Mitos, Lendas e Preconceitos sobre a Matemática (e não só) António Machiavelo Departamento de Matemática da Faculdade de Ciências do Porto Centro de Matemática da Universidade do Porto Associação Atractor V Encontro A Ciência por quem a faz e por quem a ensina Escola Secundária de Águas Santas Maia, 7 de Setembro de 2015
Equívoco #1: as pessoas que se dedicam à matemática são (essencialmente) diferentes das outras
Os matemáticos (de ambos os géneros)
Equívoco #2: uma capacidade genética
E os portugueses? 600 AEC 400 EC: período grego 600 1200: período árabe-hindu-persa 1300 1800: período europeu (algo circunscrito) (Itália, França, Inglaterra, Alemanha, Suiça) 1800 1900: período europeu (mais alargado) ( + Rússia, Noruega, Hungria, ) 1900 presente : globalização crescente Rómulo de Carvalho, História do Ensino em Portugal, Fund. Calouste Gulbenkian, 1986. André Weil, Souvenirs d Apprentissage, Springer, 1991.
O que é um génio? Cálculo da área sob uma hipérbole, com 55 casas decimais, obtida por adição de vários termos de uma série infinita (página de um manuscrito de 1665): Newton era um trabalhador a sério!
Um problema de programação Genes em comum com: Banana: 50% Mosca: 60% Rato: 75% Vaca: 80% Gato: 90% Chimpanzé: 98.8% Outro humano: 99.9%
O que é um génio? As dez mil horas K. A. Ericsson, R. Th. Krampe and C. Tesch-Romer (1993), The role of deliberate practice in the acquisition of expert performance, Psychological Review, vol. 100, No. 3, 363-406. Malcolm Gladwell, Outliers: the story of success, Little, Brown and Company, 2008. Eric Jaffe, Piecing together performance, APS Observer, September 2012. K. Anders Ericsson, The danger of delegating education to journalists: why the APS observer needs peer review when summarizing new scientific developments. Daniel Goleman, Focus: the hidden driver of excellence, Harper Collins, 2013. Horas de prática deliberada e totalmente concentrada; Detecção e correcção de erros por um perito; Motivação e determinação.
Equívoco #3,4,5,6: o problema com a Matemática é que é demasiado abstracta é só para alguns tem de ser simplificada e tornada divertida para os outros é uma representação apenas aproximada da realidade
Mas o que é a Matemática? A frase: «A matemática é ciência dos números» é tão absurda quanto: «A literatura é o estudo das letras do alfabeto» ou «A arquitectura é a arte de empilhar tijolos»
Três Problemas...
Um pedacinho de Matemática Este ponto tem grau 3 Um grafo Este ponto tem grau 4
O poder da abstracção Este ponto tem grau 3 Um grafo Este ponto tem grau 4 A soma dos graus dos pontos é igual ao dobro do número de linhas.
Consequências concretas... IMPOSSÍVEL!!! A soma dos graus dos pontos é igual ao dobro do número de linhas.
Equívoco #4,5,6,7: o problema com a Matemática é que é demasiado abstracta é só para alguns tem de ser simplificada e tornada divertida para os outros é uma representação apenas aproximada da realidade
Para evitar a propagação de mitos, lendas e preconceitos: 1. pesquisar a fundo 2. ir às fontes sempre que possível 3. questionar tudo e pensar muito bem 4. fazer mesmo 1, 2 e 3!!!
Évariste Galois (1811-1832) Proposta: fazer com que génio se torne sinónimo de trabalhador apaixonado.
PARA SABER MAIS Livros e Artigos Robert Bourgne, Jean-Pierre Azra, Écrits et mémoires mathématiques d'évariste Galois, Gauthier Villars, 1962. (reedição: Jacques Gabay, 1997) Rómulo de Carvalho, História do Ensino em Portugal, Fundação Calouste Gulbenkian, 1986. K. A. Ericsson, R. Th. Krampe, C. Tesch-Romer, The role of deliberate practice in the acquisition of expert performance, Psychological Review, vol. 100, no. 3 (1993), 363-406. J. Fauvel et al., Let Newton Be! A New Perspective on His Life and Works, Oxford University Press, 1988. A. Machiavelo, A Natureza dos Objectos Matemáticos, Gazeta de Matemática 161 (2010) 7 16. -------------, Pontos, Linhas e a Estrutura do Universo, Gazeta de Matemática 165 (2011) 26 27. -------------, On The Source of Mathematical Intuition, Kairos Revista de Filosofia & Ciência 6 (2013), 223 237. -------------, On the Importance of Useless Mathematics, in Ehrhard Behrends, Nuno Crato, José Francisco Rodrigues (eds.), Raising Public Awareness of Mathematics, Springer-Verlag, 2012, pp. 397 408. Alfréd Rényi, Dialogues on Mathematics, Holden-Day, 1967. André Weil, Souvenirs d Apprentissage, Birkhäuser, 1991.
FIM