Comunicações Ópticas



Documentos relacionados
Faculdade de Engenharia. Fibras Ópticas. OpE - MIB 2007/2008

Principais Meios de Transmissão Par Trançado Cabo Coaxial Fibra Ótica Micro Ondas

Enunciados de Problemas

Sistemas de Comunicações Ópticas : O físico inglês John Tyndall demonstrou o princípio de guiamento da luz,

Camada Física. Camada Física

Sistemas de Telecomunicações I

Comunicação Dados: Conceitos e Evolução Prof. Valderi Leithardt Ulbra Canoas

Bibliografia. Forouzan, Behrouz A. Comunicação de Dados e Redes de Computadores. 4. ed. McGraw-Hill, 2008.

ESCOLA SECUNDÁRIA DO MONTE DA CAPARICA Curso de Educação e Formação de Adultos NS Trabalho Individual Área / UFCD

REDES DE COMPUTADORES E TELECOMUNICAÇÕES MÓDULO 7

Rede Telefónica Pública Comutada - Principais elementos -

Comunicação de Dados. Aula 9 Meios de Transmissão

WDM e suas Tecnologias

Capítulo 2: Introdução às Redes de Computadores Camada Física. Redes para Automação Industrial Luiz Affonso Henderson Guedes

Prof. Samuel Henrique Bucke Brito

RANIERI P. MENESES RELATÓRIO FINAL DE PROJETO MEIOS DE TRANSMISSÃO

Redes de Computadores

Comunicação de Dados. Aula 5 Transmissão Analógica

Curso: Sistemas de Informação Disciplina: Redes de Computadores Prof. Sergio Estrela Martins

REDES DE TELECOMUNICAÇÕES

Métodos normalizados para medição de resistência de aterramento Jobson Modena e Hélio Sueta *

4. Tarefa 16 Introdução ao Ruído. Objetivo: Método: Capacitações: Módulo Necessário: Análise de PCM e de links

ICORLI INSTALAÇÃO, CONFIGURAÇÃO E OPERAÇÃO EM REDES LOCAIS E INTERNET

Alguma das vantagens e desvantagens dos computadores ópticos é apresenta a seguir.

Redes de Computadores. Origem, Conceitos e Métodos

REDE DE COMPUTADORES TECNOLOGIA ETHERNET

Detector de intrusão Série Professional Sabe quando activar o alarme. Sabe quando não o fazer.

Linha de transmissão

Estes sensores são constituídos por um reservatório, onde num dos lados está localizada uma fonte de raios gama (emissor) e do lado oposto um

Largura de banda e Throughput (Tanenbaum,, 2.1.2)

PUBLICAÇÕES: TECNOMETAL n.º 149 (Novembro/Dezembro de 2003) KÉRAMICA n.º 264 (Janeiro/Fevereiro de 2004)

Comunicações Digitais Manual do Aluno Capítulo 7 Workboard PCM e Análise de Link


Redes de Computadores

ELECTRÓNICA DE POTÊNCIA

Evolução Telefonia Móvel

Sistemas de Comunicação Óptica

05 - Camada de Física. 10 de novembro de 2014

UNIVERSIDADE FEDERAL DE SANTA MARIA COLÉGIO TÉCNICO INDUSTRIAL DE SANTA MARIA Curso de Eletrotécnica

Debate / Palestra sobre Meios de Transmissão de Dados

Redes de Computadores

Vejamos, então, os vários tipos de cabos utilizados em redes de computadores:

Matriz do Teste de Avaliação de Física e Química A - 11.º ano 1 de fevereiro de minutos

Tecnologia nacional potencia sustentabilidade

16/24 Portas Comutador de Ethernet Rápida montável em Computador de Secretária & Prateleira

Manual de segurança SIL

NORMA PARA CERTIFICAÇÃO E HOMOLOGAÇÃO DE TRANSMISSORES E TRANSCEPTORES MONOCANAIS ANALÓGICOS AM

1 Problemas de transmissão

Mídias Físicas Utilizadas Cabo Coaxial e Par Trançado. Prof. Alexandre Beletti Ferreira

Instrumentação para Espectroscopia Óptica. CQ122 Química Analítica Instrumental II 2º sem Prof. Claudio Antonio Tonegutti

Engenharia de Software

Escola Náutica Infante D. Henrique Departamento de Radiotecnica

Rede Telefónica Pública Comutada - Principais elementos -

2 Conceitos de transmissão de dados

Fundamentos de Rede e Cabeamento Estruturado. A camada Física

MÓDULO 4 Meios físicos de transmissão

3 Técnicas de conversão de comprimento de onda utilizando amplificador óptico semicondutor

UNIVERSIDADE CATÓLICA DE PETRÓPOLIS CENTRO DE ENGENHARIA E COMPUTAÇÃO

Sinais Elétricos Digital Analógico

NASCE A ERA DA COMUNICAÇÃO ELÉCTROMAGNÉTICA

2 Meios de transmissão utilizados em redes de telecomunicações 2.1. Introdução

REDES DE COMPUTADORES E TELECOMUNICAÇÕES MÓDULO 1

Certificação de redes ópticas de 10GbE

Analisador de Espectros

Modos de Propagação. Tecnologia em Redes de Computadores 5º Período Disciplina: Sistemas e Redes Ópticas Prof. Maria de Fátima F.

Introdução. O que é Comunicar?

Modelo de Referência OSI. Modelo de Referência OSI. Modelo de Referência OSI. Nível Físico (1)

INTRODUÇÃO À REDES DE COMPUTADORES. Dois ou mais computadores conectados um ao outro por um meio de transmissão.

ANÁLISE QUÍMICA INSTRUMENTAL

André Aziz Francielle Santos Noções de Redes

Davidson Rodrigo Boccardo

NCRF 19 Contratos de construção

Sinal analógico x sinal digital. Sinal analógico. Exemplos de variações nas grandezas básicas. Grandezas básicas em sinais periódicos

Camada Física. Bruno Silvério Costa

Introdução ao Controlo Numérico Computorizado I Conceitos Gerais

Apresentação de REDES DE COMUNICAÇÃO

2- Conceitos Básicos de Telecomunicações

STC5 Redes de informação e comunicação

REPLICACÃO DE BASE DE DADOS

26. Dentre as dimensões a seguir, núcleo/casca, quais representam tipicamente fibras monomodo e fibras multimodos, respectivamente?

Redes de Computadores. Prof. André Y. Kusumoto

Rede Wireless ou rede cabeada?

PORTABILIDADE NUMÉRICA UMA SOLUÇÃO ORIENTADA PELA SIMPLICIDADE, QUALIDADE E BAIXO CUSTO

Cabeamento Estruturado (CBE)

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSMISSAO E TELEMETRIA

Fibra óptica. A. Lopes e A. Martins. Universidade Nova de Lisboa - Faculdade de Ciências e Tecnologias. Janeiro de 2012

Topologia de rede Ligação Ponto-a-Ponto

Módulo 7 Tecnologia da Ethernet

1.1. Viagens com GPS. Princípios básicos de funcionamento de um GPS de modo a obter a posição de um ponto na Terra.

14. ENSAIOS 14.1 ENSAIOS DE REDES DE PARES DE COBRE

História da Fibra Óptica

ESPECIALISTA EM PESQUISAS NÃO DESTRUTIVAS DE AVARIAS

Seminário sobre energia eléctrica INOTEC

5 Comportamento Dinâmico de um EDFA com Ganho Controlado sob Tráfego de Pacotes

Fundamentos de Telecomunicações

Prof. Samuel Henrique Bucke Brito

MORAES TEIXEIRA RELATÓRIO TECNICO MEIOS DE TRANSMISÃO CABO DE PAR TRANÇADO (SEM BLINDAGEM)

Sistema de comunicação óptica. Keylly Eyglys Orientador: Adrião Duarte

Antenas, Cabos e Rádio-Enlace

Transcrição:

Comunicações Ópticas FEUP (DEEC)

Programa: Parte I Introdução: Sistemas de Comunicação por Fibra Óptica Perspectiva histórica Espectro electromagnético e comprimento de onda da luz Vantagens e desvantagens da fibra óptica como meio de transmissão Elementos de um sistema de comunicação por fibra óptica Transmissão de informação por sinais ópticos Evolução dos sistemas por fibra óptica Redes de fibra óptica Fibras Ópticas: Estruturas e Teoria de Propagação A natureza da luz Definições e leis básicas da óptica Estruturas e análise de raios e modos em fibras ópticas Teoria electromagnética em guias de onda cilíndricos Fibras monomodo Fibras multimodo de índice gradual

Características de Transmissão: Atenuação e Dispersão Atenuação Dispersão Não-linearidades da fibra óptica Fibras Ópticas: Materiais e Técnicas de Fabrico, e Cabos Ópticos Materiais e técnicas de fabrico Cabos ópticos Ligação de Fibras Ópticas Juntas Conectores ópticos

Bibliografia principal: Optical fiber communications, Gerd Keiser, 3ª edição, McGraw-Hill (2000); Optical fiber communications, John Senior, 2ª edição, Prentice-Hall (1992); Bibliografia complementar: Nível básico Understanding fiber optics, Jeff Hecht, 4ª edição, Prentice-Hall (2002) Nível avançado Fiber-optic Communication Systems, Govind Agrawal, 2ª edição, John Wiley & Sons (1997)

Método de Avaliação: Avaliação distribuída Componentes de avaliação: Trabalhos práticos: 4 valores Relatórios: 75% Desempenho: 25% Data limite de entrega: semana de 26 Maio Monografia: 6 valores Parte escrita: 70% Parte oral (apresentação): 30% Data limite de entrega: dia 26 de Maio Data da apresentação oral: semana de 26 de Maio (data a combinar) Prazo limite para escolha dos temas: 28 de Março Exame final: 10 valores

Introdução: Sistemas de Comunicação por Fibra Óptica

Perspectiva histórica A luz tem sido usada em sistemas de comunicação em linha de vista desde a Antiguidade Avanços importantes para este tipo de sistemas ocorreram nos finais do séc. XVIII início do séc. XIX Transmissão guiada de luz por fibras ópticas tornou-se realidade no início da década de 1970 Outras invenções, em particular o LASER, foram de importância vital

Sistemas de comunicação óptica em linha de vista 1791: Telégrafo óptico de Chappe Claude Chappe demonstrou um sistema de sinalização baseado num par de braços de madeira, móveis, instalados no alto de torres localizadas no topo de montes ou colinas 1869: Heliógrafo de espelhos de Mance Adaptado por Henry C. Mance, a partir do heliógrafo inventado por Gauss em 1810, o sistema era constituído por um obturador e dois espelhos: um para colectar a luz solar e o outro para direccionar o feixe de luz. Usado pelos ingleses na Índia até 1890. 1880: Fotofone de Bell Aparelho construído por Alexander Bell, onde um feixe de luz modulado pela voz do utilizador era usado para comunicação com o receptor, onde uma célula de selénio convertia os sinais ópticos em eléctricos para posterior processamento.

Telégrafo óptico de Chappe 1ª Linha a entrar em funcionamento: Paris Lille Por decreto de 4 de Agosto de 1793, é decidido a construção desta ligação. Os primeiros ensaios de campo têm lugar em Abril de 1794, sendo a abertura oficial em Julho desse ano. A linha era composta de 15 estações de retransmissão. Em 30 de Agosto de 1794, entre as 15h20m e as 15h50m foi comunicado à Convenção (governo da altura) que o exército francês tinha retomado a cidade de Condé-sur-l Escaut aos austríacos. Demorou cerca de 30 m a receber a boa nova!!! Foi a prova definitiva da validade do telégrafo de Chappe, marcando o início da sua implementação em larga escala. Em meados do séc. XIX, a rede englobava mais de 5000 km de extensão, interligando 29 cidades, e compreendendo 534 estações centralizadas em Paris. O seu declínio deve-se ao aparecimento do telégrafo eléctrico, inventado por Morse (1838).

Heliógrafo de Mance Demonstrou a sua utilidade nas guerras Anglo-Afegãs, na Índia, nos finais do séc. XIX, e na guerra dos Boers, na África do Sul, no mesmo período. O decréscimo progressivo da sua utilização foi também devido à crescente implantação do telégrafo de Morse. Todavia, mesmo na II Guerra Mundial, tropas canadianas ainda usaram variantes avançadas deste sistema dada a sua fiabilidade, portabilidade e segurança inerente na transmissão de mensagens. Deve-se mencionar que, ainda hoje em dia, em navios e aeroportos, variantes quer do telégrafo de Chappe quer do heliógrafo de Mance ainda são utilizadas.

Fotofone de Bell

Transmissão guiada de luz 1841: A experiência de Colladon Daniel Colladon, um físico suíço, demonstrou nas suas exposições que a luz pode ser guiada no interior de um jacto de água curvo 1880: Sistema de iluminação de Wheeler William Wheeler, um engenheiro hidráulico, idealizou um sistema para iluminação de casas a partir de uma única fonte de luz usando canos com espelhos. A ideia falhou. 1966: Proposta de guias de onda em vidro com baixas perdas Charles Kao e George Hockham concluiram que as perdas no vidro eram devidas a impurezas; previram que a transmissão de luz era possível se fibras ópticas de vidro altamente puro fossem fabricadas. 1972: Primeira fibra óptica com atenuação inferior a 20 db/km Robert Maurer, Donald Keck e Peter Schultz da Corning Glass Inc., USA, fabricaram a primeira fibra com baixa atenuação. 1976: Primeiro sistema comercial de fibras ópticas

A experiência de Colladon

Sistema de iluminação de Wheeler

Espectro electromagnético usado em comunicações A invenção do telégrafo por Morse em 1838 deu origem à era das comunicações eléctricas. Dado que a quantidade de informação que pode ser transmitida está directamente relacionada com a frequência da portadora, na qual a informação é impressa, então um aumento da sua frequência implica, em teoria, um aumento da largura de banda de transmissão e, em consequência, uma maior capacidade de transmitir informação. Assim, a tendência em sistemas de comunicação é o uso de frequências cada vez mais elevadas (ou, equivalentemente, de comprimentos de onda mais curtos).

Espectro da luz e comprimento de onda Comprimento de onda da luz: λ A luz pode ser caracterizada em termos do seu comprimento de onda Análogo à caracterização de um sinal rádio pela sua frequência Expressa-se em mícrons (µm) ou nanómetros (nm) Espectro da luz vísível vai desde o ultra-violeta (UV) ao infra-vermelho (IV) Sistemas de fibra óptica operam em três zonas do IV: ~820, ~1310 e ~1550 nm Estas zonas designam-se por janelas 200 400 600 800 1000 1200 1400 1600 1800 Luz visível Janelas de operação da fibra óptica

Vantagens da fibra óptica como meio de transmissão: Grande largura de banda Baixa atenuação Tamanho e peso reduzido Imunidade a interferências electromagnéticas Isolamento eléctrico Fiabilidade e facilidade de manutenção Matéria-prima abundante e potencial baixo custo - Enorme largura de banda: a gama de de frequências da portadora óptica de 10 13 a 10 16 Hz resulta num potencial de largura de banda excedendo, em várias ordens de grandeza, as de condutores metálicos e mesmo de ondas rádio milimétricas. Apresenta larguras de banda teóricas da ordem de 50 THz, as quais no momento estão longe de serem alcançadas; - Baixa atenuação: os cabos de fibra óptica, fabricados hoje em dia, apresentam fibras com pequena atenuação (baixas perdas) quando comparada com meios de transmissão convencionais (cabos metálicos, microondas, etc). Tal permite cobrir distâncias de transmissão elevadas (da ordem das centenas de quilómetros) sem o auxílio de repetidores ou amplificadores, reduzindo assim os custos e a complexidade do sistema; - Tamanho e peso reduzido: o baixo peso e reduzidas dimensões das fibras ópticas (da ordem de um cabelo humano) são uma vantagem considerável sobre os cabos metálicos. Tal é importante em condutas saturadas nos grandes centros urbanos, bem como em aviões, navios e satélites; - Imunidade a interferências electromagnéticas: deriva de ser um meio dieléctrico, donde ser imune a crosstalk, descargas eléctricas (naturais, como relâmpagos, ou provocadas pelo homem) e ruído impulsivo (accionamento de interruptores, de motores, etc), o que tem particular interesse em aplicações militares; - Isolamento eléctrico: dado serem constituídas por vidro, o qual é um material isolador eléctrico, não é necessário cuidados com malhas de terra, curto-circuitos, etc. - Segurança e privacidade : dado ser um guia de onda em que o sinal óptico é fortemente confinado no interior da sua estrutura, tem inerente um grau de segurança elevado. Por outro lado, a sua intrusão para fins de escuta é difícil e de detecção relativamente fácil, o que garante a privacidade e aumenta a segurança; - Fiabilidade e facilidade de manutenção: resulta essencialmente da sua baixa atenuação, o que implica menos repetidores ou amplificadores ao longo do sistema, logo maior fiabilidade do mesmo. Além do mais, os dispositivos ópticos apresentam, hoje em dia, tempos de vida médios de 20 a 30 anos; - Matéria-prima abundante e potencial baixo custo: resulta do facto de a sílica ser a principal matériaprima de que é fabricada a fibra óptica. Ora, a sílica é extraída da vulgar areia, material abundante e barato. Todavia, o seu processo de fabrico é bastante complexo, logo muito oneroso, e o custo dos componentes activos é elevado, o que torna os sistemas por fibras ópticas apenas competitivos ou mandatórios apenas em aplicações específicas; é o caso de transmissão a longa distância, sistemas de muito alto débito, sistemas de comunicação em ambientes adversos, etc.

Desvantagens da fibra óptica como meio de transmissão: Junção de fibras pode ser mais difícil e oneroso Robustez da fibra, do ponto de vista mecânico, inferior à dos fios de cobre Potência limitada das fontes ópticas, o que condiciona a distância coberta Inadequação a códigos ternários, i.e., a luz não pode ter valores negativos Adaptação complexa a sistemas de múltiplo acesso, limitando o seu uso, por exemplo, em LANs Susceptíveis a níveis elevados de ionização Incapacidade de transportar energia eléctrica

Elementos de um sistema de comunicação Message Source Transmitter Transmission Channel Receiver Message Destination A figura representa os elementos fundamentais de um sistema de comunicação: - Fonte da informação: origem das mensagens a transmitir; - Transmissor: tem como função converter as mensagens num formato adequado às características do meio (ou canal) de transmissão; - Meio de transmissão: é o meio físico que interliga a origem com o destino, ou seja, faz a ligação entre o transmissor e o receptor; pode ser classificado como guiado ou nãoguiado; - Receptor: tem a função de extrair do sinal vindo do meio, possivelmente atenuado e distorcido, a informação transmitida, reconvertendo-a, com o máximo de fidelidade, nas mensagens originais para serem entregues ao seu destino.

Elementos de um sistema de comunicação por fibra óptica Os elementos básicos de um sistema de comunicação por fibra óptica são: - Transmissor óptico: consiste na fonte de luz (LED ou LD) e circuito de modulação associado; - Cabo de fibras ópticas: é o cabo que contém as fibras ópticas, garantindo a sua protecção mecânica e ambiental; - Receptor óptico: consiste de um fotodetector (PIN ou APD) mais circuito de amplificação, decisão e regeneração do sinal. - Juntas e conectores ópticos: a fibra é instalada em troços, sendo necessário a sua união quer através de juntas quer de conectores. As juntas são uniões permanentes, enquanto os conectores podem ser temporários ou semi-permanentes. Componentes adicionais incluem: acopladores ou divisores ópticos; multiplexadores/desmultiplexadores ópticos; amplificadores ópticos; etc.

Projecção do volume de negócios de componentes para sistemas por fibra óptica

Evolução de 5 gerações de sistemas por fibra óptica A figura mostra a evolução dos sistemas de fibras ópticas, os quais com base nas suas características (tipo de fibra, janela de transmissão, tipo de dispositivos activos, etc) são, em geral, classificados em cinco gerações, tendo por base desta classificação o parâmetro taxa de transmissão em Gbit/s x distância de transmissão (1 km). De notar que o desenvolvimento de novas tecnologias e progressos em cada geração implica sistemas de maior capacidade de transmissão de informação.

Transmissão de informação por sinais ópticos Como se transmite a informação usando luz? Ao invés de sistemas eléctricos, a luz não tem níveis negativos Formato tradicional involve ligar/desligar (on/off) a fonte óptica para representar sinais binários 1/0 designa-se por modulação de intensidade Outras técnicas recorrem a formatos mais sofisticados modulação coerente

Modulação SINAL ANALÓGICO SINAL DIGITAL PORTADORA DE SINAL NÃO MODULADA AMPLITUDE SINAL ANALÓGICO FREQUÊNCIA (CICLOS/SEGUNDO) SINAL DIGITAL Modulação em Frequência 1 0 0 1 0 1 1 0 1 0 PORTADORA MODULADA Modulação em Amplitude Modulação em Fase Modulação Quando um sinal, representando uma mensagem, é impresso ou modulado numa portadora, esta é alterada de modo a representar a mensagem que se quer transmitir. Métodos, bem conhecidos, usados para a modulação de um sinal numa portadora são a modulação em frequência e amplitude (figura acima): Modulação em amplitude - a amplitude da portadora é alterada de modo a estar de acordo com o sinal em banda base, mantendo-se constante a frequência da portadora. Modulação em frequência - neste caso, é a frequência da portadora a ser alterada para reflectir a mensagem, enquanto que a amplitude da portadora é mantida constante. Modulação de fase - é um outro método de modulação, onde a fase da portadora é modificada, afectando a sua frequência enquanto que a amplitude permanece constante. Da figura podemos ver também que sinais digitais podem modular a portadora. No caso de canais analógicos, a palavra-chave é "modulação", representada pelo M maiúsculo nas siglas AM, FM e PM (do inglês "Amplitude Modulation", "Frequency Modulation" e "Phase Modulation"). No caso de sinais digitais, a norma é adicionar as letras "SK", de "-shift keying" como em ASK, FSK e PSK. Neste caso representa comutar, alterar (em inglês, "keying") de um dado valor para um outro, seja em amplitude, frequência ou fase, respectivamente.

Modulação em intensidade O formato de modulação mais comum em sistemas por fibra óptica Pode ser implementada quer ao nível eléctrico quer ao nível óptico Sistemas integrados de modulação com LEDs ou LASERs bem desenvolvidos Desenho do receptor relativamente simples Modulação em intensidade Sinal eléctrico NÍVEL 2 NIVEL 1 1 0 1 1 0 1 0 0 1 Sinal óptico

Modulação coerente Sistemas de modulação em banda de canal, tais como ASK, FSK ou PSK Implementação eléctrica ou óptica, dependendo do tipo de modulação Receptores bastante mais complexos Melhor sensibilidade do receptor menor potência óptica requerida Selecção do canal possível no receptor Modulação coerente Sinal eléctrico Sinal óptico FSK

Configurações básicas de receptores ópticos Entrada Amplificador de Banda Base Pré-amplificador f S a) Receptor de Detecção Directa Equalisador Saída Entrada f S Pré-amplificador Amplificador de Frequência Intermédia (IF) f IF = f S - f LO Amplificador de Banda Base Equalisador Saída Oscilador Local f LO b) Receptor Heterodino Entrada Saída Pré-amplificador Amplificador de Banda Base Equalisador f S Oscilador Local f LO =f S c) Receptor Homodino O processo de detecção, usado nos receptores ópticos é chamado detecção directa. Conforme sabido, a detecção directa é basicamente um processo de contagem de fotões, onde cada fotão detectado é convertido numa corrente eléctrica. Este processo ignora a frequência e a fase da portadora óptica. Assim, para que a frequência ou a fase do sinal óptico sejam utilizadas pelo receptor, é necessário que haja algum processamento antes da detecção pelo fotodíodo. Foram desenvolvidas técnicas para melhorar a detecção óptica. A sua base teórica ultrapassa o âmbito desta disciplina; pode-se, no entanto, dizer que essas técnicas são análogas às que se aplicam nas comunicações de rádio. O bloco básico para a implementação destas técnicas é um oscilador óptico local, ou seja, um díodo laser, cuja saída é "misturada" ("mixed") no receptor com o sinal óptico recebido, conforme se pode ver na figura acima. A detecção que utiliza desta forma um oscilador local é chamada detecção coerente. Como se conclui da figura, os receptores ópticos podem ser classificados em três categorias básicas: receptores de detecção directa receptores heterodinos receptores homodinos Num receptor de detecção directa (a) o sinal óptico é convertido directamente no sinal em banda base. Num receptor heterodino (b), o sinal recebido é misturado com o sinal do oscilador local, por vezes depois de amplificado. O sinal obtido da diferença das frequências, o chamado sinal de frequência intermédia (IF, intermediate frequency), é então amplificado e detectado. Note que fif= fs-flo. Num receptor homodino (c), a frequência do oscilador local, bem como a sua fase, são controladas de modo a que sejam sempre iguais à frequência e fase do sinal recebido. A detecção coerente poderia potencialmente melhorar até 20 db na sensibilidade do receptor, relativamente à detecção directa. Deste melhoramento na sensibilidade poderia resultar: aumento da distância entre repetidores maiores cadências de transmissão sobre as ligações existentes, sem reduzir a distância entre repetidores maior saldo de potência para compensar as perdas associadas com os acopladores e os dispositivos WDM melhor sensibilidade para os equipamentos de teste ópticos, tais como o reflectómetro óptico no domínio temporal (OTDR, "optical time domain reflectometer").

Redes de fibra óptica

Tipos de redes de comunicação Uma grande variedade de redes de comunicação evoluíram, destancando-se algumas tais como: Redes de longa distância ( trunk networks ) Redes metropolitanas Redes de acesso Redes locais ( LANs )

Redes de longa distância Interligam grandes centros populacionais Distâncias involvidas são substanciais (> 100 km) Ligações troncas ( trunks ) quase exclusivamente em fibra óptica Capacidade muito elevada no mínimo vários Gbit/s Resiliência elevada Cidade B Cidade A Cidade C Cidade D Ligação de alto débito ( trunk link )

Redes metropolitanas Confinadas a um único centro populacional / industrial Distâncias envolvidas típicas da cidade (~ 10 km) Transmissões por ligações quase exclusivamente em fibra óptica Capacidade elevada até alguns Gbit/s Resiliência elevada Nodos Ligações troncas para outras redes metropolitanas

Redes de distribuição e de acesso Fornecem serviços ao assinante Dependendo do tipo de assinante, as ligações são em fibra ou cobre (residenciais) Distâncias relativamente curtas Capacidade média (até 1 Gbit/s) Resiliência inexistente Central telefónica Armário de comunicações Assinantes

Redes de área local LANs Curto alcance Em geral, são redes privativas Usam um misto de fibra cobre, e possivelmente tecnologia sem fios Débitos desde Mbit/s até alguns Gbit/s

Redes (de Telecomunicações) Públicas

Transmissão por fibra óptica na Rede Pública Fibra óptica implementada em larga escala nas redes de longa distância Todos os sistemas usam fibra óptica monomodo Comprimentos de onda de operação em torno dos 1550 nm Débitos por fibra da ordem de 10 Gbit/s ou superiores Multiplexagem no domínio óptico cada vez mais implementada Chamada de DWDM Dense Wavelength Division Multiplexing Pode aumentar a capacidade da fibra 100x ou mais

Tendências no desenvolvimento da Rede Pública Crescimento elevado na dimensão desta rede: Tipos de tráfego em expansão Débitos dos serviços suportados em contínuo aumento Emergência de outros requisitos Troços com maior distância e sem regeneração Resiliência, robustez e sobrevivência da rede melhorada Expansibilidade Gestão, controlo e monitorização da rede potenciados Extensão dos serviços de banda larga até à residência

Crescimento a nível mundial do tráfego telefónico e IP Historicamente, o tráfego duplicou a cada 30-40 meses Alimentado pela Internet, o tráfego IP está a crescer a uma taxa extraordinária Nos USA, o tráfego de dados já ultrapassou o telefónico em ligações troncas Previsão do tráfego telefónico e IP a nível mundial (Fonte: Analysys)

Consequência do crescimento do tráfego: custos inferiores Custo médio de transferir 1 Terabyte de informação através da Rede Pública caiu de cerca de 70 000 em 1998 para um custo estimado de 300 em 2003 1 Terabyte representa o conteúdo de cerca de 150 CD-ROMs Em 1998, custava cerca de 60 Euros para transferir o equivalente à informação contida num CD-ROM Em 2003, estima-se que custará apenas 18 cêntimos!!!!!!

Débitos nornalizados para a Rede Pública Os débitos foram normalizados para: SONET: Synchronous Optical Network (América do Norte) SDH: Synchronous Digital Hierarchy (Europa e outras regiões) Débitos OC-x são uma sigla USA, débitos STM-x são uma sigla internacional Desiganção Débito Nº canais de voz OC-1 51,84 Mbit/s 672 OC-3 3 ou STM-1 155,52 Mbit/s 2016 OC-9 466,56 Mbit/s 6048 OC-12 ou STM-4 622,28 Mbit/s 8064 OC-18 933,12 Mbit/s 12096 OC-24 1,244 Gbit/s 16128 OC-36 1,866 Gbit/s 24192 OC-48 ou STM-16 2,488 Gbit/s 32256 OC-96 4,976 Gbit/s 64512 OC-192 ou STM-64 9,953 Gbit/s 129024

Redes de Área Local - LANs

A fibra óptica em LANs Imediatamente atrás das Redes Públicas em termos do uso de fibra óptica A fibra é um meio de transmissão para LANs de banda larga, permitindo maiores distâncias e maiores débitos A fibra limita a escolha da topologia da LAN, porque o componente óptico equivalente ao derivador tem perdas muito superiores Um exemplo de sucesso de uma LAN por fibra óptica é a chamada Fiber Distributed Data Interface FDDI Futuras LANs por fibra óptica suportarão débitos 1 Gbit/s

Introdução: Introdução:Sistemas Sistemasde decomunicação Comunicaçãopor porfibra FibraÓptica Óptica Aplicações da fibra óptica em edifícios A maioria da fibra é usada em backbones de edifício e de campus universitários/industriais A cablagem horizontal é, no presente, em geral cobre podendo no entanto evoluir para fibra Página 42

Numa LAN baseada em cobre com topologia em barramento, um simples conector BNC em T pode ser usado como derivador Permite um número relativamente elevado de nodos ou computadores O equivalente óptico mais aproximado é o divisor óptico ( optical splitter ) Mas as perdas de potência óptica neste componente podem reduzir o número de nodos a < 10 As LANs baseadas em fibra óptica devem usar topologias adequadas

Sistemas móveis de comunicação por fibra óptica Sistemas móveis de comunicação por fibra óptica Operam em ambientes diversos daqueles de sistemas fixos Fibras são usadas numa variedade de sistemas com aplicações civis ou militares As fibras transportam sinais para veículos robóticos em terra, ar ou água As fibras são usadas em mísseis tele-guiados para transmissão de imagens As fibras são usadas no interior de veículos, desde automóveis até navios de guerra, passando por aviões e mesmo a Estação Espacial Internacional Vantagens da fibra neste tipo de sistemas: tamanho e peso reduzido, imunidade a interferências electromagnéticas e grande largura de banda