ESTUDO DA INFLUÊNCIA DA POROSIDADE EM MATERIAIS CERÂMICOS

Documentos relacionados
exp E η = η 0 1. Num vidro, a deformação pode ocorrer por meio de um escoamento isotrópico viscoso se a temperatura

Disciplina : Metalurgia Física- MFI Professores: Guilherme Ourique Verran - Dr. Eng. Metalúrgica. Aula 03: Difusão Atômica.

Cerâmicos encontrados na natureza como a argila. Utilizado basicamente para peças de cerâmica tradicional.

CAPÍTULO VII POROSIDADE E DENSIDADE DE MATERIAIS CERÂMICOS

Processamento de materiais cerâmicos Preparo de massas cerâmicas

Necessária onde a sinterização no estado sólido não é possível (Si 3

Processamento de Cerâmicas I COLAGEM 20/6/17

2. Considerando a figura dada na questão 2, explique a principal dificuldade de conformação da sílica fundida em relação ao vidro de borosilicato.

ANÁLISE DAS PROPRIEDADES MECÂNICAS DE UM COMPÓSITO NATURAL DESENVOLVIDO COM FIBRA DE CARNAÚBA

A Operação de Prensagem: Considerações Técnicas e sua Aplicação Industrial. Parte IV: Extração da Peça e Resistência Mecânica a Verde

Engenharia e Ciência dos Materiais II. Prof. Vera Lúcia Arantes

Moagem Fina à Seco e Granulação vs. Moagem à Umido e Atomização na Preparação de Massas de Base Vermelha para Monoqueima Rápida de Pisos Vidrados

Física dos Materiais FMT0502 ( )

Centro Universitário da Fundação Educacional de Barretos. Princípio de Ciências dos Materiais Prof.: Luciano H. de Almeida

PROCESSAMENTO DE CERÂMICAS I. Aditivos: plastificantes, defloculantes, lubrificantes e agentes suspensores; Preparo de massas cerâmicas

ESTUDO DA INFLUÊNCIA DAS INCLUSÕES DE 3Y-ZrO 2 EM COMPÓSITOS CERÂMICOS DE ALUMINA-ZIRCÔNIA PARA APLICAÇÃO COMO FERRAMENTA CERÂMICA

ESTADOS EXCITADOS: fonões, electrões livres

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais MATERIAIS CERÂMICOS

Sinterização. Conceitos Gerais

Métodos Químicos para Fabricação de Materiais Nanoestruturado

2.2 PROCESSOS DE FABRICAÇÃO: CONFORMAÇÃO

CERÂMICAS As Cerâmicas compreendem todos os materiais inorgânicos, não-metálicos, obtidos geralmente após tratamento térmico em temperaturas elevadas.

DIFUSÃO. Conceitos Gerais

Análise do processo de transferência térmica na sinterização. Fornos utilizados para queima de produtos cerâmicos

Processos que ocorrem nos compactados cerâmicos durante o tratamento térmico a altas temperaturas são controlados por:

Universidade Estadual de Ponta Grossa PRÓ-REITORIA DE GRADUAÇÃO DIVISÃO DE ENSINO

Metalurgia do Pó. Introdução

peneira abertura Peneiramento Pó A Pó B # μm Intervalos % % #

Difusão Prof. C. Brunetti

MATERIAIS DE CONSTRUÇÂO MECÂNICA II M 307 TRABALHO PRÁTICO N.º 2. Estudo do processamento e evolução microestrutural de um vidro cerâmico

Sinterização 23/8/17

OTIMIZAÇÃO DA SUSPENSÃO PARA OBTENÇÃO DE CERÂMICAS POROSAS VIA GELCASTING

T v. T f. Temperatura. Figura Variação da viscosidade com a temperatura para materiais vítreos e cristalinos (CARAM, 2000).

16/10/2018. Ceras odontológicas. Núcleos metálicos fundidos. Copings metálicos próteses fixas. Material termoplástico

Processamento de Materiais Cerâmicos

Sinterização 31/8/16

UNIVERSIDADE SALGADO DE OLIVEIRA Campus RECIFE. Curso: Engenharia de Produção Disciplina: Materiais para Produção Industrial

Aula 6 Propriedades dos materiais

IMPERFEIÇÕES EM SÓLIDOS. Bento Gonçalves, 2014.

FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA DEPARTAMENTO DE ENGENHARIA MECÂNICA

Tratamento Térmico. Profa. Dra. Daniela Becker

PROCESSAMENTO DE LIGAS À BASE FERRO POR MOAGEM DE ALTA ENERGIA

Ciência dos Materiais II. Materiais Cerâmicos. Prof. Vera Lúcia Arantes

A Operação de Prensagem: Considerações Técnicas e sua Aplicação Industrial Parte I: O Preenchimento das Cavidades do Molde

Obtenção e propriedades de cerâmicas porosas pela técnica de incorporação de espuma

Influência da composição química na permeabilidade em massas de porcelanato esmaltado

Introdução à ciência e engenharia dos materiais e classificação dos materiais. Profa. Daniela Becker

Microestrutura Porosa do Porcelanato Polido Parte 2: Efeito do Tamanho de Partículas de Feldspato e Argila sobre o Manchamento

CONCEITOS. Prof. Roberto Monteiro de Barros Filho. Prof. Roberto Monteiro de Barros Filho

Conformação de pós. Aula 5 de PMT PMT 2412 em 2006 aula 5

PMT3100 Exercícios 2017

Visão Geral dos Tipos de Pó de Ferro

( * ) Engenheiro metalurgista. Diretor e sócio da Foundry Cursos e Orientação Ltda. e da Romanus Tecnologia e Representações Ltda.

TM373 Seleção de Materiais Metálicos

Aula 2 Propriedades Mecânicas de Cerâmicas

Microestrutura (Fases) Parte 2

ESTUDO DA VELOCIDADE DE CORROSÃO EM LIGAS DE Al-3%Cu E Al-5%Cu

CARACTERIZAÇÃO REOLÓGICA DE SOLUÇÃO DE POLIBUTENO + QUEROSENE

Sistema Ferro - Carbono

Disciplina: Projeto de Ferramentais I

Estrutura atômica e ligação interatômica. Profa. Daniela Becker

Introdução à Nanotecnologia

GABRIEL REIS FELIPE SOUZA LUIZ DOHOPIATI THALES PANKE DESENHOMECÂNICO FUNDIÇÃO E METALURGIA DO PÓ

APRESENTAÇÃO DA DISCIPLINA MCC1001 AULA 1

MATERIAIS PARA ENGENHARIA DE PETRÓLEO - EPET069 - Propriedades Mecânicas dos Materiais

DEFEITOS CRISTALINOS

MATERIAIS DE CONSTRUÇÃO MECÂNICA II (EM307) 2º Semestre 2005/06 9. NOVOS MATERIAIS CERÂMICOS

MATERIAIS DE CONSTRUÇÃO MECÂNICA II (EM307) 2º Semestre 2005/ Sinterização

SEM534 Processos de Fabricação Mecânica. Aula: Materiais e Vida da Ferramenta

2 - Considerações a respeito do projeto

SÍNTESE E CARACTERIZAÇÃO DE SÍLICAS MESOPOROSAS COM FERRO E COBALTO ASSOCIADOS

Universidade Estadual de Ponta Grossa Departamento de Engenharia de Materiais Disciplina: Ciência dos Materiais 1. Introdução à solidificação

Definição e Classificação dos Materiais

PROGRAMA DE DISCIPLINA

Ciência dos Materiais. Difusão. Fabiano Thomazi

Generalidades. Metal. Elemento químico, sólido, com estrutura cristalina e com as seguintes propriedades de interesse para a Engenharia

SMM SELEÇÃO DE MATERIAIS PARA PROJETO MECÂNICO Ref.: Materials Selection for Materials Design Michael F. Ashby

CERÂMICAS: definições e classificação

Difusão em Sólidos TM229 - DEMEC Prof Adriano Scheid

Fundamentos de Ciência e Engenharia de Materiais Prof. Dr. André Paulo Tschiptschin

Curso Superior em Tecnologia em Produção da Construção Civil. Materiais de Construção Civil. Prof. Marcos Alyssandro. Natal, 2013

MECÂNICA DOS SOLOS II COMPRESSIBILIDADE DOS SOLOS

Difusão. Fenômeno de transporte de material por movimento atômico. íons envolvidos.

COMPORTAMENTO MECÂNICO DOS MATERIAIS

Introdução a Ciência dos Materiais Diagramas de fases. Professora: Maria Ismenia Sodero

consiste em forçar a passagem de um bloco de metal através do orifício de uma matriz mediante a aplicação de pressões elevadas

Semicondutores são materiais cuja condutividade elétrica se situa entre os metais e os isolantes

Sempre que há a necessidade da construção de componentes específicos ou máquinas complexas sempre será necessário a utilização dos materiais.

Introdução aos Materiais Imperfeições em Sólidos Metais DEMEC TM229 Prof Adriano Scheid

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS PRÓ-REITORIA DE GRADUAÇÃO

Muitos materiais, quando em serviço, são submetidos a forças ou cargas É necessário conhecer as características do material e projetar o elemento

Dependendo da habilidade do material em deformar plasticamente antes da fratura, dois tipos de fratura pode ocorrer: Dúctil Frágil.

Ensaios Mecânicos dos Materiais

Engenharia e Ciência dos Materiais I SCMM 5757

Disciplina: Ciência dos Materiais. Prof. Alex Bernardi

Revestimentos Odontológicos

PROPRIEDADES MECÂNICAS DO COMPÓSITO ALUMINA-ZIRCÔNIA

Universidade Estadual de Ponta Grossa Departamento de Engenharia de Materiais Disciplina: Ciência dos Materiais 1. Introdução

Eixo Temático ET Educação Ambiental

A Operação de Prensagem: Considerações Técnicas e sua Aplicação Industrial. Parte V: Descrição da Etapa de Prensagem.

Transcrição:

ESTUDO DA INFLUÊNCIA DA POROSIDADE EM MATERIAIS CERÂMICOS M. H. de F. Fonseca 1, M. P. S. Barbosa 1, Z. T. Vilar 1, U. P. de Lucena Junior 1, C. J. de S. Lobo 2 Universidade Federal Rural do Semi-Árido Campus Mossoró 1, Universidade Federal do Ceará 2 Rua José de Sousa, 169, Alto de São Manoel, 59.625-150, Mossoró-RN, mariana_hellen@hotmail.com RESUMO O método de fabricação de materiais cerâmicos se caracteriza por produzir estruturas com porosidade. Muitos são os fatores que atuam no aumento ou diminuição do raio dos poros. Então, considerando o longo tempo de uso e o vasto campo de aplicação desses materiais, o objetivo deste trabalho é realizar uma análise aprofundada sobre a influência do processo de produção de cerâmicos na porosidade e consequentemente, da porosidade nas propriedades mecânicas bem como uma comparação entre os comportamentos considerados positivos e negativos das cerâmicas porosas, visto que existem solicitações de cerâmicas caracterizadas de ambas as formas, porosas e não porosas. Além disso, o possível controle do raio desses vazios é de grande relevância nas propriedades finais dos materiais cerâmicos. Esta será uma crítica teórica com caráter abrangente nesse ramo dos materiais mecânicos esperando-se como resultados maiores possibilidades de controle sobre a porosidade, além de uma maior ciência acerca de tal material. PALVRAS-CHAVE: cerâmicas, porosidade, propriedades mecânicas, processo produtivo. INTRODUÇÃO A porosidade é dada como a relação entre o volume ocupado pelo ar existente na massa granular e o volume total ocupado por esta massa. É certa a existência de poros quando se tem a união de partículas, muitas vezes até nanométricas, as 1341

quais se unem e se transformam sob a ação de pressão e calor, além de contar com o auxílio de água ou outro aglutinante a fim de formar uma massa pulverizada uniforme. Estes poros desempenham papel importante, sendo algumas vezes desejados e outras tendo que ser eliminados. A prensagem de pós, processo considerado análogo cerâmico à metalurgia do pó, tem como objetivo a fabricação de cerâmicas não porosas. Nesse processo, seguem as etapas de obtenção do pó, mistura, compactação, a qual acontece sob ação de pressão e calor, e por fim a etapa conhecida como sinterização, onde ocorre um aumento de temperatura em função de otimizar o que ocorreu na etapa anterior. Desde a compactação, é possível verificar vacâncias. É principalmente na sinterização que a porosidade é fechada, ou seja, o desaparecimento, mesmo que parcial, do poro ocorre à medida que acontece a substituição do espaço vazio pelo material, num processo de transporte de matéria por movimento atômico conhecido como difusão. As etapas de compactação e sinterização serão mais explanadas, uma vez que têm uma relação direta com a porosidade que se deseja analisar. De acordo com (6), a obtenção de cerâmicas porosas segue algumas rotas clássicas, podendo ser citadas: queima de partículas orgânicas, réplica e gelcasting de espumas cerâmicas. Além desses métodos, tem-se ainda a técnica de fabricação de aluminas porosas por coagulação e gelificação de uma espuma cerâmica, onde um agente espumante é adicionado na suspensão cerâmica e a mistura é intensamente agitada, promovendo incorporação de ar e, consequentemente, porosidade no material. A porosidade influencia diretamente nas propriedades finais da peça positiva ou negativamente, a depender da necessidade final. No caso de cerâmicas não porosas, as propriedades mecânicas definem o comportamento do material quando sujeitos à esforços mecânicos, uma vez que as mesmas estão relacionadas com a capacidade do material resistir ou transmitir esses esforços aplicados sem romper. Logo, há algumas formas de reduzir tais vazios e estas são relevantes no sentido de aumentar as propriedades mecânicas do produto final. (6) afirma que, considerando as cerâmicas porosas obtidas até o momento, pelas técnicas descritas, nota-se que o controle tanto da porosidade quanto da homogeneidade microestrutural, características que podem influenciar as propriedades finais do produto, ainda é limitado. Assim, o desenvolvimento de uma rota de processamento que permita controlar a porosidade e gere materiais com 1342

microestrutura homogênea, representa um avanço tecnológico significativo na produção de cerâmicas porosas. MATERIAIS E MÉTODOS O método de fabricação de materiais cerâmicos se caracteriza naturalmente por produzir estruturas com porosidade. Se isso for o desejado, o que se torna relevante é o controle do raio dos vazios, de sua quantidade, da proximidade entre eles, se são abertos ou fechados, entre outros. Entretanto, se a necessidade for cerâmicas não porosas, o que torna-se necessário é o cuidado no processo de fabricação das mesmas a fim de reduzir ao máximo os vazios. Como esta é uma análise teórico comparativa, tem-se que a crítica aqui apresentada refere-se a alguns experimentos tomados como base, e que associados aos conceitos relevantes do que ocorre nos processos de fabricação de cerâmicas porosas e não porosas, são uma forma acentuada de unir conhecimentos a cerca desse tipo de material. RESULTADOS E DISCUSSÕES Materiais cerâmicos As cerâmicas são compostos formados entre elementos metálicos e não metálicos; na maioria das vezes, são óxidos, nitretos e carbetos. Em relação ao comportamento mecânico, os materiais cerâmicos são relativamente rígidos e resistentes os valores de rigidez e resistência são comparáveis aos dos metais. Adicionalmente, as cerâmicas são tipicamente muito duras. (3) As cerâmicas são utilizadas em muitos componentes tecnológicos, como refratários, velas de ignição, dielétricos de capacitores, sensores, abrasivos, meios magnéticos de gravação etc. O ônibus espacial, por exemplo, emprega cerca de 25.000 pastilhas de cerâmica reutilizáveis, leves e muito porosas, que protegem a estrutura de alumínio contra o calor gerado durante a reentrada na atmosfera terrestre. Essas pastilhas são feitas de fibras de sílica pura e coloidal, revestidas com um vidro borossilicato. As cerâmicas também aparecem na natureza como óxidos e em materiais naturais; o corpo humano, por exemplo, tem uma incrível habilidade de produzir hidroxiapatita, que é uma cerâmica encontrada nos ossos e dentes. As cerâmicas são também usadas como revestimentos, assim, os vidrados são revestimentos aplicados em corpos cerâmicos; os esmaltes cerâmicos são revestimentos empregados em componentes metálicos. (2) Processo de fabricação de cerâmicas não porosas 1343

Quando a análise nos produtos cerâmicos é de natureza mecânica, o ideal é que se tente reduzir ao máximo a quantidade de poros. Logo, através do processo de prensagem de pós, o qual tem como etapas principais a compactação e a sinterização, é capaz de produzir cerâmicas com o mínimo de vazios, dependendo das condições de pressão e calor a que são submetidos os pós iniciais. Tipos distintos de átomos ou íons difundem-se (ou seja, movem-se) dentro do material, minimizando, assim, as diferenças locais de concentração. A difusão refere-se ao fluxo de átomos ou outras espécies químicas e depende do gradiente de concentração e da temperatura. (2) Segundo (3), para um átomo fazer esse movimento, duas condições devem ser atendidas: 1 - deve existir uma posição adjacente vazia e 2 - o átomo deve possuir energia suficiente para quebrar as ligações atômicas com seus átomos vizinhos e então causar alguma distorção da rede durante o seu deslocamento. Essa energia é de natureza vibracional. Em uma temperatura específica, uma pequena fração do número total de átomos é capaz de se mover por difusão, em virtude das magnitudes de suas energias vibracionais. Essa fração aumenta com o aumento da temperatura. A compactação é a operação de conformação baseada em comprimir um pó granulado (massa) contido no interior de uma matriz rígida ou de um molde flexível, através da aplicação de pressão. A compactação não pode ser tratada de maneira isolada, uma vez que sua realização e as características microestruturais da peça a verde resultante dependem das características microestruturais das matériasprimas, bem como das etapas do processo produtivo que precedem a operação de prensagem. (1) (4) afirma que a compactação é necessária para se colocar as partículas do pó tão próximas quanto possível, criando o maior número possível de contatos partícula-partícula para promover a difusão de matéria para estes contatos e assim, maximizar a taxa de densificação na etapa de sinterização. Pressões de compactação pequenas fazem com que o corpo cerâmico não atinja a densidade final prevista, sendo que pressões em excesso podem produzir defeitos na microestrutura, como falhas de empacotamento de partículas (regiões mais densas e regiões menos densas), como resultado da não homogeneidade na distribuição de tensões. 1344

A ligação de partículas de pó ocorre pela difusão do estado sólido. No decorrer desse estágio de densificação, os poros entre partículas adjacentes encolhem continuamente. Esse processo geral é conhecido como sinterização, e se refere a qualquer processo de formar uma massa densa pelo aquecimento, mas sem fusão. O mecanismo de encolhimento é a difusão dos átomos para fora do contorno de grão, em direção ao poro. Com efeito, o poro é preenchido pelo material da difusão. Infelizmente, o crescimento de grão pode começar muito antes que o encolhimento do poro termine. O resultado é que alguns poros são aprisionados dentro dos grãos. O caminho de difusão do contorno de grão até o poro é muito longo para permitir uma maior eliminação dos poros. (7) A sinterização possui três zonas de operação: o pré-aquecimento, onde a atmosfera oxidante facilita a retirada e a queima de um possível lubrificante que tenha sido adicionado à peça compactada; a sinterização (temperatura permanente), onde a atmosfera redutora reverte o processo de oxidação ocorrido no pré-aquecimento; e o resfriamento, onde a atmosfera neutra tem a função de evitar que a peça se oxide durante a etapa de sinterização e é também onde a microestrutura do material é formada. As zonas de operação da sinterização são ilustradas na Figura 1, enquanto a Figura 2 ilustra o processo de sinterização. (5) Figura 1 - Zonas de operação do processo de sinterização Fonte: Grupo Setorial de Metalurgia do Pó 1345

Figura 2 - Processo de Sinterização Fonte: Grupo Setorial de Metalurgia do Pó Processo de fabricação de cerâmicas porosas Quando se deseja produzir cerâmicas com poros, ou seja, quando as vacâncias vão influenciar direta e positivamente nas aplicações destas, existem processos como a queima de partículas orgânicas, réplica, gelcasting de espumas cerâmicas entre outros que garantem tal fato. Conforme (6), o primeiro método citado consiste na incorporação de produtos orgânicos nos corpos cerâmicos, os quais são removidos durante a queima, deixando poros cujo tamanho está associado com as partículas dos agentes orgânicos. A obtenção das cerâmicas pelo método de réplica consiste na impregnação de uma suspensão cerâmica numa esponja, geralmente de poliuretano, sendo que após a secagem essa espuma é removida por uma operação de queima, resultando num material com porosidade aberta e microestrutura semelhante à da esponja precursora. Já o gelcasting de espumas cerâmicas consiste basicamente na produção de uma suspensão cerâmica com monômeros vinílicos e divinílicos, consolidando o material. Entretanto, (6) utilizou em seus experimentos um método novo, simples e eficaz para a obtenção de cerâmicas com elevada porosidade e microestrutura homogênea. O método consiste nas etapas de obtenção da suspensão cerâmica, incorporação de espuma aquosa e adição de agente catalisador. Inicialmente, foi preparada uma suspensão aquosa de alumina. Citrato de amônia foi o dispersante 1346

utilizado e Aglutinato de Sódio foi adicionado para auxiliar na consolidação da cerâmica. Em seguida, a suspensão foi deixada em constante agitação por 15 min com objetivo de quebra de aglomerados. Paralelo a isso, uma espuma foi preparada para posterior incorporação na suspensão cerâmica. Na obtenção da espuma foi utilizada uma espuma aquosa com surfactante aniônico, óleos estabilizantes e biopolímero viscosificante. A solução de água e surfactante foi agitada com uma hélice, a fim de se incorporar a maior quantidade de ar possível. Em seguida, os agentes estabilizantes e o viscosificante foram adicionados. Então, uma espuma estável foi adicionada na suspensão cerâmica e em seguida, a suspensão foi homogeneizada. Foi ainda adicionada uma pequena quantidade de diacetato de alumínio hidratado misturado em água e foi deixado em agitação intensa por 10 s. A suspensão foi colocada no molde e foi deixada por cerca de 12 h exposta ao ar para promover a primeira etapa de secagem. Em seguida, o material foi exposto a uma secagem em 50º por 12 h, sendo então, realizada a queima com 2ºC/min até 1100ºC, 1300ºC e 1500ºC, permanecendo 2 h nessas temperaturas. A Figura 3 apresenta um fluxograma com as etapas do método para obtenção de cerâmicas porosas e microestruturalmente homogêneas. Figura 3 - Fluxograma de obtenção de cerâmicas porosas Fonte: Romano et al, 2006 1347

Caracterização do material controle do raio dos poros A porosidade aparente e total pode ser avaliada em corpo cerâmico, através das Equações A e B. (A) (B) considerando que PA = porosidade aparente, mu = massa úmida, ms = massa seca, mi = massa imersa, PT = porosidade total e ρrel = densidade relativa do fluido no qual o corpo cerâmico é imerso. Esse método é bastante comum no que diz respeito à porosidade de um corpo cerâmico. Tem-se que o controle do raio dos poros não é algo tão difundido ainda, entretanto a Equação C pode auxiliar na determinação do mesmo. (C) sendo D= diâmetro do poro, σs = tensão superficial do mercúrio, θ = ângulo de contato entre o mercúrio e a superfície sólida ( 130º) e p = pressão aplicada. Para essa análise é utilizada um porosímetro de mercúrio. Influência negativa da porosidade Os poros atuam como concentradores de tensão e são a principal causa dos defeitos dos produtos cerâmicos, uma vez que facilitam o início das trincas e com isso, uma possível fratura. A distribuição de tamanhos de poros e a porosidade total alteram as propriedades das cerâmicas. Os vazios atuam negativamente sobre a resistência à fratura. Os poros podem ou não estar em contato com a superfície do material, ou seja, com o exterior. Tal fato é relevante, uma vez que se existir esse contato, o poro pode conduzir material entre o exterior e o interior, como é o caso da umidade, que se transferida do exterior para o interior pode dissolver a fase sólida. Estes poros conectados com a superfície são os chamados poros abertos e são mais prejudiciais no que se refere à resistência mecânica do material, já que muitas fraturas têm origem em trincas superficiais, as quais podem ser poros. Já os poros que não se conectam com a superfície são chamados poros fechados, mesmo que estejam conectados entre si e estes muitas vezes existem sem que sejam percebidos. Os poros fechados podem existir devido ao fechamento dos poros abertos, ou por gases da fase sólida que não conseguiram sair da estrutura. 1348

A porosidade atua negativamente em diversas propriedades mecânicas como: módulo de elasticidade/cisalhamento/volumétrico; resistência à flexão, tenacidade à fratura, dureza entre outras. O comportamento gráfico quando se analisa corpos cerâmicos é muito semelhante em relação à essas propriedades, no qual é possível verificar um decréscimo da propriedade analisada à medida que aumenta a fração de poros do corpo. As Figuras 4 e 5 mostram tal comportamento. Figura 4 - Influência da porosidade sobre o módulo de elasticidade (E), módulo de cisalhamento (K) e módulo volumétrico (G) Fonte: Yoshimura et al (2005) Figura 5 - Influência da porosidade na resistência à flexão Fonte: Yoshimura et al (2005) 1349

Influência positiva da porosidade Considerando o método utilizado por (6) para obtenção de cerâmicas porosas, é possível analisar a relação da porosidade com a temperatura e com a variação da proporção de espuma na suspensão cerâmica. Com esses comportamentos gráficos, percebe-se qual a temperatura mais adequada para se obter uma maior fração volumétrica de poros (porosidade aparente e total), além da melhor proporção de espuma na suspensão cerâmica em relação às 3 temperaturas analisadas (1100, 1300 e 1500ºC). As Figuras 6 e 7 apresentam tais relações demonstradas através do experimento de (6). Figura 6 - Relação entre porosidades total e aparente e temperatura Fonte: Romano et al, 2006 Figura 7 - Relação da porosidade com a variação da proporção de espuma na suspensão Fonte: Romano et al, 2006 1350

(6) afirma que a porosidade do material antes da queima foi de 68,2% ± 0,2. Esse valor corresponde aos poros deixados somente pela incorporação da espuma e pelo empacotamento de partículas de alumina. Neste valor não está sendo considerado outras fontes geradoras de poros, uma vez que as amostras foram deixadas por 24 h sob temperatura de 110ºC, para evaporação de água e, nesta temperatura, o material orgânico ainda não se decompôs. Ao observar o comportamento gráfico, relata-se uma pequena diferença entre a porosidade do material verde e queimado a 1100ºC por 2 h. Tal fato pode ser justificado como sendo essa diferença o equivalente à queima do material orgânico incorporado ao material. Para a temperatura de 1500ºC verifica-se uma grande redução da porosidade, em função da densificação do material (semelhante ao que ocorre no processo de sinterização, quando é aumentada a temperatura de queima e os poros tendem a diminuir em quantidade). Como a adição da espuma na suspensão é uma das etapas na fabricação de cerâmicas porosas, entende-se por isso que o aumento da espuma na suspensão influencia diretamente no aumento do poros do corpo em questão. Com a Figura 7 percebe-se que a tendência de aumento da porosidade varia muito pouco em relação à temperatura de queima. Verifica-se ainda que a porosidade foi maior na temperatura de 1100ºC quando comparada com a temperatura de 1500ºC, quando o volume de espuma foi duas vezes maior que o volume de suspensão. CONCLUSÕES Os poros podem atuar positiva ou negativamente nos corpos cerâmicos. Logo, de acordo com a necessidade pode-se produzir cerâmicas de ambos os tipos. Entretanto, quando se fabrica peças cerâmicas não porosas tem-se a dificuldade de encontrar as melhores pressões e temperaturas a fim de que os vazios sejam substituídos ao máximo por material, fazendo seu volume diminuir e assim, afetar menos as propriedades mecânicas. Por outro lado, quando se necessita que as cerâmicas sejam porosas, deve-se então se atentar aos métodos adequados, os quais garantem tal fato. A temperatura de queima e a proporção de espuma na suspensão são dois parâmetros importantes a serem observados nesse caso. REFERÊNCIAS ALBARO, J. L. A. A operação de prensagem: Considerações técnicas e sua aplicação industrial Parte I: O preenchimento das cavidades do molde. Cerâmica Industrial, v. 5, n. 5, p. 23-27, set/out 2000. 1351

ASKELAND, Donald R.; PHULÉ, Pradeep P. Ciência e Engenharia dos Materiais. 1. ed. São Paulo: Cengage Learning, 2008. 594 p. CALLISTER, William Jr.; RETHWISCH, David G. Ciência e Engenharia dos Materiais: Uma introdução. 8. ed. Rio de Janeiro: LTC, 2013. 817 p. FONSECA, Solange Tamara da. Processamento e Caracterização de pós e de cerâmicas de alumina total e parcialmente nanoestruturadas. 2007. 89 fls. Dissertação (Mestrado em Engenharia e Tecnologia Espaciais/Ciência e Tecnologia de Materiais e Sensores) Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2007. GRUPO SETORIAL DE METALURGIA DO PÓ. A metalurgia do pó: alternativa econômica com menor impacto ambiental. 1. ed. São Paulo: Metallum Eventos Técnicos, 2009. 320 p. ROMANO, R. C. O.; PANDOLFELLI, V. C. Obtenção e propriedades de cerâmicas porosas pela técnica de incorporação de espuma. Cerâmica. v.52. n. 322. Apr/jun 2006. SHACKELFORD, James F. Ciência dos Materiais. 6. ed. São Paulo: Pearson Prentice Hall, 2008. 556 p. YOSHIMURA, H. N. et al. Efeito da porosidade nas propriedades mecânicas de uma alumina de elevada pureza. Cerâmica Industrial, São Paulo, v. 51, n. 319, jul/set 2005. 1352