Figura 10 Processo de lixiviação em laje de concreto armado.



Documentos relacionados
Pontifícia Universidade Católica do Rio Grande do Sul. Faculdade de Engenharia FACULDADE DE ARQUITETURA E URBANISMO SISTEMAS ESTRUTURAIS II

A Nova NBR Preparo, Controle e Recebimento de Concreto, com Foco na Durabilidade

Concreto Armado. Conteúdo. Bibliografias e Materiais de Estudo. Avaliações 8/8/2016

ENSAIOS DOS MATERIAIS

Estaca Escavada Circular

Resistência dos Materiais

Bibliografia referência para esta aula. Propriedades dos materiais. Propriedades. Solicitações. Propriedades mecânicas. Carga X deformação

INTRODUÇÃO AO CONCRETO ARMADO

Se a força de tração de cálculo for 110 kn, a área do tirante, em cm 2 é A) 5,0. B) 4,5. C) 3,0. D) 2,5. E) 7,5.

CONSIDERAÇÕES SOBRE O PROJETO DE NORMA 18: PARA ESTACAS PRÉ-FABRICADAS DE CONCRETO

CONTROLE TECNOLÓGICO DO CONCRETO

ESTRUTURAS DE MADEIRA

Prof. Marcos Valin Jr. Prof. Marcos Valin Jr. Dosagem CONCRETO. Prof. Marcos Valin Jr. 1

1 ESTRUTURAS DE CONCRETO ARMANDO 1.1 INTRODUÇÃO

Resistência dos Materiais

Resumo. QM - propriedades mecânicas 1

Projeto de estruturas de concreto

LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I

MATERIAIS PARA CONCRETO ARMADO

2QUALIDADE DAS ESTRUTURAS

MANUAL TÉCNICO ESTACAS ESTRELA PERFIS ICP ESTACAS QUADRADAS

OFICINA CULTURAL GLAUCO PINTO DE MORAIS

CEATEC FAC.DE ENGENHARIA CIVIL

Atividade. 04) Qual a finalidade da cura do concreto? De que maneira a cura pode ser realizada (cite no mínimo 3 exemplos)?

Estaca pré-fabricada de concreto

AULA 03 - TENSÃO E DEFORMAÇÃO

patologias Fissura devida à deformação da laje Fissura Laje δ Deformada da laje

QUALIDADE DA ESTRUTURA CONFORMIDADE DO PROJETO DURABILIDADE DAS ESTRUTURAS CRITÉRIOS DE PROJETO VISANDO A DURABILIDADE

VIII - DISPOSIÇÕES CONSTRUTIVAS GERAIS DAS ARMADURAS

DIMENSIONAMENTO DE ESTRUTURAS DE CONCRETO ARMADO

Capítulo 1 Carga axial

PRINCIPAIS TIPOS DE FUNDAÇÕES

Inovação e P&D SEFE 8

Pré-moldados industriais para sistemas de drenagem pluvial (tubos e aduelas) Alírio Brasil Gimenez

ENSAIOS NO CONCRETO. Profa. Dra. Geilma Lima Vieira ENSAIOS NO CONCRETO

TECNOLOGIA DOS MATERIAIS

Manual. Estrela Perfis ICP Estacas Quadradas. Unidade Pindamonhangaba Av. Buriti, s/n Pindamonhangaba SP

Obras-de-arte especiais - armaduras para concreto protendido

NBR 5629 Execução de tirantes ancorados no solo, 17/03/206.

Durabilidade do concreto versus Agressividade do meio

PATOLOGIA DO BETÃO ARMADO

3. Ligações com Solda

O Material Concreto armado

CONHECIMENTOS ESPECÍFICOS TÉCNICO DE LABORATÓRIO MECÂNICA

PERFIL COLABORANTE. Dimensionamento

Poste de concreto seção duplo T

b. Referencias bibliográficas, endereço da página.

PROCESSO DE TREFILAÇÃO

ME-16 MÉTODOS DE ENSAIO MOLDAGEM DE CORPOS-DE-PROVA DE SOLO-CIMENTO

ESTRUTURAS METÁLICAS LIGAÇÕES SOLDADAS Cap Moniz de Aragão

ESTRUTURAS DE MADEIRA

Introdução ao Concreto Estrutural. O concreto simples é associado a armaduras originando o concreto estrutural.

5 - ENSAIO DE COMPRESSÃO. Ensaios Mecânicos Prof. Carlos Baptista EEL

Aula de Laboratório de Materiais de Construção Civil Professora: Larissa Camporez Araújo

Resistência mecânica Isolamento térmico e acústico Resistência ao fogo Estanqueidade Durabilidade

Dosagem para concreto

Projecto cbloco Aspectos Estruturais

1) O que é Não-Linearidade?

Utilização do gesso na construção

Distribuição de Cargas Verticais

Mecânica Geral. Aula 04 Carregamento, Vínculo e Momento de uma força

EFEITO DE INIBIDORES DE HIDRATAÇÃO NA RESISTÊNCIA DE ADERÊNCIA À TRAÇÃO EM ARGAMASSAS DE REVESTIMENTO

Professor: José Junio Lopes

Todo concreto estrutural deverá ser usinado e dosado em peso, não se aceitando dosagens volumétricas.

Materiais de Construção Civil. Aula 09 parte 2. Concreto

EXEMPLO DE PONTE DE CONCRETO ARMADO, COM DUAS VIGAS PRINCIPAIS

As argamassas podem ser classificadas com relação à vários critérios, alguns dos quais são propostos no Quadro 1.

Aços Longos. Perfis e Barras Linha Estrutural e Serralheria

Principais elementos de liga. Cr Ni V Mo W Co B Cu Mn, Si, P e S (residuais)

Aço Inoxidável Ferrítico ACE P410D

PROVA DE CONHECIMENTOS ESPECÍFICOS Cód. 09/A

ESCOPO DA ACREDITAÇÃO ABNT NBR ISO/IEC ENSAIO. Preparação de amostras para ensaios de compactação, caracterização e teor de umidade

PATOLOGIA DE FUNDAÇÕES DE EDIFÍCIOS CAUSADAS POR AÇÕES AMBIENTAIS

Resposta Questão 2. a) O N O b) Linear

MATERIAIS DE CONSTRUÇÃO CIVIL. Casa de plástico reciclado - Affresol Reino Unido

E S P E C I F I C A Ç Õ E S T É C N I C A S

FATEC - SP Faculdade de Tecnologia de São Paulo. ESTACAS DE CONCRETO PARA FUNDAÇÕES - carga de trabalho e comprimento

FOLHA DE CAPA CONTROLE DE REVISÃO DAS FOLHAS

ABNT ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS

ESTADO DE TENSÃO DOS FILETES DA ROSCA DO OBTURADOR DE BAIONETA USADOS EM CÂMARAS HIDROSTÁTICAS PARA PRESSÕES DE ATÉ 100 MPa.

Reabilitação e Reforço de Estruturas

Metrologia Professor: Leonardo Leódido

RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL Aula 05 TRAÇÃO, COMPRESSÃO E CISALHAMENTO

Capítulo 3 - PROPRIEDADES MECÂNICAS DOS MATERIAIS

MEMORIAL DESCRITIVO. Serviços Preliminares

ES015 - Projeto de Estruturas Auxiliado por Computador: Cálculo e Detalhamento

2. MEDIDORES DE TEMPERATURA POR DILATAÇÃO/EXPANSÃO

PROBLEMAS DE TERMOLOGIA

Física Térmica Exercícios. Dilatação.

NBR 7584 (1995) Concreto endurecido Avaliação da dureza superficial pelo esclerômetro de reflexão

Estacas Injetadas. O consumo de cimento da calda ou argamassa injetada deve ser no mínimo de 350 Kgf/m³.

ÍNDICE DE REVISÕES DESCRIÇÃO E/OU FOLHAS ATINGIDAS

O princípio da ação e reação (3a Lei de Newton) leva a outro conceito: o da. Até quando um corpo consegue reagir, ou resistir, a uma forca aplicada?

PROGRAMA SETORIAL DA QUALIDADE DOS COMPONENTES DO SISTEMA DRYWALL (PSQ-Drywall)

sistema construtivo Steel Frame

Construção Civil. Lajes Nervuradas com EPS / Fachadas e Rodatetos em EPS. A leveza do EPS, gerando economia

RESITÊNCIA DE ADERÊNCIA À TRAÇÃO DA ARGAMASSA COLANTE EM DIFERENTES SUPERFÍCIES

Materiais de Construção Civil. Aula 08. Cimento Portland

RESPOSTAS 1 - Quais são os dois tipos de penetradores encontrados no ensaio de Dureza Rockwell?

Capítulo 8 PROPRIEDADES DAS ROCHAS

Transcrição:

Aços para Concreto Armado 3) Generalidades e Mecanismos de Deterioração O aço empregado em barras nas peças de concreto armado é uma liga constituída principalmente de ferro e carbono, à qual são incorporados outros elementos para melhoria das propriedades. O aço é usado em conjunto com o concreto com a finalidade principal de resistir aos esforços de tração, que não são suportados pelo concreto. Segundo a NBR 6118:2014, a massa específica dos aços para concreto armado pode ser tomada como γ=7850kg/m 3. O valor do coeficiente de dilatação térmica do aço, para intervalos de temperatura entre 20 o C e 150 o C, pode ser considerado de α=10-5 / o C. Alguns mecanismos de deterioração das armaduras de concreto armado são apontados pela NBR 6118:2014 dentre os quais podem-se destacar: Lixiviação por ação de águas que dissolvem e carreiam os compostos hidratados da pasta de cimento. Trata-se de um fenômeno mais comum em lajes de concreto armado com impermeabilização deficiente segundo ilustra a Figura 10. Figura 10 Processo de lixiviação em laje de concreto armado. Expansão por ação de águas e solos que contenham ou estejam contaminados com sulfatos, dando origem a reações expansivas e deletérias com a pasta de cimento hidratado; 14

Expansão por ação das reações entre os álcalis do cimento e certos agregados reativos; Trata-se da chamada reação álcali-agregado (RAA) que consiste numa reação química lenta entre constituintes do agregado e hidróxidos alcalinos, na presença de água. Esta reação provoca o surgimento de um gel expansível causador de alto processo de fissuração em estruturas de concreto armado conforme ilustra a Figura 11. Figura 11 Presença de reações álcali-agregado em blocos de fundação de edifícios. Segundo a NBR 6118:2014 os mecanismos preponderantes de deterioração relativos à armadura são: Despassivação por carbonatação, ou seja, por ação do gás carbônico da atmosfera; O teste de carbontação pode ser facilmente realizado através da aplicação de fenolftaleína que reage formando-se cores distintas segundo o tipo de ambiente (ácido incolor, neutro incolor ou básico (10<PH<8 rosa, PH>10 roxa). A Figura 12 ilustra este procedimento. Figura 12 Teste de fenolftaleína para medição de carbonatação do concreto. Fonte: [http://cimentoitambe.com.br] Despassivação por elevado teor de íon cloro (cloreto). A presença de cloretos é preponderante em estruturas de concreto em ambiente marinho (Figura 13). 15

Figura 13 Degradação das armaduras em ponte de concreto armado por ação de cloretos em ambiente marinho. Visando-se garantir a durabilidade, qualidade e proteção adequada das estruturas de concreto armado, a NBR 6118:2014 estipula algumas diretrizes a serem seguidas pelo projetista, iniciando-se pela determinação da classe de agressividade ambiental conforme a Tabela 1. Tabela 1 Classes de agressividade ambiental segundo a NBR 6118:2014. Classificação geral do tipo de ambiente Agressividade para efeito de projeto Classe de agressividade ambiental Risco de deterioração da estrutura I Fraca Rural Submersa Insignificante II Moderada Urbana 1,2 Pequeno III Forte Marinha 1 Industrial 1,2 Grande IV Muito Forte Industrial 1,3 Respingos de maré Elevado 1) Pode-se admitir um microclima com uma classe de agressividade mais branda (um nível acima) para ambientes internos secos (salas, dormitórios, banheiros, cozinhas e áreas de serviço de apartamentos residenciais e conjuntos comerciais ou ambientes com concreto revestido com argamassa e pintura). 2) Pode-se admitir uma classe de agressividade mais branda (um nível acima) em: obras em regiões de clima seco, com umidade relativa do ar menor ou igual a 65%, partes da estrutura protegidas de chuva em ambientes predominantemente secos, ou regiões onde chove raramente. 3) Ambientes quimicamente agressivos, tanques industriais, galvanoplastia, branqueamento em indústrias de celulose e papel, armazéns de fertilizantes, indústrias químicas. Frente a classe de agressividade, deve-se garantir uma quantidade mínima de relação água/cimento, resistência à compressão e cobrimento segundo as tabelas abaixo: Tabela 2 Qualidade do concreto frente a classe de agressividade segundo a NBR 6118:2014. Concreto Tipo Classe de Agressividade I II III IV Relação a/c CA 0,65 0,60 0,55 0,45 em massa CP 0,60 0,55 0,50 0,45 Classe do CA C20 C25 C30 C40 concreto CP C25 C30 C35 C40 16

Tabela 3 Cobrimento do concreto frente a classe de agressividade segundo a NBR 6118:2014. Classe de agressividade ambiental Tipo de Elemento I II III IV Estrutura Cobrimento nominal (mm) Concreto Armado Concreto Protendido Laje 20 25 35 45 Viga/Pilar 25 30 40 50 Contato com 30 40 50 o Solo Laje 25 30 40 50 Viga/Pilar 30 35 45 55 O cálculo do cobrimento nominal estipulado na Tabela 3 leva-se em consideração uma tolerância de execução: c nom = c min + c onde: c nom representa o cobrimento nominal, c min é o cobrimento mínimo e c é a tolerância de execução para o cobrimento cujo valor estipulado por norma é igual a 10mm. Para garantir o cobrimento mínimo (c min ), o projeto e a execução devem considerar o cobrimento nominal (c nom ), que é o cobrimento mínimo acrescido da tolerância de execução ( c). Assim, as dimensões das armaduras e os espaçadores devem respeitar os cobrimentos nominais, estabelecidos na Tabela 3, para c = 10 mm. Quando houver um controle adequado de qualidade e limites rígidos de tolerância da variabilidade das medidas durante a execução, pode ser adotado o valor c = 5 mm, mas a exigência de controle rigoroso deve ser explicitada nos desenhos de projeto. Permite-se, então, a redução dos cobrimentos nominais, prescritos na Tabela 3, em 5 mm. Os cobrimentos nominais e mínimos estão sempre referidos à superfície da armadura externa, em geral à face externa do estribo. O cobrimento nominal de uma determinada barra deve sempre ser: c nom φ barra c nom φ feixe = φ n = φ. n onde: φ barra corresponde ao diâmetro da armadura longitudinal de tração e φ feixe corresponde ao diâmetro considerado do feixe de barras igual ao produto entre o diâmetro de uma barra pela raiz quadrada do número de barras que compoem o feixe. 4) Comportamento Mecânico e Classificação O comportamento mecânico do aço usado em armaduras de concreto armado pode ser avaliado segundo o procedimento experimental determinado pela NBR 6892-1:2013 (Materiais metálicos Ensaio de tração à temperatura ambiente). 17

Basicamente utiliza-se um ensaio de tração direta efetuado em uma máquina de ensaios universal cujos valores de alongamento da barra são representados por um relógio comparador (extensômetro) ligado diretamente à barra conforme ilustra a Figura 14 abaixo. O comportamento mecânico tensão-deslocamento pode ser verificado na Figura 15. Nota-se que o comportamento mecânico pré-pico (antes que a tensão de escoamento seja atingida) á basicamente elástico-linear e, portanto, condizente com a Lei de Hooke. Uma vez atingida a tensão de escoamento, percebe-se a formação de um patamar de escoamento cujos valores de deslocamento são acrescidos para um mesmo nível de carga e tensão. O trecho pós-pico caracteriza-se por um pequeno acréscimo de tensão sob grande variação de deslocamentos. Na Figura 15, o valor f y corresponde a tensão de escoamento média obtida em ensaio. Figura 14 Ensaio de tração direta em barras do tipo CA com diâmetro de 20mm. 90 Patamar de escoamento Trecho pós-pico f y 80 70 Tensão (kn/cm 2 ) 60 50 40 30 20 10 Trecho elástico-linear (pré-pico) cp 01 cp 02 cp 03 0 0 5 10 15 20 25 30 35 40 45 50 Deslocamento (mm) Figura 15 Resultado de ensaio de tração direta em barras do tipo CA-60. O diagrama simplificado tensão-deformação usado em projeto pode ser visualizado na Figura 16. 18

σ s f yk α ε yk 10 ε s Figura 16 Diagrama tensão-deformação simplificado usado em projeto. Onde: σ s = tensão normal nas armaduras; ε s = deformação normal nas armaduras; f yk = tensão de escoamento característica das armaduras levando-se em consideração que 95% das amostras possuam resistência mínima condizente com o valor característico; ε s = 10 (dez por mil) corresponde a deformação de ruptura utilizada em projeto; E s = tg(α) é o módulo de elasticidade longitudinal das armaduras cujo valor assumido pela NBR 6118:2007, na falta de ensaios de caracterização, é de 210000MPa; A norma brasileira NBR 7480:2007 (Aço destinado a armaduras para estruturas de concreto armado Especificação) informa as diretrizes relacionadas à classificação das armaduras usadas em concreto armado. Segundo as prescrições da norma, a tensão de escoamento característica varia entre varia entre 250 MPa (25 kn/cm 2 ) e 600MPa (60 kn/cm 2 ), sendo sua nomenclatura baseada neste limite de escoamentosendo feita a notação da seguinte forma: CA 25, CA-50 ou CA-60 em que: CA: Tipo de concreto no qual será aplicado, sendo CA correspondente a concreto armado; 50: Limite de escoamento (fyk) em kn/cm 2 ; O aço é vendido em forma de barras (para aços com φ 5mm) e fios (φ 10mm). Os fios são vendidos em rolos e as barras possuem comprimento variando entre 10 e 12 m, sendo limitado por norma o valor de 11,00 m ± 9%. As Tabelas 4 e 5 apresentam as características dos fios e barras mais utilizados no mercado brasileiro. 19

Tabela 4 Características dos fios usados em estruturas de concreto armado segundo a NBR 7480:2007. Diâmetro nominal φ Área de seção Massa nominal (mm) (mm 2 ) (kg/m) Perímetro (mm) 2,4 4,5 0,036 7,5 3,4 9,1 0,071 10,7 3,8 11,3 0,089 11,9 4,2 13,9 0,109 13,2 4,6 16,6 0,130 14,5 5,0 19,6 0,154 15,7 5,5 23,8 0,187 17,3 6,0 28,3 0,222 18,8 6,4 32,2 0,253 20,1 7,0 38,5 0,302 22,0 8,0 50,3 0,395 25,1 9,0 70,9 0,558 29,8 10,0 78,5 0,617 31,4 Tabela 5 Características das barras usadas em estruturas de concreto armado segundo a NBR 7480:2007. Diâmetro nominal φ Área de seção Massa nominal (mm) (mm 2 ) (kg/m) Perímetro (mm) 6,3 31,2 0,245 19,8 8,0 50,3 0,395 25,1 10 78,5 0,617 31,4 12,5 122,7 0,963 39,3 16 201,1 1,578 50,3 20 314,2 2,466 62,8 22 380,1 2,984 69,1 25 490,9 3,853 78,5 32 804,2 6,313 100,5 40 1256,6 9,865 125,7 BIBLIOGRAFIA CONSULTADA ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6118: Projeto de estruturas de concreto: procedimento. Rio de Janeiro, 2014. 238 p.. NBR 7480: Aço destinado a armaduras para estruturas de concreto armado - Especificação. Rio de Janeiro, 2007. 13 p.. NBR 6892-1: Materiais metálicos Ensaio de tração à temperatura ambiente. Rio de Janeiro, 2013. 70 p. GAMINO, A.L., Modelagem física e computacional de estruturas de concreto reforçadas com CFRP. Tese de Doutorado, Escola Politécnica da Universidade de São Paulo, 2007, 259p. 20