LISTA de ALORIMETRIA PROFESSOR ANDRÉ 1. (Uerj 2014) Observe na tabela os valores das temperaturas dos pontos críticos de fusão e de ebulição, respectivamente, do gelo e da água, à pressão de 1 atm, nas escalas elsius e Kelvin. Pontos críticos Temperatura K Fusão 0 273 Ebulição 100 373 onsidere que, no intervalo de temperatura entre os pontos críticos do gelo e da água, o mercúrio em um termômetro apresenta uma dilatação linear. Nesse termômetro, o valor na escala elsius correspondente à temperatura de 313 K é igual a a) 20 b) 30 c) 40 d) 60 2. (Fuvest 2014) Uma lâmina bimetálica de bronze e ferro, na temperatura ambiente, é fixada por uma de suas extremidades, como visto na figura abaixo. Nessa situação, a lâmina está plana e horizontal. A seguir, ela é aquecida por uma chama de gás. Após algum tempo de aquecimento, a forma assumida pela lâmina será mais adequadamente representada pela figura: Note e adote: 5 1 O coeficiente de dilatação térmica linear do ferro é 1,2 10. 5 1 O coeficiente de dilatação térmica linear do bronze é 1,8 10. Após o aquecimento, a temperatura da lâmina é uniforme. a) b) c) d) e) 3. (Uerj 2014) Um sistema é constituído por uma pequena esfera metálica e pela água contida em um reservatório. Na tabela, estão apresentados dados das partes do sistema, antes de a esfera ser inteiramente submersa na água. Partes do sistema esfera metálica água do reservatório Temperatura inicial ( ) apacidade térmica (cal/ ) 50 2 30 2000
A temperatura final da esfera, em graus elsius, após o equilíbrio térmico com a água do reservatório, é cerca de: a) 20 b) 30 c) 40 d) 50 4. (Espcex (Aman) 2014)Em uma casa moram quatro pessoas que utilizam um sistema de placas coletoras de um aquecedor solar para aquecimento da água. O sistema eleva a temperatura da água de 20 para 60 todos os dias. onsidere que cada pessoa da casa consome 80 litros de água quente do aquecedor por dia. A situação geográfica em que a casa se encontra faz com que a placa do aquecedor receba por cada metro quadrado a quantidade de 8 2,016 10 J de calor do sol em um mês. Sabendo que a eficiência do sistema é de 50%, a área da superfície das placas coletoras para atender à demanda diária de água quente da casa é de: Dados: onsidere um mês igual a 30 dias alor específico da água: c=4,2 J/g Densidade da água: d=1 kg/l a) 2,0 m 2 b) 4,0 m 2 c) 6,0 m 2 d) 14,0 m 2 e) 16,0 m 2 5. (Ufsm 2013)A figura a seguir ilustra um termômetro clínico de mercúrio. A leitura da temperatura é dada pela posição da extremidade da coluna de mercúrio sobre uma escala. onsiderando os fenômenos envolvidos no processo de determinação da temperatura corporal de um paciente, analise as afirmativas: I. A variação de volume da coluna de mercúrio é diretamente proporcional ao volume inicial dessa coluna. II. O volume da coluna de mercúrio varia até que seja atingido o equilíbrio térmico entre o termômetro e o corpo do paciente. III. Se o mercúrio for substituído por álcool, a escala termométrica não precisa ser alterada. Está(ão) correta(s) a) apenas I. b) apenas II. c) apenas I e II. d) apenas III. e) I, II e III. 6. (Espcex (Aman) 2013)Um termômetro digital, localizado em uma praça da Inglaterra, marca a temperatura de 10,4 F. Essa temperatura, na escala elsius, corresponde a a) 5 b) 10 c) 12 d) 27 e) 39 7. (Unicamp 2013)A boa ventilação em ambientes fechados é um fator importante para o conforto térmico em regiões de clima quente. Uma chaminé solar pode ser usada para aumentar a ventilação de um edifício. Ela faz uso da energia solar para aquecer o ar de sua parte superior, tornando-o menos denso e fazendo com que ele suba, aspirando assim o ar dos ambientes e substituindo-o por ar vindo do exterior.
a) A intensidade da radiação solar absorvida por uma placa usada para aquecer o ar é igual a 400 W/m 2. A energia absorvida durante 1,0 min por uma placa de 2 m 2 é usada para aquecer 6,0 kg de ar. O calor específico do ar é J c 1000. Qual é a variação de temperatura do ar nesse período? kg 3 b) A densidade do ar a 290 K é ρ 1,2 kg/m. Adotando-se um número fixo de moles de ar mantido a pressão constante, calcule a sua densidade para a temperatura de 300 K. onsidere o ar como um gás ideal. 8. (Epcar (Afa) 2013) No gráfico a seguir, está representado o comprimento L de duas barras A e B em função da temperatura θ. Sabendo-se que as retas que representam os comprimentos da barra A e da barra B são paralelas, pode-se afirmar que a razão entre o coeficiente de dilatação linear da barra A e o da barra B é a) 0,25. b) 0,50. c) 1,00. d) 2,00. 9. (Unesp 2013) Determinada substância pura encontra-se inicialmente, quando t = 0 s, no estado sólido, a 20, e recebe calor a uma taxa constante. O gráfico representa apenas parte da curva de aquecimento dessa substância, pois, devido a um defeito de impressão, ele foi interrompido no instante 40 s, durante a fusão da substância, e voltou a ser desenhado a partir de certo instante posterior ao término da fusão, quando a substância encontrava-se totalmente no estado líquido. Sabendo-se que a massa da substância é de 100 g e que seu calor específico na fase sólida é igual a 0,03 cal/(g. ), calcule a quantidade de calor necessária para aquecê-la desde 20 até a temperatura em que se inicia sua fusão, e determine o instante em que se encerra a fusão da substância. 10. (Uerj 2013) Em um laboratório, as amostras X e Y, compostas do mesmo material, foram aquecidas a partir da mesma temperatura inicial até determinada temperatura final. Durante o processo de aquecimento, a amostra X absorveu uma quantidade de calor maior que a amostra Y. onsiderando essas amostras, as relações entre os calores específicos c X e c Y, as capacidades térmicas X e Y e as massas m X e m Y são descritas por: a) c X = c Y X > Y m X >m Y b) c X >c Y X = Y m X = m Y c) c X = c Y X > Y m X = m Y d) c X >c Y X = Y m X >m Y 11. (Pucrj 2013)Um líquido é aquecido através de uma fonte térmica que provê 50,0 cal por minuto. Observa-se que 200 g deste líquido se aquecem de 20,0 em 20,0 min. Qual é o calor específico do líquido, medido em cal/(g )?
a) 0,0125 b) 0,25 c) 5,0 d) 2,5 e) 4,0 12. (Ufg 2013)Uma bomba calorimétrica, usada para determinar o poder calorífico de combustíveis, é composta de uma câmara de combustão imersa em um tanque de paredes adiabáticas contendo 800 litros de água, conforme ilustrado na figura a seguir. No experimento de combustão de 4,6 kg de etanol ( 2 H 6 O) são produzidos dióxido de carbono e água. Sabendo-se que a entalpia de combustão do etanol é de 1376 kj/mol e que a água do tanque permanece líquida, a variação de temperatura da água do tanque em graus elsius e a massa total dos produtos da combustão em kg são, respectivamente, Dados: c água = 1,0 cal/g. ; 1cal 4,0 J. a) 6,9 e 19,0. b) 43 e 14,2. c) 43 e 4,6. d) 172 e 4,6. e) 172 e 14,2. 13. (Uerj 2013) onsidere duas amostras, X e Y, de materiais distintos, sendo a massa de X igual a quatro vezes a massa de Y. As amostras foram colocadas em um calorímetro e, após o sistema atingir o equilíbrio térmico, determinou-se que a capacidade térmica de X corresponde ao dobro da capacidade térmica de Y. Admita que c X e c Y sejam os calores específicos, respectivamente, de X e Y. c X A razão é dada por: cy a) 1 4 b) 1 2 c) 1 d) 2 14. (Enem 2013)Aquecedores solares usados em residências têm o objetivo de elevar a temperatura da água até 70. No entanto, a temperatura ideal da água para um banho é de 30. Por isso, deve-se misturar a água aquecida com a água à temperatura ambiente de um outro reservatório, que se encontra a 25. Qual a razão entre a massa de água quente e a massa de água fria na mistura para um banho à temperatura ideal? a) 0,111. b) 0,125. c) 0,357. d) 0,428. e) 0,833. 15. (Ufpr 2013) É cada vez mais frequente encontrar residências equipadas com painéis coletores de energia solar. Em uma residência foram instalados 10 m 2 de painéis com eficiência de 50%. Supondo que em determinado dia a temperatura inicial da água seja de 18, que se queira aquecê-la até a temperatura de 58 e que nesse local a
energia solar média incidente seja de 120 W/m 2, calcule o volume de água que pode ser aquecido em uma hora. 16. (Pucrj 2013)Três cubos de gelo de 10,0 g, todos eles a 0,0, são colocados dentro de um copo vazio e expostos ao sol até derreterem completamente, ainda a 0,0. alcule a quantidade total de calor requerida para isto ocorrer, em calorias. a) 3,7 10 1 b) 2,7 10 1 c) 1,1 10 2 d) 8,0 10 2 e) 2,4 10 3 onsidere o calor latente de fusão do gelo L F = 80 cal/g 17. (Unifesp 2013)O gráfico representa o processo de aquecimento e mudança de fase de um corpo inicialmente na fase sólida, de massa igual a 100g. Sendo Q a quantidade de calor absorvida pelo corpo, em calorias, e T a temperatura do corpo, em graus elsius, determine: a) o calor específico do corpo, em cal/(g ), na fase sólida e na fase líquida. b) a temperatura de fusão, em, e o calor latente de fusão, em calorias, do corpo. 18. (Uepg 2013)O gráfico abaixo mostra a evolução da temperatura de um corpo de massa m, constituído por uma substância pura, em função da quantidade de calor que lhe é fornecida. om base nas informações desse gráfico, assinale o que for correto. 01)Em T 20 e T 80 o corpo sofre mudanças de fases. 02)A quantidade de calor cedido ao corpo enquanto a sua temperatura variou entre 20 e 80 é denominado calor sensível. 04)Em T 0 o corpo se encontra na fase sólida. 08)O calor cedido ao corpo durante as mudanças de fase é denominado calor latente. 19. (Fuvest 2013) Em um recipiente termicamente isolado e mantido a pressão constante, são colocados 138 g de etanol líquido. A seguir, o etanol é aquecido e sua temperatura T é medida como função da quantidade de calor Q a ele transferida. A partir do gráfico de TxQ, apresentado na figura abaixo, pode-se determinar o calor específico molar para o estado líquido e o calor latente molar de vaporização do etanol como sendo, respectivamente, próximos de
Dados: Fórmula do etanol = 2 H 5 OH; Massas molares = (12g/mol), H(1g/mol), O(16g/mol). a) 0,12 kj/(mol ) e 36 kj/mol. b) 0,12 kj/(mol ) e 48 kj/mol. c) 0,21 kj/(mol ) e 36 kj/mol. d) 0,21 kj/(mol ) e 48 kj/mol. e) 0,35 kj/(mol ) e 110 kj/mol. 20. (Ufpa 2013)A presença de vapor d água num ambiente tem um papel preponderante na definição do clima local. Uma vez que uma quantidade de água vira vapor, absorvendo uma grande quantidade de energia, quando esta água se condensa libera esta energia para o meio ambiente. Para se ter uma ideia desta quantidade de energia, considere que o calor liberado por 100 g de água no processo de condensação seja usado para aquecer uma certa massa m de água líquida de 0 até 100. om base nas informações apresentadas, calcula-se que a massa m, de água aquecida, é: (Dados: alor latente de fusão do gelo LF = 80 cal/g; alor latente de vaporização LV = 540 cal/g; alor específico da água, c = 1 cal/g.) a) 540 g b) 300 g c) 100 g d) 80 g e) 6,7 g 21. (Uel 2013) O cooler, encontrado em computadores e em aparelhos eletroeletrônicos, é responsável pelo resfriamento do microprocessador e de outros componentes. Ele contém um ventilador que faz circular ar entre placas difusoras de calor. No caso de computadores, as placas difusoras ficam em contato direto com o processador, conforme a figura a seguir. Sobre o processo de resfriamento desse processador, assinale a alternativa correta. a) O calor é transmitido das placas difusoras para o processador e para o ar através do fenômeno de radiação. b) O calor é transmitido do ar para as placas difusoras e das placas para o processador através do fenômeno de convecção. c) O calor é transmitido do processador para as placas difusoras através do fenômeno de condução. d) O frio é transmitido do processador para as placas difusoras e das placas para o ar através do fenômeno de radiação. e) O frio é transmitido das placas difusoras para o ar através do fenômeno de radiação. 22. (Ime 2013) Em um experimento existem três recipientes E 1, E 2 e E 3. Um termômetro graduado numa escala X assinala 10 X quando imerso no recipiente E 1, contendo uma massa M 1 de água a 41 F. O termômetro, quando imerso no recipiente E 2 contendo uma massa M 2 de água a 293 K, assinala 19 X. No recipiente E 3 existe inicialmente
uma massa de água M 3 a 10. As massas de água M 1 e M 2, dos recipientes E 1 e E 2, são transferidas para o recipiente E 3 e, no equilíbrio, a temperatura assinalada pelo termômetro é de 13 X. onsiderando que existe somente M troca de calor entre as massas de água, a razão 1 M é: 2 M3 a) 2 0,2 M 2 b) 2 M3 c) 1 M 2 d) 0,5 M3 e) 0,5 2 M 2 23. (Enem 2013)Em um experimento foram utilizadas duas garrafas PET, uma pintada de branco e a outra de preto, acopladas cada uma a um termômetro. No ponto médio da distância entre as garrafas, foi mantida acesa, durante alguns minutos, uma lâmpada incandescente. Em seguida a lâmpada foi desligada. Durante o experimento, foram monitoradas as temperaturas das garrafas: a) enquanto a lâmpada permaneceu acesa e b) após a lâmpada ser desligada e atingirem equilíbrio térmico com o ambiente. A taxa de variação da temperatura da garrafa preta, em comparação à da branca, durante todo experimento, foi a) igual no aquecimento e igual no resfriamento. b) maior no aquecimento e igual no resfriamento. c) menor no aquecimento e igual no resfriamento. d) maior no aquecimento e menor no resfriamento. e) maior no aquecimento e maior no resfriamento. 24. (Unesp 2013) Por que o deserto do Atacama é tão seco? A região situada no norte do hile, onde se localiza o deserto do Atacama, é seca por natureza. Ela sofre a influência do Anticiclone Subtropical do Pacífico Sul (ASPS) e da cordilheira dos Andes. O ASPS, região de alta pressão na atmosfera, atua como uma tampa, que inibe os mecanismos de levantamento do ar necessários para a formação de nuvens e/ou chuva. Nessa área, há umidade perto da costa, mas não há mecanismo de levantamento. Por isso não chove. A falta de nuvens na região torna mais intensa a incidência de ondas eletromagnéticas vindas do Sol, aquecendo a superfície e elevando a temperatura máxima. De noite, a Terra perde calor mais rapidamente, devido à falta de nuvens e à pouca umidade da atmosfera, o que torna mais baixas as temperaturas mínimas. Essa grande amplitude térmica é uma característica dos desertos. (iência Hoje, novembro de 2012. Adaptado.) Baseando-se na leitura do texto e dos seus conhecimentos de processos de condução de calor, é correto afirmar que o ASPS e a escassez de nuvens na região do Atacama. As lacunas são, correta e respectivamente, preenchidas por a) favorece a convecção favorece a irradiação de calor b) favorece a convecção dificulta a irradiação de calor c) dificulta a convecção favorece a irradiação de calor d) permite a propagação de calor por condução intensifica o efeito estufa e) dificulta a convecção dificulta a irradiação de calor 25. (Fuvest 2012)
Para ilustrar a dilatação dos corpos, um grupo de estudantes apresenta, em uma feira de ciências, o instrumento esquematizado na figura acima. Nessa montagem, uma barra de alumínio com 30cm de comprimento está apoiada sobre dois suportes, tendo uma extremidade presa ao ponto inferior do ponteiro indicador e a outra encostada num anteparo fixo. O ponteiro pode girar livremente em torno do ponto O, sendo que o comprimento de sua parte superior é 10cm e, o da inferior, 2cm. Se a barra de alumínio, inicialmente à temperatura de 25 º, for aquecida a 225 º, o deslocamento da extremidade superior do ponteiro será, aproximadamente, de Note e adote: oeficiente de dilatação linear do alumínio: a) 1 mm. b) 3 mm. c) 6 mm. d) 12 mm. e) 30 mm. 2 10 º 5 1 26. (Pucrj 2012)Uma barra metálica, que está sendo trabalhada por um ferreiro, tem uma massa M = 2,0 kg e está a uma temperatura T i. O calor específico do metal é c M = 0,10 cal/g. Suponha que o ferreiro mergulhe a barra em um balde contendo 10 litros de água a 20. A temperatura da água do balde sobe 10 com relação à sua temperatura inicial ao chegar ao equilíbrio. alcule a temperatura inicial T i da barra metálica. Dado: c água = 1,0 cal/g e d água = 1,0 g/cm 3 a) 500 b) 220 c) 200 d) 730 e) 530 27. (Uerj 2012) onsidere X e Y dois corpos homogêneos, constituídos por substâncias distintas, cujas massas correspondem, respectivamente, a 20 g e 10 g. O gráfico abaixo mostra as variações da temperatura desses corpos em função do calor absorvido por eles durante um processo de aquecimento. Determine as capacidades térmicas de X e Y e, também, os calores específicos das substâncias que os constituem. 28. (Unesp 2012) larice colocou em uma xícara 50 ml de café a 80, 100 ml de leite a 50 e, para cuidar de sua forma física, adoçou com 2 ml de adoçante líquido a 20. Sabe-se que o calor específico do café vale 1 cal/(g. ), do leite vale 0,9 cal/(g. ), do adoçante vale 2 cal/(g. ) e que a capacidade térmica da xícara é desprezível.
onsiderando que as densidades do leite, do café e do adoçante sejam iguais e que a perda de calor para a atmosfera é desprezível, depois de atingido o equilíbrio térmico, a temperatura final da bebida de larice, em, estava entre a) 75,0 e 85,0. b) 65,0 e 74,9. c) 55,0 e 64,9. d) 45,0 e 54,9. e) 35,0 e 44,9. 29. (Unifesp 2012)Um calorímetro de capacidade térmica 10 cal/º, contendo 500 g de água a 20 º, é utilizado para determinação do calor específico de uma barra de liga metálica de 200 g, a ser utilizada como fundo de panelas para cozimento. A barra é inicialmente aquecida a 80 º e imediatamente colocada dentro do calorímetro, isolado termicamente. onsiderando o calor específico da água 1,0 cal/(g º) e que a temperatura de equilíbrio térmico atingida no calorímetro foi 30 º, determine: a) a quantidade de calor absorvido pelo calorímetro e a quantidade de calor absorvido pela água. b) a temperatura final e o calor específico da barra. 30. (Unicamp 2012)Em 2015, estima-se que o câncer será responsável por uma dezena de milhões de mortes em todo o mundo, sendo o tabagismo a principal causa evitável da doença. Além das inúmeras substâncias tóxicas e cancerígenas contidas no cigarro, a cada tragada, o fumante aspira fumaça a altas temperaturas, o que leva à morte células da boca e da garganta, aumentando ainda mais o risco de câncer. 4 a) Para avaliar o efeito nocivo da fumaça, N0 9,0 10 células humanas foram expostas, em laboratório, à fumaça de cigarro à temperatura de 72º, valor típico para a fumaça tragada pelos fumantes. Nos primeiros instantes, o 2t número de células que permanecem vivas em função do tempo t é dado por N(t) N0 1 τ, onde τ é o tempo necessário para que 90% das células morram. O gráfico abaixo mostra como varia com a temperatura θ. Quantas células morrem por segundo nos instantes iniciais? b) A cada tragada, o fumante aspira aproximadamente 35 mililitros de fumaça. A fumaça possui uma capacidade J calorífica molar 32 e um volume molar de 28 litros/mol. Assumindo que a fumaça entra no corpo K mol humano a 72º e sai a 37º, calcule o calor transferido ao fumante numa tragada.
GABARITO e RESOLUÇÃO Resposta da questão 1: [] Da relação entre essas duas escalas: T TK 273 313 273 T 40. Resposta da questão 2: [D] oeficiente de dilatação linear do bronze é maior que o do ferro, portanto a lâmina de bronze fica com comprimento maior, vergando como mostrado na alternativa [D]. Resposta da questão 3: [B] A análise dos dados dispensa cálculos. A capacidade térmica da esfera metálica é desprezível em relação à da água contida no reservatório, portanto, a temperatura da água praticamente não se altera, permanecendo em cerca de 30. Mas, comprovemos com os cálculos. onsiderando o sistema água-esfera termicamente isolado: Qesf Qágua 0 esf Tesf água Tágua 0 2 T 50 2.000 T 30 0 2 T 100 2.000 T 60.000 0 60.100 2.002 T 60.100 0 T 30,0998 2.002 T 30. Resposta da questão 4: [E] Dados: 5 Vág 4 80 320 L mág 320 kg 3,2 10 g; c 4,2 J / g ; 60 20 40; 8 2 50% 0,5; I r 2,016 10 J / m mês. alculando a quantidade de calor que deve ser absorvida diariamente: 5 6 Q mág c 3,2 10 4,2 40 Q 53,76 10 J. A intensidade de radiação absorvida diariamente é: 8 Ir 0,5 2,016 10 6 J I abs Iabs 3,36 10 t 30 2 m dia alculando a área total das placas: 6 2 6 3,36 10 J / dia 1 m 53,76 10 A 6 2 6 53,76 10 J / dia A m 3,36 10 2 A 16 m. Resposta da questão 5: [] [I]. orreta. Da equação da dilatação: ΔV V0 γδθ. Quanto maior o volume inicial (V 0 ), tanto maior a dilatação. [II]. orreta.
Atingido o equilíbrio térmico, cessa a transferência de calor do paciente para o termômetro, cessa o aquecimento do termômetro e não há mais variação de volume. [III]. Incorreta. ΔV V 0 γδθ. O coeficiente de dilatação ( γ ) depende da substância termométrica, portanto, se o mercúrio for substituído por álcool, a dilatação será diferente, necessitando alterar a graduação da escala. Resposta da questão 6: [] Usando a equação de conversão entre as escalas elsius e Fahrenheit: θ θf 32 θf 32 10,4 32 5 21,6 θ 5 θ 5 5 9 9 9 9 θ 12. Resposta da questão 7: a) Dados: I = 400 W/m 2 ; A = 2 m 2 ; Δt = 1 min = 60 s. alculando a quantidade de calor absorvida e aplicando na equação do calor sensível: Q I A Δt Q 400 2 60 48.000 J. Q 48000 Q m c Δθ Δθ m c 6 1000 Δθ 8. b) Dados: T 1 = 290 K; T 2 = 300 K; ρ 1 = 1,2 kg/m 3. Sendo a pressão constante, da equação geral dos gases: V1 V2 m m ρ1 T1 1,2 290 ρ2 T1 T2 ρ1 T1 ρ2 T2 T2 300 ρ 2 3 1,16 kg / m. Resposta da questão 8: [D] O coeficiente de dilatação linear é dado por: ΔL L α Δθ 0 0 ΔL α L Δθ Logo: α A L ΔL 0A A Δθ A ΔLB e αb L0B ΔθB Sabendo-se que as retas que representam os comprimentos da barra A e da barra B são paralelas podemos concluir ΔLA ΔL B α que a relação. A Logo, é dado por: ΔθA ΔθB αb α α A B α α ΔLA L0A ΔθA L0B 2 ΔLB L0A L Δθ A B 0B 2 B
Resposta da questão 9: Aplicando a expressão do calor sensível para a fase sólida: QS m c s Δθ QS 100 0,03320 20 3 300 QS 900 cal. omo a potência da fonte é constante e a substância é pura, o gráfico completo (também fora de escala) é o apresentado abaixo. Usando semelhança de triângulos: ΔAB ΔBDE A BE 128 t 148 128 B DE 480 320 800 480 128 t 20 160 320 128 t 10 t 118 s. Resposta da questão 10: [A] omo as duas amostras são do mesmo material, elas apresentam o mesmo calor específico: cx cy c. Sendo Q X e Q Y as quantidades de calor absorvidas pelas amostras X e Y, respectivamente: Q X X Δθ Q X Q Y X Y. Q Y Y Δθ X m X c Y m Y c Resposta da questão 11: [B] X Y m X m Y. Q mcδθ P. Δt 50x20 P c 0,25cal / (g ) Δt Δt m. Δθ 200x20 Resposta da questão 12: [B] Dados: = 12 g/mol; H = 1 g/mol; O = 16 g/mol, m et = 4,6 kg = 4600 g; m água = 800 kg; c água = 4 kj/kg. Q = 1376 kj/mol A massa molar do etanol ( 2 H 6 O) é: Met 12 2 1 6 16 46 g. O número de mols (n) de etanol é:
met 4600 n n 100 mol. M 46 et Aplicando a equação do calor sensível: Q mágua c água água kj kj 137.600 100mol1376 800kg 4 mol kg. 3200 43. alculando a massa total dos produtos (m P ): A reação completa do etanol é: 2H6 O 3 O2 2 O2 3 H2O. omo se trata de 100 mols: m 100 m m 100 2 12 16 2 3 2 16 14.200 g P O2 H20 m P 14,2 kg. Resposta da questão 13: [B] Dados apresentados no enunciado: m x x 4m 2 y y A relação entre a capacidade térmica de um corpo e sua massa é dada por: m c, em que c corresponde ao calor específico sensível. Assim sendo, temos: m c 2m c 4m c 2m c x x y y y x y y 2c c x y cx 1 cy 2 Resposta da questão 14: [B] onsiderando o sistema termicamente isolado, temos: Qágua1 Qágua2 0 mquente cágua 30 70 mfria cágua 30 25 mquente 5 1 mquente 0,125. mfria 40 8 mfria Resposta da questão 15: Dados: A= 10 m 2 ; I = 120 W/m 2 ; 58 18 40; t 1h 3.600s; 50% 0,5. onsiderando o calor específico da água, c 4.000J / kg, a quantidade de calor (Q) absorvida em 1 hora é: 6 Q I A t 0,5 120 10 3.600 Q 2,16 10 J. Mas: Q m c 6 Q 2,16 10 m m c 3 4 10 40 m 13,5 kg.
V Resposta da questão 16: [E] O calor em questão é latente. 2 Q ml 10x80 800cal 8,0x!0 cal Resposta da questão 17: a) Dado: m = 100 g. Do gráfico: Q sól = (400 0) = 400 cal; Q líq = (1200 800) = 400 cal. 400 c sól csól 0,1 cal /g. Q 100 40 Q m c Δθ c m Δθ 400 c líq clíq 0,2 cal /g. 100 20 b) Do gráfico, a temperatura de fusão é 40. OBS.:a questão pede o calor latente de fusão, que é: Q fusão = (800 400) = 400 cal. Mas vamos entender calor latente de fusão como calor específico latente de fusão(l fusão ). Assim: Q fusão 400 Qfusão m L fusão L fusão m 100 L fusão 4 cal/g. Resposta da questão 18: 01 + 02 + 04 + 08 = 15. Analisando cada uma das afirmativas: [01] orreta.em T = 20, ocorre fusão e em T = 80 ocorre vaporização. [02] orreta. O calor que provoca variação de temperatura é denominado calor sensível. [04] orreta. omo há dois patamares, há duas mudanças de fases: sólido líquido a 20 e líquido gasoso a 80. Portanto, em T = 0 o corpo está na fase sólida. [08] orreta. alor que provoca mudança de fase é denominado calor latente. Resposta da questão 19: [A] Dados: Fórmula do etanol = 2 H 5 OH; Massas molares = (12g/mol), H(1g/mol), O(16g/mol); m = 138 g alculando a massa molar do etanol: M = 2(12) + 5(1) + 16 + 1 = 46 g. O número de mols contido nessa amostra é: m 148 n n 3. M 36 Analisando o gráfico, notamos que durante o aquecimento a energia absorvida na forma de calor sensível (Q S ) e a correspondente variação de temperatura () são, respectivamente: QS 35 kcal; 78 ( 18) 96. Aplicando a equação do calor sensível na forma molar: Q 35 Q S n c L c L c L 0,12 kj / mol. n 3 96 Ainda do gráfico, a quantidade de calor absorvida durante a vaporização (Q V ) é: Q 145 35 110 kj. Aplicando a equação do calor latente, também na forma molar: Qv 110 QV n L V L V LV 36,7 kj / mol. n 3 Resposta da questão 20: [A]
mv LV 100 540 Qágua Q cond m c Δθ mv L V m m 540 g. c Δθ 1100 Resposta da questão 21: [] O processador e as placas difusoras estão em contato, portanto a transmissão do calor se dá por condução. Resposta da questão 22: [B] Lembrando-se da equação termométrica que relaciona as escalas elsius (), Fahrenheit (F) e Kelvin (K), teremos: F 32 K 273 5 9 5 Para E 1 a 41 F: F 32 41 32 5 10X 41F 5 5 9 5 9 Para E 2 a 293K: K 273 K 273 293 273 20º19X 293K 20 5 5 Determinando a equação termométrica entre X e : 5 X 10 5 X 10 20 5 19 10 15 9 omo a temperatura de equilíbrio se dá a 13ºX: 5 X 10 5 13 10 10 13X 10 15 9 15 9 Analisando a troca de energia entre os recipientes: Q1 Q2 Q3 0 M1 c ΔT1 M2 c ΔT2 M3 c ΔT3 0 M1 ΔT1 M2 ΔT2 M3 ΔT3 0 M 1 (10 5) M 2 (10 20) M 3 (10 10) 0 5M1 10M2 0 M1 2 M2 Resposta da questão 23: [E] Em relação à garrafa pintada de branco, a garrafa pintada de preto comportou-se como um corpomelhor absorsor durante o aquecimento e melhor emissor durante o resfriamento, apresentando, portanto, maior taxa de variação de temperatura durante todo o experimento. Resposta da questão 24: [] omo o ASPS funciona como tampa, ele dificulta a convecção e a não formação de nuvens facilita a irradiação. Resposta da questão 25: []
Dados: L 0 = 30 cm; = 210 6-1 ; 0 = 25 ; q = 225 ; R = 10 cm; r = 2 cm. alculando a dilatação (d) da barra: 5 d L 30 210 225 25 d 0,12 cm d 1,2 mm. 0 Pela figura abaixo, vemos que o deslocamento da extremidade superior (D) é diretamente proporcional ao da extremidade inferior (d). D R D 10 12 D d r 1,2 2 2 D 6 mm. Resposta da questão 26: [E] Dados: 3 M 2 kg 2.000 g; Vágua 10 L; dágua 1,0 g / cm 1.000 g / L; cágua 1,0 cal / g ; c M 0,10 cal / g ; T f 30 ; água 10. onsiderando que o sistema seja termicamente isolado, temos: Qágua Qbarra 0 d V c M c água M M 0 f 1.000 10 110 2.000 0,1 30 T 0 500 30 T T 530. Resposta da questão 27: APAIDADES TÉRMIAS: x y x x Qx 80cal 80cal Δθ (281 273)K 8K x 10cal / K Qy 40cal 40cal Δθ (283 273)K 10K y 4cal / K ALORES ESPEÌFIOS SENSÌVEIS: m.c 10 20.c c x x x x x y y y y y 0,5cal / gk m.c 4 10.c c 0,4cal / gk f f Resposta da questão 28: [] V afé = 50 ml; V Leita = 100 ml; V Adoçante = 2 ml;c afé = 1 cal/gº; c Leita = 0,9 cal/gº; c Adoçante = 2 cal/gº. onsiderando o sistema termicamente isolado, vem:
Q Q Q 0 mc mc mc 0 afé Leite Adoçante afé Leite Adoçante omo as densidades ( ) dos três líquidos são iguais, e a massa é o produto da densidade pelo volume (m = V), temos: Vc Vc Vc 0 afé Leite Adoçante 50 1 80 100 0,9 50 2 2 20 0 50 4.000 90 4.500 4 80 0 144 8.580 8.580 144 59,6. Portanto, a temperatura de equilíbrio está sempre 55 e 64,9. Resposta da questão 29: Dados: = 10 cal/ ; m A = 500 g;m B = 200 g; T 0 = T 0A = 20 ; T 0B = 80 ; T eq = 30. a) Quantidade de calor (Q ) absorvido pelo calorímetro: Q T 1030 20 Q 100 cal. Quantidade de calor (Q A ) absorvido pela água: QA mcata 5001 30 20 Q 5.000 cal. b) A temperatura final da barra é igual à temperatura de equilíbrio térmico do sistema. final TB 30. O sistema é termicamente isolado. Então: Q Q Q 0 100 5.000 m c T 0 5.100 200 c 30 80 0 A B B B B B 5.100 c B cb 0,51 cal / g. 10.000 Resposta da questão 30: a) Dado: N 0 = 910 4. Do gráfico, para θ 72 τ 5 s; t 1 s. Aplicando a expressão fornecida no enunciado, calculamos o número de células que permanecem vivas nos primeiros instantes. 2t 4 2(1) N(t) N0 1 9 10 1 9 10 4 0,6 N(t) 5,4 10 4. τ 5 O número de células que morrem (N (t)) é: 4 4 4 N'(t) N0 N(t) 9,0 10 5,4 10 N'(t) 3,6 10. b) Dados: 3 J V 35 ml 3510 L; Vmolar 28 L / mol; Δθ 72 37 35; 32. K mol alculando o número de mols: 28 L 1 mol 3 35 10 3 n n 1,25 10 mol. 3 35 10 n mol 28 A quantidade de calor transferido ao fumante é dada pela equação do calor sensível na forma molar. 3 Q n Δθ 1,25 10 3235 Q 1,4 J.