1. Espectros, radiação e energia



Documentos relacionados
ESPECTRO ELETROMAGNÉTICO

Espectros, radiação e energia

Descobertas do electromagnetismo e a comunicação

Correção da ficha de trabalho N.º3

Título ONDULATÓRIA Extensivo Aula 29. Professor Edson Osni Ramos (Cebola) Disciplina. Física B

Adaptado de Professora: Miwa Yoshida.

EXERCÍCIOS ESTRUTURA ELETRONICA

Radiações electromagnéticas; os espectros Cláudia Costa

3.2. ORBITAIS E NÚMEROS QUÂNTICOS 3.3. CONFIGURAÇÕES ELETRÔNICAS. Aline Lamenha

O olho humano permite, com o ar limpo, perceber uma chama de vela em até 15 km e um objeto linear no mapa com dimensão de 0,2mm.

Fenómenos Ondulatórios. Reflexão, refracção, difracção

22/Abr/2015 Aula /Abr/2015 Aula 14

FUNDAMENTOS DE ONDAS, Prof. Emery Lins Curso Eng. Biomédica

Conteúdo Eletromagnetismo Aplicações das ondas eletromagnéticas

Efeito estufa: como acontece, por que acontece e como influencia o clima do nosso planeta

Unidade 1 Energia no quotidiano

Lista de Exercício de Química - N o 6

c) A corrente induzida na bobina imediatamente após a chave S ser fechada terá o mesmo sentido da corrente no circuito? Justifique sua resposta.

Marília Peres Adaptado de (Corrêa 2007)

Teorias da luz. Experiências

Professor Felipe Técnico de Operações P-25 Petrobras

STC 5. Redes de Informação e Comunicação. Data: 22 Julho de 2010 Morada: Rua de São Marcos, 7 C Tel: Fax: Tlm:

Evolução do modelo atómico

Aula 8 Fótons e ondas de matéria II. Física Geral F-428

Departamento de Zoologia da Universidade de Coimbra

Problemas de Termodinâmica e Estrutura da Matéria

Evolução do Modelo Atómico

Comunicação da informação a curta distância. FQA Unidade 2 - FÍSICA

A Mecânica Quântica nasceu em 1900, com um trabalho de Planck que procurava descrever o espectro contínuo de um corpo negro.

O Polarímetro na determinação de concentrações de soluções

1.3. Na figura 2 estão representados três excertos, de três situações distintas, de linhas de campo magnético. Seleccione a opção correcta.

Além do Modelo de Bohr

Quanto à origem uma onda pode ser classificada em onda mecânica e onda eletromagnética.

~1900 Max Planck e Albert Einstein E fóton = hυ h = constante de Planck = 6,63 x Js. Comprimento de Onda (nm)

FORTALECENDO SABERES CONTEÚDO E HABILIDADES APRENDER A APRENDER DINÂMICA LOCAL INTERATIVA CIÊNCIAS. Conteúdo: - Ótica

Espectros de radiação descontínuos e a composição do Universo. Espectros de emissão e de absorção

Astor João Schönell Júnior

ESCOLA SECUNDÁRIA DE CASQUILHOS

Radiação. Grupo de Ensino de Física da Universidade Federal de Santa Maria

Espectros, Radiações e Energia

SOLUÇÃO: RESPOSTA (D) 17.

APSA 2 - Tabela Periódica 10º Ano Novembro de 2011

Biofísica 1. Ondas Eletromagnéticas

Ficha Formativa Energia do Sol para a Terra

Ondas Eletromagnéticas Física - Algo Sobre INTRODUÇÃO

Aula 3 ORIGEM DA TEORIA QUÂNTICA. Eliana Midori Sussuchi Samísia Maria Fernandes Machado Valéria Regina de Souza Moraes

15/09/ PRINCÍPIOS DA ÓPTICA O QUE É A LUZ? A luz é uma forma de energia que não necessita de um meio material para se propagar.

EXTERNATO MATER DOMUS

Teste de Avaliação 3 A - 06/02/2013

1- Fonte Primária 2- Fonte Secundária. 3- Fonte Puntiforme 4- Fonte Extensa

5 as Olimpíadas Nacionais de Astronomia

REFRAÇÃO DA LUZ - Definições ÂNGULOS - Incidência - Reflexão - Refração Índice de Refração Absoluto de um Meio (n) Analisando as Grandezas

AVALIAÇÃO DIAGNÓSTICA

MODELOS ATÔMICOS. Química Professora: Raquel Malta 3ª série Ensino Médio

Física IV. Interferência

ÓPTICA GEOMÉTRICA PREGOLINI

RESOLUÇÃO DA PROVA DA UFPR (2015) FÍSICA A (PROF. HAUSER)

Detectores de incêndio Apollo

Lista de Revisão Óptica na UECE e na Unifor Professor Vasco Vasconcelos

GNE 109 AGROMETEOROLOGIA Características Espectrais da Radiação Solar

Leia com atenção todas as questões antes de responder.

3º Bimestre. Física II. Autor: Geraldo Velazquez

Cor e frequência. Frequência ( ) Comprimento de onda ( )

Introdução aos Sistemas de Informação Geográfica

Departamento de Astronomia - Universidade Federal do Rio Grande do Sul

Transmissão das Ondas Eletromagnéticas. Prof. Luiz Claudio

ÓPTICA. Conceito. Divisões da Óptica. Óptica Física: estuda os fenômenos ópticos que exigem uma teoria sobre a natureza das ondas eletromagnéticas.

DISTRIBUIÇÃO ELETRÔNICA E N OS QUâNTICOS TEORIA - PARTE II. Elétron de diferenciação e elétrons de valência. Distribuição eletrônica de íons

Espectometriade Fluorescência de Raios-X

EFEITO FOTOELÉTRICO. J.R. Kaschny

FÍSICA NUCLEAR E PARTÍCULAS

Propriedades Corpusculares da. First Prev Next Last Go Back Full Screen Close Quit

RADIAÇÃO ELETROMAGNÉTICA. Daniel C. Zanotta 23/03/2015

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais

Juliana Cerqueira de Paiva. Modelos Atômicos Aula 2

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de?


As estações do ano acontecem por causa da inclinação do eixo da Terra em relação ao Sol. O movimento do nosso planeta em torno do Sol, dura um ano.

Átomos Poli-electrónicos

Escola Secundária Anselmo de Andrade Teste Sumativo de Ciências Físico - Químicas 9º Ano Ano Lectivo 08/09

Nosso objetivo será mostrar como obter informações qualitativas sobre a refração da luz em um sistema óptico cilíndrico.

Tânia observa um lápis com o auxílio de uma lente, como representado nesta figura:

Redes de Computadores (RCOMP 2014/2015)

5 as Olimpíadas Nacionais de Astronomia

4.2 Modelação da estrutura interna

Escola Básica e Secundária Gonçalves Zarco Ciências Físico-Químicas, 9º ano Ano lectivo 2006 / 2007

Átomo e Modelos Atómicos

LISTA DE EXERCÍCIOS Goiânia, de de 2014 Aluno(a): ou h = 4, ev s é a O ÁTOMO DE BOHR

ENSINO FUNDAMENTAL - CIÊNCIAS 9ºANO- UNIDADE 3 - CAPÍTULO 1

exposição à radiação electromagnética

Um carro está andando ao longo de uma estrada reta e plana. Sua posição em função do tempo está representada neste gráfico:

Estudaremos aqui como essa transformação pode ser entendida a partir do teorema do trabalho-energia.

FUNCIONAMENTO DE UM MONITOR CONTÍNUO DE OZÔNIO

Capítulo 5 Distribuição de Energia e Linhas Espectrais

STC 5. Redes de Informação e Comunicação. Data: 18 de Agosto de 2010 Morada: Rua de São Marcos, 7 C Tel: Fax: Tlm:

Aula de Véspera - Inv-2009 Professor Leonardo

Física PRÉ VESTIBULAR / / Aluno: Nº: Turma: PRÉ-VESTIBULAR. No vácuo, todas as ondas eletromagnéticas. independentemente de sua frequência.

EXOPLANETAS EIXO PRINCIPAL

Seleção de comprimento de onda com espectrômetro de rede

Material Extra de Física

Transcrição:

1. Espectros, radiação e energia Radiação é a propagação da energia por meio de partículas ou ondas no espaço. A radiação pode ser identificada: Pelo elemento condutor de energia: Radiação electromagnética fotões. Radiação corpuscular - partículas (protões, neutrões, etc.) Radiação gravitacional - gravitões. Pela fonte de radiação: Radiação solar - causada pelo Sol. Radiação de Cerenkov - causada por partículas com a velocidade superior a da luz no meio. Radioactividade - núcleos instáveis. Pelos seus efeitos: Radiação ionizante - capaz de ionizar moléculas. Radiação não ionizante - incapaz de ionizar moléculas.

Radiação electromagnética é uma combinação de um campo eléctrico e de um campo magnético que se propagam através do espaço transportando energia. A luz visível é uma das partes da radiação electromagnética. Espectro electromagnético é o intervalo completo da radiação electromagnética, que contém desde as ondas de rádio, o infravermelho, a luz visível, os raios ultravioletas, o raio X, até a radiação gama.

Nós só vemos uma pequeníssima parte deste espectro, a luz visível

A dispersão, ou decomposição, da luz é a separação da luz branca (um feixe de luz policromático) nas diversas cores (cada uma delas um feixe monocromático)

Onda é uma perturbação oscilante de alguma grandeza física no espaço e periódica no tempo. A oscilação espacial é caracterizada pelo comprimento de onda e a periodicidade no tempo é medida pela frequência da onda, que é o inverso do seu período. Estas duas grandezas estão relacionadas pela velocidade de propagação da onda. Comprimento de ondacomprimento de onda

Comprimento de onda é a distância entre dois pontos consecutivos de onda. É usualmente representado pela letra grega lambda (λ).

Período é o tempo em que decorre um fenómeno. Neste caso é o tempo em que decorre uma onda. A unidade de medida do período é o segundo (s) Frequência é a quantidade de ondas completas (ciclos completos) que ocorrem numa unidade de tempo (usualmente medido em segundos). A unidade de medida da frequência é o hertz (Hz), em honra ao físico alemão Heinrich Rudolf Hertz. 1 Hz corresponde a um evento que ocorre uma vez por segundo. Alternativamente, podemos medir o tempo decorrido para a ocorrência do evento (período). Desse modo, a frequência é o inverso deste tempo. F = 1 T

Relação entre comprimento de onda, frequência e velocidade da luz O comprimento de onda λ tem uma relação inversa com a frequência f. Quando se lida com radiação electromagnética no vácuo, essa velocidade é igual à velocidade da luz 'c', para sinais (ondas) no ar, essa velocidade é a velocidade a que a onda viaja. Esta relação é dada por: λ = c f onde: λ = comprimento de onda de uma onda sonora ou onda electromagnética; c = velocidade da luz no vácuo = 299.792,458 km/s 300.000 km/s = 300.000.000 m/s = 3x10 8 m/s ou c = velocidade do som no ar = 343 m/s a 20 C (68 F); f = frequência da onda 1/s = Hz.

Espectros contínuos e descontínuos (de absorção e de emissão) Espectro continuo: é um espectro de luz emitida que contém todos os comprimentos de onda das cores que compõem a luz branca (vermelho, laranja, amarelo, verde, azul, anil e violeta se formos dos comprimentos de onda mais longos para os mais curtos). Os espectros contínuos são emitidos por sólidos incandescentes, líquidos, ou gases comprimidos. Várias estrelas, como, por exemplo, o nosso Sol, emitem espectros contínuos nos quais as cores se fundem umas nas outras, estando a cor vermelha numa das extremidades e a cor azul na outra extremidade.

Espectros de emissão e a temperatura das estrelas Os espectros de luz visível emitida por sólidos ou líquidos incandescentes e gases a alta pressão são espectros de emissão contínuos Um prisma decompõe a luz branca em diferentes comprimentos de onda formando um espectro:

Uma estrela é um emissor de luz visível cujo espectro é contínuo, no entanto a sua cor pode variar com a temperatura: Se a temperatura da estrela for muito elevada, cerca de 7000 K, a luz emitida é azulada, pois a intensidade das radiações que a constituem é maior na zona do violeta e azul. Quando a temperatura da estrela é de cerca de 6000 K como a da superfície do Sol, a luz emitida é amarelada, pois as radiações que a constituem são mais intensas na zona do verde e do amarelo. Quando a temperatura da estrela é menos elevada, cerca de 5000 k, a luz emitida é alaranjada, pois as radiações que a constituem são mais intensas na zona do laranja ou vermelho.

Diagrama de Hertzpung e Russel diagrama H-R Relaciona a luz emitida pelas estrelas com a temperatura à sua superfície. Mostra que a maior parte das estrelas está situada na diagonal que une o canto superior esquerdo (elevada intensidade luminosa e temperatura mais elevada) ao canto inferior direito (intensidade luminosa mais baixa e temperatura mais baixa). São estrelas da sequência principal.

Espectro de emissão É um espectro descontínuo, mostrando riscas brilhantes discretas, que é emitido por átomos ou moléculas. O espectro de emissão é característico dos elementos químicos que estão a emitir fotões. Quando aquecidos, os compostos e elementos individuais frequentemente libertam uma ou dúzias de linhas (riscas) de emissão. Os espectros da luz visível emitida pelos átomos excitados dos elementos químicos, no estado gasoso e a pressão muito reduzida, são espectros de emissão descontínuos ou de riscas. Cada elemento químico apresenta um espectro de emissão de riscas característico que permite identificá-lo

Espectro de emissão A radiação de um gás aquecido passando por uma fenda, sendo decomposta ao atravessar um prisma. Formam-se riscas brilhantes de emissão em determinados comprimentos de onda.

Espectro de absorção: se algumas linhas discretas faltam num espectro, este é um espectro de absorção, indicando a presença de elementos que absorvem comprimentos de ondas particulares. Um espectro de absorção é criado quando a luz proveniente de uma fonte incandescente passa através de um gás mais frio que absorve fotões. Cada molécula e elemento diferente absorve a luz num conjunto único de frequências. O espectro de absorção consiste de linhas de absorção escuras sobrepostas sobre um espectro contínuo brilhante. Um exemplo de espectro de absorção é aquele produzido nas atmosferas estelares. No caso do Sol, os gases quentes da atmosfera solar estão situados entre nós e a fonte de altíssima temperatura que está no seu interior. Esta atmosfera absorve certas frequências deixando linhas escuras sobre o seu espectro contínuo. Os astrónomos podem determinar a composição dos gases em uma estrela procurando as frequências características das linhas de absorção.

Espectro de absorção Exemplo do espectro observado quando a radiação de uma lâmpada atravessa um gás frio. Neste caso formam-se riscas escuras de absorção sobrepostas ao espectro contínuo.

Os três tipos de espectros. O espectro contínuo não contém interrupções (riscas negras), mas o espectro de absorção é interrompido pelas riscas negras. O espectro de emissão é negro excepto em certos comprimentos de onda, onde existem riscas de emissão. Repara que as riscas negras no espectro de absorção do hidrogénio têm o mesmo comprimento de onda que as riscas coloridas no espectro de emissão do hidrogénio.

(a) O espectro de emissão do sódio, em que duas riscas brilhantes de emissão aparecem na parte amarela do espectro visível. (b) Espectro de absorção do sódio, em que as duas riscas escuras aparecem na mesma posição correspondentes às linhas de emissão.

Resumo Espectro Contínuo Espectros descontínuos De absorção De emissão

Aplicações tecnológicas das radiações: Ondas de rádio: As estrelas emitem ondas de rádio que são detectadas por radiotelescópios e permitem identificar a sua composição. As estações de rádio e televisão emitem ondas de rádio, que são captadas pelos aparelhos receptores.

Microondas: As radiações de microondas são utilizadas nas comunicações via satélite, na localização de obstáculos e na detecção da velocidade dos veículos, RADAR. Estas ondas também são muito utilizadas para aquecer os alimentos nos fornos de microondas.

Radiação infravermelha: As poeiras cósmicas emitem radiação infravermelha que permite localizá-las. As câmaras ocultas de videovigilância detectam a presença de pessoas captando a radiação infravermelha que emitem. As resistências eléctricas, ao rubro, e o carvão em brasa emitem muita radiação infravermelha de elevado efeito térmico, sendo utilizadas no aquecimento e para cozinhar alimentos.

Radiação visível: A radiação visível é emitida pelo Sol, pelas lâmpadas de incandescência e fluorescentes, pelas lâmpadas de néon e lâmpadas de poupança de energia.

Radiação ultravioleta: As radiações ultravioleta são emitidas pelo Sol, mas poucas chegam à Terra pois são absorvidas nas camadas superiores da atmosfera. As radiações ultravioleta de menor energia bronzeiam a pele. É necessário ter cuidado com estas radiações porque provocam queimaduras e cancro de pele. São usadas como desinfectante da água da rede pública.

Raios X: Os raios X, muito penetrantes na matéria, são usados na medicina em radiografias e TAC. Também se usam no controlo das bagagens nos aeroportos. Raios γ: Os raios γ são tão penetrantes na matéria que destroem as células vivas. Por isso são usados na medicina mas destruição dos tumores malignos e na esterilização de materiais.

Quantum de energia Como vimos os diferentes tipos de radiação têm associados a si valores de energia diferentes. Mas o que significam estes valores: Primeiro temos de compreender que: A energia de cada radiação não pode ter um valor qualquer; Há uma quantidade mínima de energia característica dessa radiação quantum de energia; A energia de cada radiação é sempre múltipla da correspondente quantidade minima E = n Radiação E Fotão Nesta expressão o número n representa o número de fotões que constituem a radiação correspondente à intensidade da radiação.

A energia dos fotões também não pode ter um valor qualquer; esse valor é tanto maior quanto maior for a frequência de vibração: E Fotão = h υ a energia de um fotão é directamente proporcional à frequência (ν). A constante de proporcionalidade (h) é chamada de constante de Planck (6,626X10-34 J.s -1 ) Assim: Quando se fala de uma radiação muito intensa deve entender-se com se refere a muitos fotões; Quando se fala de uma radiação muito energética refere-se a uma energia grande para cada fotão.

Interacção da radiação com a matéria Efeito fotoeléctrico é a emissão de electrões por um material, geralmente metálico, quando exposto a uma radiação electromagnética (como a luz) de frequência suficientemente alta, que depende do material. Ele pode ser observado quando a luz incide numa placa de metal, literalmente arrancando da placa electrões. Esse efeito é bem observado quando se coloca algum objecto de metal no microondas.

Os electrões que giram à volta do núcleo são aí mantidos por forças de atracção. Se a estes for fornecida energia suficiente, eles abandonarão as suas orbitas. O efeito fotoeléctrico implica que, normalmente sobre metais, se faça incidir um feixe de radiação com energia suficiente para a remoção dos electrões do metal, provocando a sua saída das orbitas: sem energia cinética (se a energia da radiação for igual à energia de remoção) com energia cinética, se a energia da radiação exceder a energia de remoção do electrão.

Existe uma energia mínima a partir da qual o fotão consegue arrancar um electrão do metal

A grande dúvida que se tinha a respeito do efeito fotoeléctrico era que quando se aumentava a intensidade da luz, ao contrário do esperado, a luz não arrancava os electrões do metal com maior energia cinética. O que acontecia era que uma maior quantidade de electrões era ejectado. Assim o número de electrões ejectados era proporcional ao brilho (intensidade) da luz, o que não se verificava com a energia dos electrões ejectados. Abaixo do limiar de frequência não eram ejectado quaisquer electrões por mais intensa que fosse a luz. Este fenómeno não podia ser explicado pela teria ondulatória da luz. No Entanto Einstein conseguiu tornar compreensível esse efeito fazendo uma suposição extraordinária. Sugeriu que não se pensasse num raio de luz como uma onda mas como um feixe de partículas, denominadas fotões. Assim: Quanto mais intenso for o feixe de luz, mais fotões contem, mais electrões arranca da superfície do metal Quanto mais energia tiver o feixe (maior frequência) maior a energia cinética dos electrões que são arrancados

Resumo sobre o efeito fotoeléctrico: só ocorre se a radiação tiver energia superior a um valor mínimo característico de cada metal que se chama energia mínima de remoção; é praticamente instantâneo, ocorrendo logo após a incidência da radiação no metal; a velocidade dos electrões emitidos é independente da intensidade do feixe de radiação monocromática incidente mas é tanto maior quanto maior for a energia da radiação; o número de electrões emitidos é tanto maior quanto maior for a intensidade da radiação incidente mas não depende da energia de radiação, desde que superior ao valor mínimo de energia; quanto maior éa energia de cada fotão incidente, no mesmo metal, maior é a energia cinética dos electrões emitidos e, portanto, maior a sua velocidade; quanto maior o número de fotões incidentes, ou seja, quanto mais intenso é o feixe formado pelo mesmo tipo de radiação, mais electrões são emitidos, mas com a mesma energia cinética.

Aplicações do Efeito fotoeléctrico, células fotoeléctricas: Enquanto a radiação incide no cátodo C, os electrões emitidos são atraídos pelo ânodo, A. O circuito está fechado e a corrente eléctrica passa. Quando a incidência de luz é interrompida, não há emissão de electrões. O circuito está aberto e não permite a passagem de corrente eléctrica.

3.1. Modelo de Bohr para o átomo de hidrogénio No final do século XIX os cientistas já conheciam os espectros de emissão de riscas de vários elementos no estado gasoso e interrogavam-se sobre os motivos da emissão dessas radiações de energias tão bem definidas, características dos elementos. cada elemento tem um espectro de emissão próprio. As riscas características dos espectros atómicos podem ser usadas em análises químicas para identificar os átomos, tal como as impressões digitais são usadas para identificar pessoas. Niels Bohr (1885 1962) físico dinamarquês cujos trabalhos contribuíram decisivamente para a compreensão da estrutura atómica e da física quântica. Prémio Nobel em 1922. Em 1913 Niels Bohr apresentou uma explicação teórica para o espectro de emissão do átomo de Hidrogénio. O tratamento de Bohr é muito complexo e já não é considerado correcto em todos os seus detalhes. Vamos, então, concentrar-nos nas suas suposições mais importantes e nos resultados finais que explicam as posições das riscas espectrais.

Quando Bohr iniciou o seu estudo, os físicos sabiam que o átomo continha electrões e protões. O átomo era concebido como uma entidade na qual os electrões giravam à volta do núcleo em órbitas circulares a altas velocidades. O modelo atómico de Bohr incluía a ideia dos electrões movendo-se me órbitas circulares, mas impôs uma restrição bastante severa: o electrão único do átomo de hidrogénio apenas podia estar localizado em determinadas órbitas. E como cada órbita tinha determinada energia associada a ela, a restrição de Bohr significava que as energias associadas com o movimento do electrão nas orbitas permitidas tinham um valor fixo eram quantificadas.

Assim a emissão de radiação por um átomo de hidrogénio excitado podia ser explicada em termos de decaimento do electrão de uma órbita de maior energia para uma de menor energia com a formação de um quantum de energia (fotão) na forma de luz.

Analogia: movimento de uma bola de ténis subindo ou descendo um conjunto de degraus. A sua passagem de um degrau mais baixo para outro mais alto é um processo que requer energia e a sua passagem de um degrau mais alto para um mais baixo é um processo que liberta energia. A bola pode estar em qualquer degrau mas não entre degraus A quantidade de energia envolvida em qualquer tipo de mudança é determinada pela distância entre o primeiro e o último degrau. Da mesma maneira, a quantidade de energia necessária para mover um electrão no átomo de bohr depende da diferença entre os níveis dos estados inicial e final. O estado fundamental = estado de menor energia (nível 1)

A teoria de Bohr do átomo de hidrogénio permite explicar o aparecimento do espectro de riscas deste átomo. A energia radiante absorvida pelo átomo obriga o electrão a mover-se de uma orbita de menor energia (n) para uma orbita de maior energia (n+1;n+2; ). Inversamente a energia radiante (na forma de um fotão) éemitidaquando o electrão se move de uma orbita de maior energia para uma orbita de menor energia. E = E Final E Inicial E = E Final E Inicial E E 0 E 0 rad. absorvida = E E rad. emitida = E

Uma radiação de energia ligeiramente superior ou ligeiramente inferior à diferença entre a energia de dois níveis não é absorvida nem emitida pelo átomo. E rad > E final E inicial Não é absorvida nem emitida pelo átomo E rad = E final E inicial É absorvida ou emitida pelo átomo E rad < E final E inicial Não é absorvida nem emitida pelo átomo Só são absorvidas ou emitidas pelo átomo radiações de energia igual à diferença de energias dos dois níveis.

Bohr mostrou que as energias que um electrão de um átomo de hidrogénio pode possuir são dadas por: 1 E n = E 2 n 1 Esta expressão relaciona a energia de cada nível E n com a energia do primeiro nível E 1 Estado fundamental Sendo E 1 = -2,18x10-18 J/electrão Energia dos níveis do átomo de hidrogénio E n = 218, 10 n 2 18 Onde n = 1, 2, 3 (nº inteiro 1) chama-se-lhe número quântico principal Esta equação implica que todas as energias permitidas ao electrão sejam negativas. Na realidade, este sinal não é mais do que uma convenção arbitrária diz-nos que a energia do electrão no átomo é mais baixa que a energia de um electrão livre (um electrão que está infimamente afastado dum núcleo) à qual se lhe atribui o valor zero (E = 0)

Níveis de energia do átomo de hidrogénio:

3.2. O espectro do átomo de hidrogénio e as transições electrónicas As riscas do espectro de emissão

Cada risca do espectro de emissão corresponde a uma certa transição num átomo de hidrogénio. O espectro de emissão do hidrogénio cobre uma larga gama de comprimentos de onda, do infravermelho ao ultravioleta. Os esquemas seguintes mostram as séries de transições no espectro do hidrogénio que foram baptizadas com os nomes dos seus descobridores. A série de Balmer foi a mais fácil de estudar porque algumas das suas riscas encontram-se na gama do visível.

Ionização do átomo de hidrogénio: Quando o átomo de hidrogénio absorve radiação que o faz passar do nível de energia onde se encontra para o nível n =, o electrão deixa de estar sob a influência do núcleo e forma-se um ião (H + ). À energia desta radiação dá-se-lhe o nome de energia de remoção do electrão, E r. Como: E = E f E i E = E n -E n E = 0 E n E r = -E n

O que ocorre quando incide no átomo de hidrogénio uma energia de radiação superior à energia de remoção Qualquer radiação de energia superior à energia de remoção é absorvida pelo átomo de hidrogénio que emite o electrão com um determinado valor de energia cinética ocorre efeito fotoeléctrico E rad = E r + E C A energia do electrão no átomo está quantificada A energia do electrão fora do átomo não está quantificada

3.3. Modelo atómico actual: números quânticos O modelo atómico de Bohr, baseado na existência de orbitas bem definidas para o electrão que estavam associadas a valores bem determinados de energia, foi um marco muito importante na evolução do modelo atómico. Estudos posteriores confirmaram a quantificação da energia do electrão, mas pôr de parte a a existência de órbitas. O físico austríaco Heisenberg demonstrou que para partículas tão pequenas como o electrão, que se movem com velocidade tão elevada, não é possível conhecer simultaneamente e com exactidão a velocidade e posição de um electrão num determinado instante, pelo que é impossível conhecer as suas órbitas Principio da incerteza de Heizenberg Apenas é possível falar na probabilidade de encontrar o electrão, com determinada energia numa certa zona do espaço à volta do núcleo. Deixa-se de falar em órbitas para o electrão e passa-se a falar em orbitais.

Orbital atómica: função probabilística que define a distribuição da densidade electrónica em torno do núcleo atómico. Para descrever a posição dos electrões em átomos de hidrogénio como noutros átomos são necessários quatro números, chamados números quânticos. Estes números são usados para descrever as orbitais atómicas e para caracterizar os electrões que nelas se encontram. Número quântico principal (n) pode ter como valores os números inteiros 1,2,3 e assim sucessivamente. No átomo de hidrogénio o valor de n especifica a energia de uma orbital. Está relacionado com a distância média do electrão ao núcleo numa determinada orbital. Quanto maior for o valor de n, maior é a distância média de um electrão numa orbital ao núcleo e portanto maior a orbital (e menos estável). Número quântico secundário ou de momento angular (l) informa-nos acerca da forma da orbital. O valor de l varia com o valor de n, varia de 0 a n-1. Então para n=1 l é igual a 0; para n=2 l é igual a 0 e 1. Normalmente o valor de l é designado pelas letras s, p, d, da seguinte maneira. l 0 1 2 3 4 5 Designação da orbital s p d f g h

Número quântico magnético (m l ) este descreve a orientação espacial da orbital. Dentro de uma subcamada, o valor de m l depende do valor do número quântico de momento angular l. Para um dado valor de l, há (2l+1) valores de m l. Se l = 1 então ml varia em 2l+1 valores inteiros: - l, (-l+1), 0, +l -1, +l ou seja varia de -2, -1, 0, 1 e 2 Número quântico de spin electrónico (m s ) este descreve o comportamento do electrão num átomo. Descobriu-se que os electrões se comportam como pequenos imanes. Se pensarmos nos electrões como estando a rodar sobre o próprio eixo, tal como a Terra, as suas propriedades magnéticas podem ser explicadas pois uma carga em rotação gera um campo magnético. Na tabela seguinte vemos a relação entre os números quânticos e as orbitais atómicas.

Forma das orbitais no átomo de hidrogénio 1 s 2 s 2 p 3 s 3 p 3 d

Cada orbital atómica é caracterizada por um conjunto de três números quânticos: (n, l, m l ) Relaciona-se com o tamanho da Relaciona-se com orbital (energia desta) a forma da orbital Relaciona-se com orientação espacial da orbital Cada electrão é caracterizado por um conjunto de quatro números quânticos: (n, l, m l, m s ) Relaciona-se com o modo de rotação do electrão

Níveis, Subníveis e orbitais Cada nível, n, tem: n subníveis e n 2 orbitais Cada subnível, l, tem: 2l + 1 orbitais

3.4. Configurações electrónicas Energia das orbitais

Átomos polielectrónicos: distribuição dos electrões pelas orbitais Diagrama de Pauling:

Átomos polielectrónicos: distribuição dos electrões pelas orbitais Principio da energia mínima: no estado fundamental os electrões estão nas orbitais de menor energia possível. O electrão tem tendência a a manter-se no estado de menor energia. Principio da exclusão de Pauli: O princípio de exclusão de Pauli afirma que dois electrões de um mesmo átomo não podem ter os mesmos quatro números quânticos. Cada orbital atómica comportará somente dois electrões e os mesmos devem apresentar spins opostos. Se um electrão, num átomo, tem os números quânticos n=1, l=0, ml=0 e ms=+1/2, nenhum outro electrão pode ocupar a mesma orbital, com número quântico de spin +1/2... Como só são possíveis dois valores de m s, uma orbital pode ter, no máximo, dois electrões. Num diagrama de orbitais, a orbital que tiver dois electrões, vai tê-los com as setas em direcção opostas. Cada subcamada pode ter, no máximo, tantos electrões quanto for o dobro do número de orbitais. Assim, a subcamada 2p, têm 3 orbitais (ml = -1, 0, +1), pode ter, no máximo, 6 electrões. As setas indicam o spin do electrão

Regra de Hund: Cada orbital do subnível que se está a preencher recebe inicialmente apenas um electrão Somente depois da última orbital desse subnível receber o seu primeiro electrão começa o preenchimento de cada orbital com o seu segundo electrão, que terá spin contrário ao primeiro.

A designação dos diferentes blocos da Tabela Periódica com base no preenchimento das orbitais atómicas, ocupadas pelos electrões de valência de cada elemento químico.