentos, na horizontal, temos: V. = 0, o corpo se comporta como em queda livre, por isso: F g.

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx

Questão 37. Questão 39. Questão 38. alternativa D. alternativa D

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida.

Universidade Federal do Ceará 2ª ETAPA PROVA ESPECÍFICA DE FÍSICA PROVA ESPECÍFICA DE FÍSICA. Data: Duração: 04 horas CORRETOR 1

Física. Resolução. Q uestão 01 - A

LISTA EXTRA MRU e MRUV - 2ª SÉRIE

Questão 57. Questão 59. Questão 58. alternativa D. alternativa C

UFMG º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

LISTA UERJ 2014 LEIS DE NEWTON

Estrategia de resolução de problemas

Código: FISAP Disciplina: Física Aplicada Preceptores: Marisa Sayuri e Rodrigo Godoi Semana: 05/11/ /11/2015

FÍSICA CADERNO DE QUESTÕES

Um carro está andando ao longo de uma estrada reta e plana. Sua posição em função do tempo está representada neste gráfico:

Questão 48. Questão 46. Questão 47. alternativa A. alternativa D. alternativa A

Problemas de eletricidade

QUESTÃO 01. a) Qual a temperatura do forno? b) Qual a variação de energia interna do bloco do latão. QUESTÃO 02

Mecânica 2007/ ª Série

Lista de Eletrostática da UFPE e UPE

Exemplos de aplicação das leis de Newton e Conservação do Momento Linear

FÍSICA. Sempre que for necessário, utilize g= 10m/s 2

Lista 2 Espelhos Planos Construções Extensivo Noite

Questão 1. Resposta. b) Estime o intervalo de tempo t 2, em segundos, que a bola levou para ir do ponto A ao ponto B.

Provas Comentadas OBF/2011

A figura a seguir representa um atleta durante um salto com vara, em três instantes distintos

DATA: 17/12/2015 VALOR: 20,0 NOTA: NOME COMPLETO:

Professores: Gilberto / Gustavo / Luciano / Maragato CURSO DOMÍNIO. Comentário: Energia de Capacitor. Comentário: Questão sobre atrito

de energia anteriores representa a forma correta de energia.

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica.

Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ.

Física FUVEST. Física 001/001 FUVEST 2009 FUVEST 2009 Q.01. Leia atentamente as instruções abaixo Q.02

LENTES E ESPELHOS. O tipo e a posição da imagem de um objeto, formada por um espelho esférico de pequena abertura, é determinada pela equação

SOLUÇÃO: RESPOSTA (D) 17.

SÓ ABRA QUANDO AUTORIZADO.

b) Calcule as temperaturas em Kelvin equivalentes às temperaturas de 5,0 ºC e 17,0 ºC.

FÍSICA PRIMEIRA ETAPA

Questão 1. Resposta. um dos blocos, em função do tempo, após o choque, identificando por A e B cada uma das curvas.

1) d = V t. d = 60. (km) = 4km 60 2) Movimento relativo: s V rel = t = (h) = h = 12min

1. Nesta figura, está representada, de forma esquemática, a órbita de um cometa em torno do Sol:

Estudaremos aqui como essa transformação pode ser entendida a partir do teorema do trabalho-energia.

e R 2 , salta no ar, atingindo sua altura máxima no ponto médio entre A e B, antes de alcançar a rampa R 2

Resumo de Física 2C13 Professor Thiago Alvarenga Ramos

Lista de Revisão Óptica na UECE e na Unifor Professor Vasco Vasconcelos

FÍSICA 3ª Série LISTA DE EXERCÍCIOS/ELETROSTÁTICA Data: 20/03/07

UFJF CONCURSO VESTIBULAR 2012 GABARITO DA PROVA DE FÍSICA

Transcrição:

aceleração da gravidade na Terra, g = 10m/s densidade da água a qualquer temperatura, ρ= 1000 kg/m = 1,0 3 3 g/cm velocidade da luz no vácuo = 3,0 x 10 8 m/s o calor específico da água 4J/( C g) 1 caloria 4 joules 3 1 litro = 1000 cm = 1000 ml a) O intervalo de tempo t 1, em s, entre o instante do início do salto e o instante em que o centro de massa da atleta atingiu sua altura máxima. b) A velocidade horizontal média,v H,emm/s, da atleta durante o salto. c) O intervalo de tempo t, em s, entre o instante em que a atleta atingiu sua altura máxima e o instante final do salto. Desconsidere os efeitos da resistência do ar. Questão 1 O salto que conferiu a medalha de ouro a uma atleta brasileira, na Olimpíada de 008, está representado no esquema a seguir, reconstruído a partir de fotografias múltiplas. Nessa representação, está indicada, também, em linha tracejada, a trajetória do centro de massa da atleta (CM). Utilizando a escala estabelecida pelo comprimento do salto, de 7,04 m, é possível estimar que o centro de massa da atleta atingiu uma altura máxima de 1,5 m (acima de sua altura inicial), e que isso ocorreu a uma distância de 3,0 m, na horizontal, a partir do início do salto, como indicado na figura. Considerando essas informações, estime: a) O salto pode ser estudado como um lançamento oblíquo. Na vertical, a atleta realizou um MUV. Do início do salto até a altura máxima do CM vem: gt1 10t1 h = 1,5 = t1 = 0,50 s b) Para esse mesmo intervalo de tempo, a atleta se desloca 3 m na horizontal com MU. Assim, temos: Δx 3 VH = = VH = 6,0 m/s t1 0,5 c) Como o movimento possui simetria, o tempo t1 = 0,5 s que o CM gastou para subir 1,5 m e se deslocar 3 m na horizontal é o mesmo que gasta para descer 1,5 m e se deslocar mais 3 m na horizontal. Assim, precisamos calcular o tempo gasto para a atleta percorrer Δx = 7,04 6 = 1,04 m que faltam. Do MU vem: Δx = VH t 1,04 = 6 t t = 0,17s Assim, o tempo t entre o instante em que a atleta atingiu sua altura máxima e o instante final do salto é dado por: t = 0,5 + 0,17 t = 0,67 s

física 3 Questão Para testar a elasticidade de uma bola de basquete, ela é solta, a partir de uma altura H 0, em um equipamento no qual seu movimento é monitorado por um sensor. Esse equipamento registra a altura do centro de massa da bola, a cada instante, acompanhando seus sucessivos choques com o chão. A partir da análise dos registros, é possível, então, estimar a elasticidade da bola, caracterizada pelo coeficiente de restituição C R. O gráfico apresenta os registros de alturas, em função do tempo, para uma bola de massa M = 0,60 kg, quando ela é solta e inicia o movimento com seu centro de massa a uma altura H 0 = 1,6 m, chocando-se sucessivas vezes com o chão. b) Represente, no Gráfico II da folha de respostas, a energia mecânica total da bola, E T, em joules, em função do tempo, indicando os valores na escala. c) Estime o coeficiente de restituição C R dessa bola, utilizando a definição apresentada abaixo. O coeficiente de restituição, C R = V R/VI, é a razão entre a velocidade com que a bola é rebatida pelo chão (V R ) e a velocidade com que atinge o chão (V I ), em cada choque. Esse coeficiente é aproximadamente constante nas várias colisões. Desconsidere a deformação da bola e a resistência do ar. A partir dessas informações: a) Represente, no Gráfico I da folha de respostas, a energia potencial da bola, E P,em joules, em função do tempo, indicando os valores na escala. a) Adotando-se a referência no centro de massa da bola quando ela está no chão, e sendo EP = MgH = 6H, para os pontos de altura máxima, temos: EP = 6H0 = 6 1,6 EP = 9,6 J E P = 6 H 0 = 6 0,4 E P =,4 J E P = 6H 0 = 6 0,1 E P = 0,6 J Logo o gráfico pedido é dado por:

física 4 b) Considerando-se a referência no centro de massa da bola quando ela está no chão, temos, pelo Princípio da Conservação da Energia Mecânica, que esta é constante entre os choques com valor igual à energia potencial nos pontos de altura máxima. Assim, o gráfico pedido é dado por: calculada de tal forma que a tensão na corda atenda às condições mínimas estabelecidas pela recomendação de segurança. Nessa situação: c) Como o coeficiente de restituição é aproximadamente o mesmo, para o primeiro choque (no instante t 1 ) a energia cinética com que a bola atinge o chão é EC = 9,6J, já que ela é solta do I repouso e toda a energia potencial é transformada em cinética. Analogamente, logo após o primeiro choque, temos: EC R =,4. Assim o coeficiente de restituição é dado por: VR C E R = c R VI C M,4 R = = EC V E 9,6 = C I M M a) Represente, no esquema da folha de respostas, a direção e o sentido das forças que agem sobre o acrobata, durante sua apresentação, identificando-as, por meio de um desenho em escala. CR = 0,50 Obs.: se tomarmos como plano horizontal de referência pontos diferentes, a energia terá valores diferentes. Questão 3 Um acrobata, de massa M A = 60 kg, quer realizar uma apresentação em que, segurando uma corda suspensa em um ponto Q fixo, pretende descrever um círculo de raio R = 4,9 m, de tal forma que a corda mantenha um ângulo de 45 o com a vertical. Visando garantir sua total segurança, há uma recomendação pela qual essa corda deva ser capaz de suportar uma tensão de, no mínimo, três vezes o valor da tensão a que é submetida durante a apresentação. Para testar a corda, com ela parada e na vertical, é pendurado em sua extremidade um bloco de massa M 0, b) Estime o tempo t A, em segundos, que o acrobata leva para dar uma volta completa em sua órbita circular. c) Estime o valor da massa M 0,emkg,que deve ser utilizada para realizar o teste de segurança. Força centrípeta FC = mv /R Adote π 3

física 5 a) Sendo P a força peso e F a força aplicada sob o acrobata pela corda, temos: Do triângulo de forças, temos: o Rcp MA ω R tg 45 = 1 = P MA g 1 = ω 4,9 ω = 10 1 0,7 rad/s Do MCU podemos calcular o período t A como a seguir: π 1 3 ω = = ta 0,7 ta ta = 4, s c) Nas condições de segurança, a tração na corda, na situação de teste (F ), deve ser igual a três vezes a tração na corda quando o acrobata se apresenta (F). Do equilíbrio na situação de teste, do triângulo de forças do item anterior e considerando o cos 45 0,7, temos: F = M0 g F = 3F MA g F = o cos 45 3MA g M0 g = o cos 45 b) Do esquema anterior, podemos montar a poligonal ao lado, na qual R cp é a resultante centrípeta sobre o acrobata. 3 60 M0 = M0 57 kg 0,7 = Questão 4 Na montagem de uma exposição, um decorador propôs a projeção, através de uma lente pendurada em um suporte fixo, da imagem de duas bandeirinhas luminosas, B 1 e B, sobre uma tela. Em sua primeira tentativa, no entanto, apenas a imagem de B 1 pôde ser vista na tela (primeira montagem). Para viabilizar, então, sua proposta, o decorador deslocou a lente para baixo, obtendo, assim, as imagens das duas bandeirinhas sobre a tela (segunda montagem). As bandeirinhas encontram-se reproduzidas na folha de respostas, assim como, em linhas tracejadas, a posição da lente e a imagem obtida na primeira montagem. Para visualizar as imagens que passam a ser observadas na segunda montagem, utilizando o esquema da folha de respostas:

física 6 a) Determine, a partir da imagem correspondente à primeira montagem (em linha tracejada), a posição do foco da lente, identificando-a na figura pela letra F. b) Construa a imagem completa que a bandeirinha B projeta sobre a tela, na segunda montagem, traçando as linhas de construção necessárias e indicando as imagens de C e D, por C e D, respectivamente. c) Construa a imagem completa que a bandeirinha B 1 projeta sobre a tela, na segunda montagem, traçando as linhas de construção necessárias e indicando as imagens de A e B, por A e B, respectivamente. a) Pela propriedade do foco imagem, aplicada à lente convergente, temos:

física 7 b) Pela propriedade do centro óptico, aplicada à lente convergente, temos: c) Pela propriedade do centro óptico, aplicada à lente convergente, vem:

física 8 Questão 5 Um grande cilindro, com ar inicialmente à pressão P 1 e temperatura ambiente (T 1 = 300 K), quando aquecido, pode provocar a elevação de uma plataforma A, que funciona como um pistão, até uma posição mais alta. Tal processo exemplifica a transformação de calor em trabalho, que ocorre nas máquinas térmicas, à pressão constante. Em uma dessas situações, o ar contido em um cilindro, cuja área da base S éiguala0,16m, sustenta uma plataforma de massa M A = 160 kg a uma altura H 1 = 4,0 m do chão (situação I). Ao ser aquecido, a partir da queima de um combustível, o ar passa a uma temperatura T,expandindo-se e empurrando a plataforma até uma nova altura H = 6,0 m (situação II). Para verificar em que medida esse é um processo eficiente, estime: a) Sabendo-se que F = P S, marcando as forças que atuam sobre a plataforma, vem: Do equilíbrio, temos: P1 S = MA g + P0 S 5 P1 0,16 = 160 10 + 1,00 10 0,16 5 P1 = 1,1 10 Pa b) Sendo a transformação isobárica, da Lei de Charles, vem: V1 V = S H T T 1 S H 4 6 1 = = T1 T 300 T V = S H T = 450 K a) A pressão P 1 do ar dentro do cilindro, em pascals, durante a operação. b) A temperatura T do ar no cilindro, em kelvins, na situação II. c) A eficiência do processo, indicada pela razão R =Δ E p/q, onde ΔE p é a variação da energia potencial da plataforma, quando ela se desloca da altura H 1 para a altura H,e Q, a quantidade de calor recebida pelo ar do cilindro durante o aquecimento. PV = nrt; Patmosférica = P0 5 = 1,00x10 Pa; 1Pa= 1 N/m Calor específico do ar a pressão constante Cp 3 1,0x10 J/(kg K) Densidade do ar a 300 K 1,1 kg/m 3 c) A eficiência R é dada por: ΔEp R = Q ΔEp = MA g ΔH Q = m C p(t T 1) m = d S H1 MA g ΔH R = d S H1 C p(t T 1) 160 10,0 R = 3 1,1 0,16 4,0 1,0 10 (450 300) R = 3% Questão 6 Em um grande tanque, uma haste vertical sobe e desce continuamente sobre a superfície da água, em um ponto P, com freqüência constante, gerando ondas, que são fotografadas em diferentes instantes. A partir dessas fotos, podem ser construídos esquemas,

física 9 onde se representam as cristas (regiões de máxima amplitude) das ondas, que correspondem a círculos concêntricos com centro em P. Dois desses esquemas estão apresentados a seguir, para um determinado instante t0 = 0 s e para outro instante posterior, t = s.aoincidiremnabordadotanque, essas ondas são refletidas, voltando a se propagar pelo tanque, podendo ser visualizadas através de suas cristas. Considerando tais esquemas: a) V = m/s b) f = Hz a) Estime a velocidade de propagação V, em m/s, das ondas produzidas na superfície da água do tanque. b) Estime a freqüência f, emhz,dasondas produzidas na superfície da água do tanque. c) Represente, na folha de respostas, as cristas das ondas que seriam visualizadas emumafotoobtidanoinstantet= 6,0 s, incluindo as ondas refletidas pela borda do tanque. Ondas, na superfície da água, refletidas por uma borda vertical e plana, propagam-se como se tivessem sua origem em uma imagem da fonte, de forma semelhante à luz refletida por um espelho. a) De acordo com as figuras dadas, a frente de onda percorre 1 quadrículo em Δt = s. Como 1 quadrículo corresponde a 0,6 m, temos: ΔS 0,6 V = = V = 0,3 m/s Δt b) Como a distância entre duas cristas sucessivas é λ=0,6 m, da equação fundamental da ondulatória, temos: V = λf 0,3 = 0,6 f f = 0,5 Hz c) Entre os instantes s e 6 s, a frente de onda percorreu uma distância D dada por: D D V = 0,3 = D = 1, m Δt 6 Logo, a partir do esquema representado em t = s, a frente de onda percorreu 1, m, que corresponde a dois quadrículos. Utilizando o conceito de fonte imagem (P ), podemos representar o seguinte esquema:

física 10 c) Se a esfera se desprender da haste, represente, no esquema da folha de respostas, a trajetória que ela iria percorrer, indicando-a pela letra T. Desconsidere efeitos de indução eletrostática. Questão 7 Um campo elétrico uniforme, de módulo E, criado entre duas grandes placas paralelas carregadas, P 1 e P, é utilizado para estimar a carga presente em pequenas esferas. As esferas são fixadas na extremidade de uma haste isolante, rígida e muito leve, que pode girar em torno do ponto O. Quando uma pequena esfera A, de massa M = 0,015 kg e carga Q, é fixada na haste, e sendo E igual a 500 kv/m, a esfera assume uma posição de equilíbrio, tal que a haste forma com a vertical um ângulo θ=45 o. Para essa situação: a) A força gravitacional P e a força elétrica F E são representadas na figura a seguir: a) Represente, no esquema da folha de respostas, a força gravitacional P e a força elétrica F E que atuam na esfera A, quando ela está em equilíbrio sob ação do campo elétrico. Determine os módulos dessas forças, em newtons. b) Estime a carga Q, emcoulombs,presente na esfera. Como o ângulo θ éde45 o, podemos concluir que FE = P. Assim, temos: FE = P = M g = 0,015 10 P = F E = 0,15 N b) O módulo da carga Q é dado por: 3 FE = Q E 0,15 = Q 500 10 Q = 3 10 7 C

Uma jovem, para aquecer uma certa quantidade de massa M de água, utiliza, inicialmente, um filamento enrolado, cuja resistência elétrica R 0 éiguala1ω, ligado a uma fonte de 10 V (situação I). Desejando aquecer a água em dois recipientes, coloca, em cada um, metade da massa total de água (M/), para que sejam aquecidos por resistênfísica 11 c) Se a esfera se desprender da haste, ela irá descrever um MRUV na direção da resultante R = FE + P. Assim, a trajetória pedida T é indicada como: Com o objetivo de criar novas partículas, a partir de colisões entre prótons, está sendo desenvolvido, no CERN (Centro Europeu de Pesquisas Nucleares), um grande acelerador (LHC). Nele, através de um conjunto de ímãs,feixesdeprótonssãomantidosemórbita circular, com velocidades muito próximas à velocidade c da luz no vácuo. Os feixes percorrem longos tubos, que juntos formam uma circunferência de 7 km de comprimento, onde é feito vácuo. Um desses feixes contém N = 3,0 10 14 prótons, distribuídos uniformemente ao longo dos tubos, e cada próton tem uma energia cinética E de 7,0 10 1 ev. Os prótons repassam inúmeras vezes por cada ponto de sua órbita, estabelecendo, dessa forma, uma corrente elétrica no interior dos tubos. Analisando a operação desse sistema, estime: a) A energia cinética total E c, em joules, do conjunto de prótons contidos no feixe. b) A velocidade V, em km/h, de um trem de 400 toneladas que teria uma energia cinética equivalente à energia do conjunto de prótons contidos no feixe. c) A corrente elétrica I, em ampères, que os prótons em movimento estabelecem no interior do tubo onde há vácuo. q = Carga elétrica de um próton = 16, 10 19 C c = 3,0 10 8 m/s 19 1 eletron-volt = 1eV = 1,6 10 J ATENÇÃO! Não utilize expressões envolvendo a massa do próton, pois, como os prótons estão a velocidades próximas à da luz, os resultados seriam incorretos. a) A energia cinética total E c é dada por: Ec = N E = 14 1 19 J = 3 10 7 10 e V 1,6 10 e V 8 Ec = 3,4 10 J Questão 8 b) A velocidade V do trem é obtida de: 3 m V 8 400 10 V Ec = 3,4 10 = V = 41 m/s V = 148 km/h c) Considerando a velocidade dos prótons aproximadamente igual a c = 3,0 10 m/s, para um in- 8 tervalo Δt =, passam N prótons por uma secção transversal do tubo. Assim, da definição de c intensidade média de corrente elétrica, vem: N q N q N q c i = = = Δt c 14 19 8 3 10 1,6 10 3 10 i = 3 7 10 i = 0,53 A Questão 9

física 1 cias R 1 e R, ligadas à mesma fonte (situação II). A jovem obtém essas duas resistências, cortando o filamento inicial em partes não iguais, pois deseja que R 1 aqueça a água com duas vezes mais potência que R.Paraanalisar essas situações: c) A potência total P é dada por: P = P1 + P U U U 10 10 P1 = P = + = + R1 R1 R 4 8 U P = R P = 5 400 W Assim, a razão pedida é obtida de: P P0 5 400 = P 1 00 P0 = 4,5 Questão 10 a) Estime a potência P 0, em watts, que é fornecida à massa total de água, na situação I. b) Determine os valores de R 1 e R,emohms, para que no recipiente onde está R 1 aágua receba duas vezes mais potência do que no recipiente onde está R, na situação II. c) Estime a razão P/P 0, que expressa quantas vezes mais potência é fornecida na situação II (P), ao conjunto dos dois recipientes, em relação à situação I (P 0 ). V = RI; P = VI a) A potência P 0 é dada por: P 0 = U 10 R = 0 1 P 0 = 1 00 W b) Como a tensão U é mantida, devemos ter: P1 = P U P1 = R1 U P = R U U = R = R1 R1 R Sendo R1 + R = R0, vem: R1 + R = 1 R1 + R1 = 1 R = R1 R = R1 R1 = 4 Ω R = 8 Ω Para estimar a intensidade de um campo magnético B 0, uniforme e horizontal, é utilizado um fio condutor rígido, dobrado com a forma e dimensões indicadas na figura, apoiado sobre suportes fixos, podendo girar livremente em torno do eixo OO. Esse arranjo funciona como uma balança para forças eletromagnéticas. O fio é ligado a um gerador, ajustado para que a corrente contínua fornecida seja sempre i =,0 A, sendo que duas pequenas chaves, A e C, quando acionadas, estabelecem diferentes percursos para a corrente. Inicialmente, com o gerador desligado, o fio permanece em equilíbrio na posição horizontal. Quando o gerador é ligado, com a chave A, aberta e C, fechada, é necessário pendurar uma pequena massa M 1 = 0,008 kg, no meio do segmento P 3 -P 4, para restabelecer o equilíbrio e manter o fio na posição horizontal. a) Determine a intensidade da força eletromagnética F 1, em newtons, que age sobre o

física 13 segmento P P 3 4 do fio, quando o gerador é ligado com a chave A, aberta e C, fechada. b) Estime a intensidade do campo magnético B 0, em teslas. c) Estime a massa M, em kg, necessária para equilibrar novamente o fio na horizontal, quando a chave A está fechada e C, aberta. Indique onde deve ser colocada essa massa, levando em conta que a massa M 1 foi retirada. F = ibl Desconsidere o campo magnético da Terra. As extremidades P 1, P, P3eP4 estão sempre no mesmo plano. a) Para o momento resultante ser nulo, a força eletromagnética F 1 deve ter o mesmo módulo do peso da pequena massa, já que os braços são iguais. Logo: F1 = P = M1 g = 0,008 10 F1 = 0,08 N b) O campo magnético B 0 é dado por: F1 = i B0 L 0,08 = B0 0, B0 = 0,T c) Na nova situação, há um novo momento criado pela força eletromagnética que atua no segmento P1 P. Como esse novo momento tem mesma intensidade e sentido do que o momento criado pela força F 1, para se manter o equilíbrio, basta que a massa M seja colocada no ponto médio do segmento P3 P4, com o dobro da intensidade de M 1, ou seja, M = 0,016 kg.

física 14 Física domínio de eletricidade Como no ano anterior, o exame deve ter assustado os candidatos mais pelos longos enunciados e esquemas complexos que pela dificuldade nas resoluções. Com domínio de eletricidade, a prova apresentou questões contextualizadas, de ótima qualidade, todas divididas em três itens com grau crescente de dificuldade.