Modelagem Matemática do processo de Evaporação Multi-efeito de Licor Negro na Indústria de Papel e Celulose



Documentos relacionados
MODELAGEM FENOMENOLÓGICA DO COMPORTAMENTO DINÂMICO DE EVAPORADORES DE MÚLTIPLO EFEITO

MODELAGEM MATEMÁTICA DO PROCESSO DE EVAPORAÇÃO MULTI-EFEITO NA INDÚSTRIA DE PAPEL E CELULOSE

Pesquisador. Planejamento de Experimentos Design of Experiments - DOE NOÇÕES SOBRE EXPERIMENTOS FATORIAIS. 1 - Fixar T e variar P até > Pureza

NOÇÕES SOBRE EXPERIMENTOS FATORIAIS

Blucher Proceedings VI Encontro Científico de Física Aplicada

USO DE DELINEAMENTO EXPERIMENTAL PARA A ANÁLISE DA EFICIÊNCIA DE ADSORÇÃO COM BASE NA PRODUÇÃO E ENSAIO DE ADSORÇÃO DO CARVÃO ATIVADO

USO DE PLANEJAMENTO COMPOSTO CENTRAL NA AVALIAÇÃO DAS VARIÁVEIS TEMPERAURA E CONCENTRAÇÃO DE SOLVENTES NO ESTUDO DA SOLUBILIDADE DA UREIA

UTILIZAÇÃO DE UM DELINEAMENTO COMPOSTO CENTRAL ROTACIONAL PARA AVALIAÇÃO MICROBIOLÓGICA DE POLPAS DE AÇAÍ PASTEURIZADAS

MODELAGEM MATEMÁTICA DE EVAPORADORES DE MÚLTIPLO EFEITO EMPREGADOS NO AUMENTO DO TEOR DE SÓLIDOS DO LEITE

1.1.Conceito de Operações Unitárias 1.2. Classificação das operações unitárias e exemplos em diferentes sectores industriais.

OPERAÇÕES UNITÁRIAS II AULA 9: EVAPORAÇÃO EM SIMPLES EFEITO. Profa. Dra. Milena Martelli Tosi

ESTUDO DA CRISTALIZAÇÃO DA LACTOSE A PARTIR DA ADIÇÃO DE ETANOL RESUMO

Universidade do Vale do Rio dos Sinos PPGEM Programa de Pós-Graduação de Engenharia Mecânica

ANÁLISE ENERGÉTICA DE UM SISTEMA DE REFRIGERAÇÃO POR ABSORÇÃO UTILIZANDO A MISTURA AMÔNIA-ÁGUA.

SIMULAÇÃO NUMÉRICA DE UM CONDENSADOR A AR

Prof. Dr. Marcone Augusto Leal de Oliveira UFJF CURSO INTRODUTÓRIO DE 12 HORAS OFERECIDO PARA A PÓS-GRADUAÇÃO DA UFABC EM NOVEMBRO DE 2017

Bryan da Silva Silveira 1 Esly Ferreira da Costa Júnior 2 2 Andréa Oliveira Souza da Costa 3 3

EVAPORAÇÃO. Profa. Marianne Ayumi Shirai EVAPORAÇÃO

Balanço de massa e energia da Caldeira de Recuperação 3 da Fíbria - Jacareí 24/05/12

aula ANÁLISE DO DESEMPENHO DO MODELO EM REGRESSÕES

Destilação Binária por Estágios

OPERAÇÕES UNITÁRIAS II AULA 13: EVAPORADORES E CONGELAMENTO. Profa. Dra. Milena Martelli Tosi

Introdução à Otimização de Processos. Prof. Marcos L Corazza Departamento de Engenharia Química Universidade Federal do Paraná

EM MICROBIOLOGIA. Lavras, maio de 2012

Elaboração de Projeto Piloto de Evaporador e Monitoramento da Formação e Modos de Limpeza das Incrustações decorrentes do Processo

ESTUDO E ANÁLISE DA MISTURA DE ÁGUA E ETANOL ATRAVÉS DE EQUAÇÕES DE ESTADO.

EFEITO DA PRESSÃO SOBRE DINÂMICA E CONTROLE DE COLUNA DE DESTILAÇÃO COM RETIRADA LATERAL

O esforço só é expresso em recompensa, quando uma pessoa se recusa a desistir. Napoleon Hill

MODELAGEM FENOMENOLÓGICA E EM REGIME ESTACIONÁRIO DO PROCESSO DE RECUPERAÇÃO KRAFT

Bibliografia Recomendada.

OTIMIZAÇÃO DA PRODUÇÃO DE GOMA XANTANA À PARTIR DE SORO DE LEITE

X Congresso Brasileiro de Engenharia Química Iniciação Científica

AVALIAÇÃO TÉRMICA DO PROCESSO DE SECAGEM DE MISTURAS DE GRAVIOLA E LEITE EM SECADOR DE LEITO DE JORRO

CONCURSO PÚBLICO EDITAL Nº 03 / 2015

UNIVERSIDADE DE SÃO PAULO ENGENHARIA QUÍMICA LOQ 4017 OPERAÇÕES UNITÁRIAS EXPERIMENTAL II

Índice de Capacidade do Processo na Avaliação da

ESTIMAÇÃO DO COEFICIENTE DE ATIVIDADE DE UM SISTEMA BINÁRIO EM EQUÍLIBRIO LÍQUIDO-VAPOR UTILIZANDO O MÉTODO UNIFAC

EN 2411 Aula 13 Trocadores de calor Método MLDT

Ronaldo Guimarães Corrêa. Aula #3: Configurações de Controle

2 CONVERSÃO, SELETIVIDADE, RENDIMENTO E EFICIÊNCIA

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO. EQE 598- Laboratório de Engenharia Química. Prática: 60h

Bibliografia Recomendada

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

Refrigeração e Ar Condicionado

Equações de estado para líquidos

Princípios em Planejamento e Análise de Dados Ecológicos. Regressão linear. Camila de Toledo Castanho

DETERMINAÇÃO EXPERIMENTAL DA CINÉTICA DE SECAGEM DO MORANGO.

EFICIÊNCIA ENERGÉTICA EM SISTEMAS E INSTALAÇÕES

Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II

Pró-Reitoria de Graduação. Plano de Ensino 1º Quadrimestre de 2012

Prof. Dr. Félix Monteiro Pereira

TÍTULO: INFLUÊNCIA DO DRAFT TUBE NA SUSPENSÃO DE PARTÍCULAS GROSSAS DE AREIA EM TANQUE COM IMPULSOR AXIAL

EXTRAÇÃO DE FENOL PRESENTE EM EFLUENTES AQUOSOS UTILIZANDO O TENSOATIVO TRITON N101 COMO AGENTE EXTRATOR

Análise da Regressão. Prof. Dr. Alberto Franke (48)

) (8.20) Equipamentos de Troca Térmica - 221

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

564 E V A P O R A Ç Ã O

DESTILAÇÃO FRACIONADA OPERAÇÕES UNITÁRIAS 2. Profa. Roberta S. Leone

Figura Leito de secagem do lodo de esgoto sanitário doméstico.

Curso Engenharia de Energia

MODELAGEM MATEMÁTICA DO PROCESSO DE EVAPORAÇÃO DO LICOR NEGRO PROVENIENTE DO SISTEMA DE LAVAGEM DA POLPAÇÃO KRAFT CRISTIANO LUIZ DIEL

3.ª ED., IST PRESS (2017) ÍNDICE

ETAL TECNOLOGIA DE ALIMENTOS

ANÁLISE DO PROCESSO DE LIXIVIAÇÃO DAS CINZAS DE CALDEIRAS DE RECUPERAÇÃO QUÍMICA

Destilação Binária por Estágios

Estimação de Parâmetros em Modelos de Energia Livre de Gibbs em Excesso

5 Parte experimental Validação analítica

UNIVERSIDADE ESTADUAL PAULISTA CAMPUS DE BOTUCATU FACULDADE DE CIÊNCIAS AGRONÔMICAS PROGRAMA DE PÓS-GRADUAÇÃO EM AGRONOMIA AGRICULTURA

Profa. Dra.: Simone de Fátima Medeiros. 1 Semestre

DESENVOLVIMENTO DE REVESTIMENTO CONTENDO TOMATE EM PÓ PARA APLICAÇÃO EM MASSAS CONGELADAS

5. Análise dos Resultados

04/12/2012 SECAGEM. Patricia Moreira Azoubel

Mais Informações sobre Itens do Relatório

VALIDAÇÃO DO MODELO PELO USO DE MEDIDAS DE NÃO LINEARIDADE

Delineamento e Análise Experimental Aula 4

Utilização de planejamento experimental no estudo de absorção de água de cerâmica incorporada com lama vermelha

Transferência de Calor

AVALIAÇÃO DE RENDIMENTO DA POLPAÇÃO DA PALHA DE MILHO UTILIZANDO O PROCESSO ORGANOSSOLVE

Operações Unitárias II Prof a. Dr a. Simone de Fátima Medeiros. 2 Semestre

A 1 a lei da termodinâmica para um sistema transiente é:

Programa Analítico de Disciplina TAL472 Operações Unitárias na Indústria de Alimentos I

TRANSFERÊNCIA DE CALOR POR CONVECÇÃO NATURAL E FORÇADA À VOLTA DE CILINDROS METÁLICOS TP4

ESTUDO DA INFLUÊNCIA DAS CONDIÇÕES OPERACIONAIS NA EFICIÊNCIA DO RECOBRIMENTO DE UREIA EM LEITO DE JORRO

COMPARAÇÃO DOS MÉTODOS DE ESTIMATIVA DE ETc PARA O FEIJÃO- COMUM EM UNAÍ - MG

4 Parte experimental Desenvolvimento do Método

ANÁLISE TECNO-ECONÔMICA USANDO O MÉTODO DE COMBUSTÃO IN-SITU PARA RESERVATÓRIOS DE ÓLEOS PESADOS

PME 3344 Exercícios - Ciclos

5 Correlações entre viscosidade e temperatura

DESTILAÇÃO DE UMA MISTURA BINÁRIA AZEOTRÓPICA

Modelagem de equipamentos térmicos Trocadores de calor

Módulo 2 AVALIAÇÃO DA DEMANDA EM TRANSPORTES

Planejamento e Otimização de Experimentos Ajuste de Modelos de Regressão e Outros Planejamentos

ESTUDO DA INFLUÊNCIA DA VAZÃO DE INJEÇÃO DE VAPOR NO PROCESSO ES-SAGD SEM E COM PERDA DE CARGA E CALOR NO POÇO INJETOR

Utilizado quando se necessita rejeitar calor a baixas temperaturas. O uso do AR como meio de resfriamento tem as seguintes vantagens:

ESTATÍSTICA EXPERIMENTAL

OTIMIZAÇÃO DO TEMPO DE INJEÇÃO DOS BANCOS DE VAPOR E SOLVENTE EM RESERVATÓRIO DO NORDESTE BRASILEIRO

AVALIAÇÃO DO PROCESSO DE OBTENÇÃO DE LEITE EM PÓ PELO PROCESSO DE SECAGEM EM SPRAY DRYER

Classificaçã. ção o dos trocadores de vaporizaçã. ção. Trocadores de vaporização com circulação forçada. Vaporização na carcaça. Vaporização nos tubos

PQI 3211 Engenharia de Produção e Processos Químicos O setor de Indústrias Químicas no Brasil

TRATAMENTO ESTATÍSTICO DE DADOS EXPERIMENTAIS

Transcrição:

Toledo Paraná, 8 a 30 de Outubro de 013 Modelagem Matemática do processo de Evaporação Multi-efeito de Licor Negro na Indústria de Papel e Celulose Rafael L. S. Canevesi 1*, Cristiano L. Diel, Carlos E. Borba 3, Fernando Palú 3. Edson A. da Silva 3 (1) Mestrando do programa de Pós-Graduação em Engenharia Química. Universidade Estadual do Oeste do Paraná UNIOESTE, Campus Toledo-PR. rafael_canevesi@hotmail.com () Engenheiro Químico da Klabin Papéis Monte Alegre. Telemaco Borba - PR. (3) Professor do programa de Pós-Graduação em Engenharia Química. Universidade Estadual do Oeste do Paraná UNIOESTE, Campus Toledo-PR. Resumo: O processo de evaporação é amplamente empregado em indústria de diversos setores, entre eles destaca-se o setor de papel e celulose. O emprego de modelos fenomenológicos e estatísticos consiste numa poderosa ferramenta utilizada na otimização de processos industriais. Dessa forma, o presente trabalho tem como principal objetivo representar o processo de evaporação na indústria de papel em regime permanente por meio de um modelo fenomenológico e posteriormente empregar metodologias estatísticas para elaboração de um modelo empírico, como também, avaliar a influencia de variáveis como temperatura do ultimo evaporador, vazão, composição e temperatura de alimentação, razão entre as alimentações de vapor vivo, temperaturas do vapor vivo no consumo de vapor e na composição final. Os resultados obtidos mostraram que o consumo de vapor tem influencia somente da vazão de entrada de licor, enquanto a composição na saída sofre influencia das variáveis temperatura do ultimo efeito, vazão e composição de alimentação e a temperatura do vapor vivo empregado. Palavras Chave: modelo fenomenológico, delineamento composto central rotacional, planejamento experimental Plackett-Burman, licor negro INTRODUÇÃO O processo de evaporação é empregado em diversões segmentos da indústria, como a indústria de papel, açúcar e álcool, farmacêuticas, cloro, laticínios entre outros setores (BHARGAVA et al, 008). Na indústria de papel e celulose normalmente emprega-se evaporadores do tipo casco tubo, empregando sistemas de evaporação em múltiplos efeitos (EMPIE, 009). Em uma planta de evaporação de múltiplos efeitos o vapor produzido pela primeira unidade evaporadora é utilizado em uma unidade posterior, tornando dessa forma o consumo de vapor menor que a utilização de um único efeito (MCCABE et al, 1993). O setor de evaporação é responsável pelo consumo de uma parte significativa da energia demandada pela indústria. Dessa forma, qualquer alteração que vise aumentar a eficiência desse processo é de grande Anais do III Encontro Paranaense de Engenharia e Ciência 8 a 30 de Outubro de 013 Toledo PR 144 interesse industrial (KHANAM e MOHANTY, 011). Assim, a utilização de modelos matemáticos para a obtenção de condições de operação que favoreçam a redução do consumo de energia consiste em uma alternativa largamente empregada (BHARGAVA et al 008). Os modelos matemáticos empregados para estes processos consistem em sistemas de equações não lineares levando em conta as condições de alimentação, vapor e estrutura. Na literatura existem diverso modelos matemáticos para conjuntos de evaporação, como os propostos por Agarwal et al (004), Miranda e Simpsom (005) e Bhargava et al (008). Dessa forma, o presente trabalho tem como objetivo a elaboração de um modelo fenomenológico para o processo de evaporação multiefeito, posteriormente empregando analises estatísticas (Plackett- Burman, delineamento composto central

Toledo Paraná, 8 a 30 de Outubro de 013 Rotacional e analise de superfície de resposta) para analisar a influencia das variáveis do processo nas respostas do modelo. MODELAGEM MATEMATICA O modelo matemático foi desenvolvido para o sistema de evaporação apresentado na Figura 1, o fluxo de licor é contracorrente e alimentação de vapor vivo no primeiro e segundo efeito. Os fluxo de licor e condensado são submetidos a expansão flash para a geração de uma quantidade de vapor adicional. Fonte:Adaptado de Bhargava et al (008) Figura 1. Fluxograma do processo estudado por Bhargava et al (008) As variáveis de entrada do modelo matemático, juntamente com os valores empregados utilizados por Bhargava et al (008) são apresentados na Tabela 1. Tabela 1. Paramentos de entrada do modelo propostos por Bhargava et al (008). 5 Parâmetros Valor Unidade Temp. Ultimo Efeito 35 K Alimentação de Licor 15.6 kg/s Composição de Alimentação 0.118 - Temperatura de Alimentação 337.9 K Razão das vazões de vapor vivo 0.35 - Temperatura do vapor vivo Evaporador 1 413 K Evaporador 40 K Áreas de Troca Térmica Evaporadores 1 e 540 m² Evaporadores 3 a 6 660 m² Evaporado 7 690 m² O modelo tem como resposta todas as temperaturas e pressões de operação dos efeitos e unidades de flash, temperaturas, Anais do III Encontro Paranaense de Engenharia e Ciência 8 a 30 de Outubro de 013 Toledo PR 145 vazões, composições dos fluxos de licor, bem como todas as temperaturas e vazões dos fluxos de condenado e vapor. Modelo matemático genérico para um evaporador O balanço de massa global para o i-ésimo evaporador é representado matematicamente pela Equação (01) i LSi VSi 0 (01) Onde i e LS i são as vazões de Licor e VS i a vazão de vapor. Já o balanço material para o componente solido pode ser representado pela Equação (0). XE ii XSiLSi 0 (0) Onde XE i e XS i consiste na composição da corrente de licor. O balanço de energia é representado pela Equação (03). LS VS t ih i LSih i VS ih i Q 0 (03) 6 Onde Q, consiste no calor recebido através da troca térmica, h, h LS e H VS consiste na entalpia das correntes, sendo representado matematicamente pela Equação (04).

Toledo Paraná, 8 a 30 de Outubro de 013 t Q AU i it (04) O balanço material para as correntes de vapor no evaporador é apresentado na Equação (05). VE i CSi 0 (05) Onde VE é a vazão de vapor que entra na calandra e CS a vazão de condensado que sai do sistema. Já o balanço de energia para as correntes de vapor consiste na Equação (06). VE CS t VE ih i CSih i Q 0 (06) Onde H VE e h CS consiste nas entalpias das correntes. Nas equações (3) e (6), as entalpias de vapor são calculadas admitindo comportamento de gás ideal. Modelo matemático genérico para uma unidade flash O balanço de massa global para a i-ésima unidade flash é semelhante ao empregado aos evaporadores, representado pela Equação (01). Nas unidades de flash de licor (TF08 e TF09) obtém-se também o balanço de massa para o componente, de forma análoga aos evaporadores pela Equação (). Já o balanço de energia para cada unidade flash é representado pela Equação (07). LS VS ih i LSih i VSi H i 0 (07) Para as unidades flash de condensado (TF10-TF16) considera-se que o valor da composição (XE i e XS i ) como igual a zero. Elevação do Ponto de Ebulição (EPE) Para o calculo da elevação do ponto de ebulição utilizara a relação funcional proposta por Ray et al (199), representada pela Equação (08). EPE C 1 C X (08) Onde X consiste na fração de sólidos, C 1 e C parâmetros retirados de Bhargava et al (008). Capacidade Calorifica do Licor (Cp) Para o calculo das entalpias dos fluxos de licor faz-se necessário o conhecimento do valor da capacidade calorifica do mesmo, todavia, ele apresenta dependência funcional com o teor de sólidos do licor. Bhargava et al (008) emprega uma correlação, representada matematicamente pela Equação (09). Cp L 4,1871 0, 54x (09) Onde x consiste na fração de sólidos em dispersão na corrente. Coeficiente Global de Troca Térmica (U) O coeficiente global de troca térmica (kjm²k -1 ) consiste em uma função de diversos fatores, entre os mais importantes podem-se citar três, composição, gradiente de temperatura e vazão. Dessa forma, Bhargava et al (008) propôs um correlação empírica para o coeficiente U, representada matematicamente pela Equação (10).,37 1,3 0, 07 T x F U 0,6 (10) 40 0,6 5 Os valores da composição e vazão empregado na Equação (10) consiste na media aritmética entre a entrada e saída de licor do evaporador. Pressão de Vapor Para pressão de operação dos evaporadores, bem como unidades flash emprega-se a equação de Antoine, utilizando os parâmetros retirados de Smith et al (007). Análise Estatística Aplicou-se um planejamento experimental Plackett-Burman para avaliar a influencia dos fatores apresentado na Tabela. Os fatores que se apresentaram significativos foram submetidos a um DCCR e a metodologia de superfície de resposta. Tabela. Limites empregados para o Plackett- Burman. Fator (-1) (+1) Temp. Ultimo Efeito 30.0 33 Alimentação de Licor 14.1 17. Composição de Alimentação 0.106 0.130 Temperatura de Alimentação 331.4 344.3 Razão das vazões de vapor vivo 0.317 0.387 Temperatura do vapor vivo Evaporador 1 399. 47. Evaporador 405.5 434.9 Anais do III Encontro Paranaense de Engenharia e Ciência 8 a 30 de Outubro de 013 Toledo PR 146

Temp. Efeitos Bhargava et al (008) (K) III Encontro Paranaense de Engenharia e Ciência Toledo Paraná, 8 a 30 de Outubro de 013 As análises estatísticas para todos os planejamentos propostos foram realizadas utilizando-se o software Statistica 7.0. RESULTADOS E DISCUSSÃO Os resultados obtidos no modelo matemático foram comparados com os dados apresentados por Bhargava et al (008). Os desvios encontrados estão dentro da faixa aceitável, como pode ser visualizado na Figura. Dessa forma, o modelo matemático está apto para os testes estatísticos. 390 375 360 345 XE 8-0.3017 0.0397 0.0834-0.1509 R 0.0573 0.0397 0.3861 0.086 TVE 1 0.147 0.0397 0.1165 0.1073 TVE 95 0.0397 0.0868 0.1447 Composição final do Licor Intercepção -0.1779 0.0080 0.085-0.1779 TV 7-68 0.0169 0.0435-0.134 8-099 0.0169 0.0133-050 T 8 0.090 0.0169 0.3360 0.0145 XE 8-679 0.0169 0.0189-40 R -0.07 0.0169 066-0.0114 TVE 1 371 0.0169 0.046 0.186 TVE 30 0.0169 0.0147 0.3651 Já para a composição do licor no final do sistema de evaporação, cinco fatores (Temperatura do evaporador 7, vazão e composição da Alimentação e as temperaturas de vapor vivo) se mostraram significantes para o intervalo de confiança estudado. 330 330 345 360 375 390 Temp. Efeitos Modelo (K) Figure. Modelo elaborado vs. dados obtidos por Bhargava et al (008). O planejamento de Plackett-Burman foi utilizado para avaliar quais fatores apresentam significancia no modelo. A estimativa dos efeitos principais dos fatores e demais cálculos estatísticos para o planejamento estão apresentadas na Tabela 3. Os valores destacados em negrito e itálico indicam que o efeito é significativo para o intervalo de confiança de 95% (p < 0,05). Nota-se que para a variável resposta consumo de vapor somente um fator (vazão de entrada de licor) mostrou-se significante no intervalo de confiança estudado. Tabela 3. Estimativa dos efeitos a partir do planejamento Plackett-Burman. Vazão de Vapor Vivo Efeito Erro Padrão p-valor Coeficiente Intercepção -0.1401 0.0187 0.0846-0.1401 TV 7 0.0533 0.0397 080 0.066 8 1.147 0.0397 0.05 64 T 8-0.3588 0.0397 0.070-0.1794 Anais do III Encontro Paranaense de Engenharia e Ciência 8 a 30 de Outubro de 013 Toledo PR 147 Tabela 4. Estimativa dos efeitos a partir do planejamento DCCR. Efeito E. Padrão p-valor Coef. Intercep. 41 0.006 0.000 41 TV7(L) -0.049 0.00 0.000-0.05 TV7(Q) -0.003 0.003 9-0.00 8(L) -0.110 0.00 0.000-0.055 8(Q) 0.009 0.003 0.005 0.004 XE8(L) -0.056 0.00 0.000-0.08 XE8(Q) 0.01 0.003 0.000 0.006 TVE1(L) 0.05 0.00 0.000 0.06 TVE1(Q) -0.009 0.003 0.003-0.005 TVE(L) 0.091 0.00 0.000 0.045 TVE(Q) -0.009 0.003 0.005-0.004 TV7vs. 8 0.007 0.00 0.005 0.003 TV7vs. XE8 0.005 0.00 0.044 0.00 TV7vs. TVE1 0.000 0.00 0.998 0.000 TV7vs. TVE 0.000 0.00 15 0.000 8 vs. XE8 0.011 0.00 0.000 0.005 8 vs. TVE1-0.008 0.00 0.001-0.004 8vs. TVE -0.013 0.00 0.000-0.006 XE8 vs. TVE1-0.005 0.00 0.01-0.003 XE8 vs. TVE -0.009 0.00 0.000-0.005

Toledo Paraná, 8 a 30 de Outubro de 013 TVE1 vs. TVE 0.013 0.00 0.000 0.007 Para a variável composição, elaborou-se um planejamento DCCR com as variáveis que mostraram significância no teste anterior, sendo necessários 43 testes ( 5 +.5+1). A estimativa dos efeitos principais e das interações das variáveis para o planejamento DCCR são apresentados na Tabela 4, em que (L) representa a parte linear e (Q) a parte quadrática do modelo. Os valores destacados em negrito e itálico indicam que o efeito é significativo para o intervalo de confiança de 95% (p < 0,05). Com base nos resultados obtidos na metodologia Plackett-Burman, foi proposto para o consumo de vapor um modelo de linear. A Equação 11 representa o modelo estatístico obtido. VT 05 0.164 9 (11) Onde VT consiste na vazão total de vapor vivo consumido pelo sistema. A equação (1) representa o modelo estatístico obtido a partir do DCCR, levando em conta somente os fatores significativos para o intervalo de confiança estudado. X 9 (a) 35-0.046TV 7-0.0548 8 0.0056 8-0.080XE 8 0.0073XE 0.059TVE 1-0.0036TVE 1 0.0453TVE - 0.0033TVE 0.0033TV 78 0.003TV 7 XE8 0.00538 XE8-0.0039 8TVE 1-0.0064 8TVE -0.006XE 8TVE 1-0.0046XE 8TVE 0.0066TVE 1TVE (b) 8 (1) As analises de variância para os dois modelos propostos é apresentado na Tabela 5, bem como os valores da distribuição F. Para um intervalo de confiança de 95%, tem-se o valor tabelado de F, com os respectivos graus de liberdade é igual a 40,54 e,18 respectivamente para cada modelo. Assim, como os valores de F obtidos pelos modelos são maiores que os valores tabelados, ambos os modelos propostos são validos para predizer o comportamento do processo. Tabela 5. Analise de Variância (ANOVA) para os modelos propostos. SQ GL MQ F Vazão de Vapor Vivo Modelo 1.0703 1 1.0703 0700.16 Resíduo 0.0005 9 0.0001 Total 1.0708 Composição final do Licor Modelo 0.309 17 0.018186 546.55 Resíduo 0.0008 5 3.33E-05 Total 0.3100 4 Nas superfícies de respostas se percebe que as variáveis que mais influenciam na resposta consistem na vazão e composição de alimentação (Figura 3a, 3b, 3c). Também, pode-se observar que a significancia da temperatura de vapor vivo dos dois efeitos apresenta efeito similar na resposta (Figura 3c e 3d, 3j). As superfícies de respostas obtidas para a variável composição são apresentadas na Figura 3. (c) (d) 5 5 5 (e) (f) (g) (h) Anais do III Encontro Paranaense de Engenharia e Ciência 8 a 30 de Outubro de 013 Toledo PR 148

Toledo Paraná, 8 a 30 de Outubro de 013 5 0.9 5 5 5 (i) (j) Figura 3. Superfícies de Respostas para a variável composição da saída em função: (a)tv7 e 8; (b)tv7 e XE8; (c)tv7 e TVE1; (d)tv7 e TVE; (e)8 e XE8; (f)8 e TVE1; (g)8 e TVE; (h)xe8 e TVE1; (i)xe8 e TVE; (j)tve1 e TVE. A temperatura do ultimo efeito apresenta pequena influencia na resposta como pode ser observado nas Figuras 3a-3d. Contudo, como pode ser visualizado na Figura 3, não foi possível encontrar ponto ótimo para o intervalo estudado. CONCLUSÕES O presente trabalho conseguiu reproduzir com eficiência o modelo matemático proposto por Bhargava et al (008). A metodologia de delineamento experimental Plackett-Burman mostrou que o consumo de vapor da unidade evaporadora é uma função linear da vazão de licor de entrada, bem como a composição de saída é influenciada significativamente pela temperatura do ultimo efeito, vazão de entrada de licor, composição de entrada de licor, e as temperaturas de vapor vivo. O modelo estatístico obtido com a metodologia DCCR é valido para descrever o modelo matemático. Todavia, não foi possível obter o ponto ótimo de operação do sistema. AGRADECIMENTOS A Klabin Papéis Monte Alegre pelo financiamento do projeto. REFERÊNCIAS BIBLIOGRÁFICAS AGARWAL, V. K., ALAM, M. S.,; GUPTA, S. C.; Mathematical model for existing multiple effect evaporator systems. Chemical Engineering World, v.39, p.76 78, 004. BHARGAVA, R.; KHANAM, S.; MOHANTY, B.; RAY, A. K., Simulation of flat falling film evaporator system for concentration of black liquor, Computers and Chemical Engineering, v.3, p. 313-33, 008. EMPIE, H. J.; Fundamentals of the kraft Recovery Process, Atlanta: Tappi Press, 009. KHANAM, S.; MOHANTY, B.; Development of a new model for multiple effect evaporator system, Computers and Chemical Engineering,v.35, p.1983 1993, 011. MCCABE, W.L., SMITH, J.C., HARRIOT, P.; Unit Operations of Chemical Engineering, ed. New York, McGraw-Hill, 1993. MIRANDA, V. e SIMPSON, R.; Modelling and simulation of an industrial multiple effect evaporator: Tomato concentrate, Journal of Food Engineering, v.66, p.03 10, 005. RAY, A. K.; RAO, N. J.; BANSAL, M. C.; MOHANTY, B.; Design data and correlations of waste liquor/black liquor from pulp mills. IPPTA Journal, v. 4, p.1 1, 199. Anais do III Encontro Paranaense de Engenharia e Ciência 8 a 30 de Outubro de 013 Toledo PR 149