Operações com Números Naturais. 6 ano/e.f.
|
|
|
- Catarina Borges de Santarém
- 7 Há anos
- Visualizações:
Transcrição
1 Módulo Operações Básicas Operações com Números Naturais. 6 ano/e.f.
2 Operações Básicas. Operações com Números Naturais. 1 Exercícios Introdutórios Exercício 1. a) b) c) d) e) Exercício 2. a) b) c) d) e) f) Exercício 3. a) 234x2. b) 129x6. c) 23x21. d) 341x37. Determine o quociente das divisões a se- Exercício 4. guir. a) 44 : 2. b) 69 : 3. c) 72 : 4. d) 144 : 6. Efetue as seguintes adições. Efetue as subtrações abaixo. Efetue: Exercício 5. Roberto tinha 35 figurinhas. Deu 7 para André, 12 para João e ganhou 5 de Tomas. Com quantas figurinhas ficou Roberto? Exercício 6. Antônio foi ao mercado com 3 reais. Comprou biscoito, que custa 2 reais, suco, que custa 4 reais, e bombom, que custa 3 reais. Com quanto Antônio voltou do mercado? 2 Exercícios de Fixação Exercício 7. Quando Júlia tinha 7 anos, seu pai tinha 33 anos. Se hoje ela tem 11 anos, qual a soma da sua idade com a de seu pai? Exercício 8. A soma de dois números é 75. Se um deles é 31, qual é o outro? Exercício 9. Qual a soma de todos os números de três algarismos que podem ser formados com os algarismos 1, 5 e 6? Exercício 1. Telma comprou uma boneca, usando 5 reais. Se o troco foi 13 reais, quanto custou a boneca? Exercício 11. em 211? Jonas nasceu em Quantos anos tinha Exercício 12. Em uma partida de basquete, os Abelhas venceram os Legumes por uma diferença de 19 pontos. Se os Abelhas fizeram 14 pontos, quantos pontos fizeram os Legumes? Exercício 13. Em uma sala de aula, cada aluno tem 3 canetas. Se o total de alunos é 23, qual o total de canetas nesta sala de aula? Exercício 14. Jorge fez 7 pilhas de cartas de baralho, cada uma com 12 cartas. Quantas cartas Jorge usou ao todo? Exercício 15. João deu 19 reais para cada um de seus filhos. Quanto João tinha se ele possui 4 filhos? Exercício 16. Um bairro da cidade tem 17 ruas. Se cada rua tem 41 casas, qual o total de casas deste bairro? Exercício 17. Sara faz, para vender, 27 pães por dia. Quantos pães ela faz em uma semana? Exercício 18. Efetue usando o modelo: a) 5x21. b) 8x34. c) 9x57. d) 6x123. Observe a multiplicação abaixo: 7x53 = 7x(5 + 3) = 7x5 + 7x3 = = 371. Exercício 19. Jade tem 5 blusas e 7 calças. De quantas maneiras diferentes Jade pode se vestir? Exercício 2. abaixo? Quantos quadradinhos existem na figura 1 [email protected]
3 b) 1. c) 5. d) 6. e) 8. Exercício 27. Os alunos de uma escola devem ser distribuídos em salas de aula para a prova da OBMEP. As capacidades das salas disponíveis e suas respectivas quantidades estão informadas na tabela abaixo: Exercício 21. Um engradado de refrigerantes comporta 6 garrafas. João conseguirá colocar 75 garrafas em 12 engradados? Exercício 22. Hugo, Zé e Luiz ajudaram descarregar um caminhão de areia e receberam, juntos, 96 reais. Se eles dividiram igualmente, quanto cada um recebeu? Exercício 23. Qual o resto da divisão de 748 por 8? 3 Exercícios de Aprofundamento e de Exames Exercício 24. O número é múltiplo de 7. Qual dos números abaixo também é múltiplo de 7? a) b) c) d) e) Exercício 25. Cinco dados foram lançados e a soma dos pontos obtidos nas faces de cima foi 19. Em cada um desses dados, a soma dos pontos da face de cima com os pontos da face de baixo é sempre 7. Qual foi a soma dos pontos obtidos nas faces de baixo? a) 1. b) 12. c) 16. d) 18. e) 2. Exercício 26. número a). Qual é o algarismos das unidades do 1x3x5x7x9x11x13x15x17x19 215? Capacidade por sala 3 alunos 3 4 alunos 12 5 alunos 7 55 alunos 4 Quantidade de salas Qual é a quantidade mínima de salas que devem ser utilizadas para essa prova? a) 41. b) 43. c) 44. d) 45. e) 47. Exercício 28. Para cortar um tronco reto de eucalipto em 6 partes, o madeireiro Josué faz 5 cortes. Ele leva meia hora para fazer os cortes, que são feitos sempre da mesma maneira. Quanto tempo Josué levará para cortar outro tronco igual em 9 pedaços? a) 4 min. b) 44 min. c) 45 min. d) 48 min. e) 54 min. Exercício 29. Joana fez uma compra e, na hora de pagar, deu uma nota de 5 reais. O caixa reclamou, dizendo que o dinheiro não dava. Ela deu mais uma nota de 5 e o caixa deu um troco de 27 reais. Então Joana reclamou, corretamente, que ainda faltavam 9 reais de troco. Qual era o valor da compra? a) [email protected]
4 b) 53. Respostas e Soluções. c) 57. d) 63. e) a) b) c) d) e) a) [email protected]
5 b) 111. c) c) d) e) f) a) x b) x x d) x a) b) c) [email protected]
6 d) Roberto ficou com = 21 figurinhas. 6. Antônio voltou do mercado com = 21 reais. 7. Se a idade de Júlia aumentou 11 7 = 4 anos, então a idade do seu pai também aumentou 4 anos e hoje ele tem = 37 anos. Então a soma das idades é = O outro número é = a) b) c) d) 5x21 = 5x(2 + 1) = 5x2 + 5x1 = = 15. 8x34 = 8x(3 + 4) = 8x3 + 8x4 = = x57 = 9x(5 + 7) = 9x5 + 9x7 = = x123 = 6x( ) = 6x1 + 6x2 + 6x3 = = Com os três algarismos podemos formar os números 156, 165, 516, 561, 615 e 651. Temos que essa soma é = A boneca custou 5 13 = 37 reais. 11. Jonas tinha = 19 anos. 12. Os Legumes fizeram = 85 pontos. 13. O total de canetas é 23x3 = O total de cartas usadas foi 12x7 = João tinha 19x4 = 76 reais. 16. O total de casas desse bairro é 41x17 = Em uma semana Sara faz 27x7 = O número de maneiras que Jade tem para se vestir é 5x7 = Como são 12 colunas por 9 linhas, o total de quadradinhos é 12x9 = Não conseguirá, pois sobrarão 3 garrafas Cada um recebeu 96 : 3 = 32 reais. 5 [email protected]
7 O resto é igual a (Extraído da OBMEP - 215) Se é múltiplo de 7, então se somarmos 7, quantas vezes desejarmos, ou subtrairmos 7, também quantas vezes desejarmos, o resultado continua múltiplo de 7. Sendo assim, = também é múltiplo de 7. Resposta C. 25. (Extraído da OBMEP - 215) Como a soma das faces de cima e de baixo é 7, então a soma dessas faces dos cinco dados é 5x7 = 35. Assim, a soma das faces de baixo é = 16. Resposta C. 26. (Extraído da OBMEP - 215) A multiplicação de vários números ímpares, sendo um deles terminado em 5, tem o 5 como algarismo das unidades. Subtraindo, deste número, outro cujo algarismo das unidades também é 5, o algarismo das unidades é. Resposta A. 27. (Extraído da OBMEP - 215) Usando as 4 salas cuja capacidade é de 55 alunos, teremos vagas para 4x55 = 22 alunos; usando as 7 salas para 5 alunos, teremos mais 7x5 = 35 vagas; usando as 12 salas para 4 alunos, serão mais 12x4 = 48. Já temos = 1.5 vagas, ou seja, faltam = 591 vagas. Basta agora usarmos 2 salas de 3 alunos, que comportam mais 6 alunos. Portanto, devem ser utilizadas no mínimo = 43 salas. Resposta B. 28. (Extraído da OBM - 215) Como cada corte demora 3 : 5 = 6 minutos, para fazer 8 cortes, são necessários 8x6 = 48 minutos. Resposta D. 29. (Extraído da OBM - 215) Como Joana deu 2x5 = 1 reais e o troco deveria ser = 36 reais, a compra custou 1 36 = 64 reais. Resposta E. Elaborado por Cleber Assis e Tiago Miranda Produzido por Arquimedes Curso de Ensino [email protected] 6 [email protected]
Operações com Números Naturais. 6 ano/e.f.
Módulo Operações Básicas Operações com Números Naturais. 6 ano/e.f. Operações Básicas. Operações com Números Naturais. 1 Exercícios Introdutórios Exercício 1. a) 11 + 251. b) 225 + 312. c) 763 + 249. d)
Operações com Números Naturais. 6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Resolução de Exercícios Operações com Números Naturais 6 ano E.F. Professores Cleber Assis e Tiago Miranda Resolução de Exercícios Operações com Números Naturais 1 Exercícios Introdutórios Exercício
Módulo Divisibilidade. Múltiplos e Divisores. 6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Divisibilidade Múltiplos e Divisores 6 ano E.F. Professores Cleber Assis e Tiago Miranda Divisibilidade Múltiplos e Divisores 2 Exercícios de Fixação 1 Exercícios Introdutórios Exercício 7. primos.
Operações com Números na Forma Decimal. 6 ano/e.f.
Módulo Operações Básicas Operações com Números na Forma Decimal. 6 ano/e.f. Operações Básicas. Operações com Números na Forma Decimal. 1 Exercícios Introdutórios Exercício 1. Escreva os números decimais
Módulo Divisibilidade. Conjunto e Quantidade de Divisores. 6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Divisibilidade Conjunto e Quantidade de Divisores 6 ano E.F. Professores Cleber Assis e Tiago Miranda Divisibilidade Conjunto e Quantidade de Divisores 1 Exercícios Introdutórios Exercício 1. de:
Módulo Divisibilidade. Conjunto e Quantidade de Divisores. 6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Divisibilidade Conjunto e Quantidade de Divisores 6 ano E.F. Professores Cleber Assis e Tiago Miranda Divisibilidade Conjunto e Quantidade de Divisores 1 Exercícios Introdutórios Exercício 1. de:
Exercícios Variados. 8 ano/e.f.
Módulo Miscelânea Eercícios Variados. 8 ano/e.f. Miscelânea. Eercícios Variados. 1 Eercícios Introdutórios Eercício 1. Um número par tem 10 algarismos e a soma desses algarismos é 8. Qual é o algarismo
Regras de Divisibilidade. 6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Resolução de Exercícios Regras de Divisibilidade 6 ano E.F. Professores Cleber Assis e Tiago Miranda Resolução de Exercícios Regras de Divisibilidade 1 Exercícios Introdutórios Exercício 1. de:
Módulo Divisibilidade. Critérios de Divisibilidade. 6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Divisibilidade Critérios de Divisibilidade 6 ano E.F. Professores Cleber Assis e Tiago Miranda Divisibilidade Critérios de Divisibilidade 1 Exercícios Introdutórios Exercício 1. O tablete de chocolate
Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F.
Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 1 Exercícios Introdutórios Exercício 1.
Módulo Unidades de Medidas de Comprimentos e Áreas. Unidades de Medidas de Comprimentos e Primeiros Exercícios.
Módulo Unidades de Medidas de Comprimentos e Áreas Unidades de Medidas de Comprimentos e Primeiros Exercícios. 8 ano E.F. Professores Cleber Assis e Tiago Miranda Unidades de Medidas de Comprimentos e
Módulo Unidades de Medidas de Comprimentos e Áreas. Unidades de Medida de Área e Exercícios. 6 ano/e.f.
Módulo Unidades de Medidas de Comprimentos e Áreas Unidades de Medida de Área e Exercícios. 6 ano/e.f. Unidades de Medidas de Comprimentos e Áreas. Unidades de Medida de Área e Exercícios. 1 Exercícios
Módulo Unidades de Medidas de Comprimentos e Áreas. Áreas de outras Figuras Básicas e Primeiros Exercícios. 6 ano/e.f.
Módulo Unidades de Medidas de Comprimentos e Áreas Áreas de outras Figuras Básicas e Primeiros Exercícios. 6 ano/e.f. Unidades de Medidas de Comprimentos e Áreas. Áreas de outras Figuras Básicas e Primeiros
9 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Funções - Noções Básicas Resolução de Exercícios 9 ano E.F. Professores Cleber Assis e Tiago Miranda Funções - Noções Básicas Resolução de Exercícios 1 Exercícios Introdutórios Exercício 1. Três
Módulo Frações, o Primeiro Contato. 6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Frações, o Primeiro Contato Exercícios sobre Frações ano EF Professores Cleber Assis e Tiago Miranda Frações, o Primeiro Contato Exercícios sobre Frações Exercícios Introdutórios Exercício a) +
Exercícios sobre Inequações. 7 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Equações e Inequações do Primeiro Grau Eercícios sobre Inequações 7 ano E.F. Professores Cleber Assis e Tiago Miranda Equações e Inequações do Primeiro Grau Eercícios sobre Inequações 1 Eercícios
7 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Noções Básicas de Estatística Introdução à Estatística 7 ano E.F. Professores Cleber Assis e Tiago Miranda Noções Básicas de Estatística Introdução à Estatística 1 Exercícios Introdutórios Exercício
Módulo Divisibilidade. Exercícios sobre Divisibilidade. 6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Divisibilidade Exercícios sobre Divisibilidade 6 ano E.F. Professores Cleber Assis e Tiago Miranda Divisibilidade Exercícios sobre Divisibilidade 1 Exercícios Introdutórios Exercício 1. Uma antiga
Módulo de Princípios Básicos de Contagem. Princípio fundamental da contagem. Segundo ano
Módulo de Princípios Básicos de Contagem Princípio fundamental da contagem Segundo ano Princípio Fundamental de Contagem 1 Exercícios Introdutórios Exercício 1. Considere três cidades A, B e C, de forma
Módulo Números Inteiros e Números Racionais. Exercícios sobre Operações com Números Inteiros. 7 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Números Inteiros e Números Racionais Exercícios sobre Operações com Números Inteiros 7 ano E.F. Professores Cleber Assis e Tiago Miranda Números Inteiros e Números Racionais Exercícios sobre Operações
Números Naturais Representação, Operações e Divisibilidade. Múltiplos e Divisores. Tópicos Adicionais
Números Naturais Representação, Operações e Divisibilidade Múltiplos e Divisores Tópicos Adicionais Números Naturais Representação, Operações e Divisibilidade Múltiplos e Divisores 1 Exercícios Introdutórios
Teorema Chinês dos Restos. Sistema de Congruências. Tópicos Adicionais
Teorema Chinês dos Restos Sistema de Congruências Tópicos Adicionais Teorema Chinês dos Restos Sistema de Congruências 1 Exercícios Introdutórios Exercício 1. Para cada um dos itens abaixo, encontre todos
Equações do Primeiro Grau a uma Variável. 7 ano/e.f.
Módulo Equações e Inequações do Primeiro Grau Equações do Primeiro Grau a uma Variável. 7 ano/e.f. Equações e Inequações do Primeiro Grau. Equações do Primeiro Grau a uma Variável. 1 Eercícios Introdutórios
Módulo de Progressões Aritméticas. Soma dos termos de uma P.A. 1 a série E.M. Professores Tiago Miranda e Cleber Assis
Módulo de Progressões Aritméticas Soma dos termos de uma PA 1 a série EM Professores Tiago Miranda e Cleber Assis Progressões Aritméticas Soma dos termos de uma PA 1 Exercícios Introdutórios Exercício
Módulo de Plano Cartesiano e Sistemas de Equações. Equações de Primeiro Grau com Duas Incógnitas. Professores: Tiago Miranda e Cleber Assis
Módulo de Plano Cartesiano e Sistemas de Equações Equações de Primeiro Grau com Duas Incógnitas 7 ano EF Professores: Tiago Miranda e Cleber Assis Plano Cartesiano e Sistemas de Equações Equações de Primeiro
Módulo Divisibilidade. MDC e MMC. 6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Divisibilidade MDC e MMC 6 ano E.F. Professores Cleber Assis e Tiago Miranda Divisibilidade MDC e MMC 1 Exercícios Introdutórios Exercício 1. a) 12 e 15. b) 60 e 72. c) 120 e 180. Exercício 2. a)
Módulo de Geometria Espacial I - Fundamentos. Poliedros. 3 ano/e.m.
Módulo de Geometria Espacial I - Fundamentos Poliedros. ano/e.m. Geometria Espacial I - Fundamentos Poliedros. 1 Exercícios Introdutórios Exercício 1. Um poliedro convexo tem 6 faces e 1 arestas. Determine
Módulo de Sistemas de Equações do Primeiro Grau. Sistemas de Equações do Primeiro Grau. Oitavo Ano
Módulo de Sistemas de Equações do Primeiro Grau Sistemas de Equações do Primeiro Grau Oitavo Ano Sistemas de Equações do Primeiro Grau 1 Exercícios Introdutórios Exercício 1. Resolva os sistemas de equações
Módulo de Progressões Aritméticas. Exercícios de PA. 1 a série E.M. Professores Tiago Miranda e Cleber Assis
Módulo de Progressões Aritméticas Exercícios de PA 1 a série E.M. Professores Tiago Miranda e Cleber Assis Progressões Aritméticas Exercícios de PA 1 Exercícios Introdutórios Exercício 1. Analise as sequências
Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cone. Professores Cleber Assis e Tiago Miranda
Módulo Geometria Espacial - olumes e Áreas de Cilindro, Cone e Esfera Cone. ano/e.m. Professores Cleber Assis e Tiago Miranda Geometria Espacial - olumes e Áreas de Cilindro, Cone e Esfera. Cone. 1 Exercícios
OPERAÇÕES COM NÚMEROS INTEIROS
ADIÇÃO DE NÚMEROS INTEIROS COM SINAIS IGUAIS OPERAÇÕES COM NÚMEROS INTEIROS 1º Caso: (+3 ) + (+4) = + 7 +3 + 4 = + 7 ADIÇÃO DE NÚMEROS INTEIROS Quando duas parcelas são positivas, o resultado da adição
Módulo Unidades de Medida de Volume. Exercícios. 6 ano/e.f.
Módulo Unidades de Medida de Volume Exercícios. 6 ano/e.f. Unidades de Medida de Volume. Exercícios. 1 Exercícios Introdutórios Exercício 1. Uma empresa de sucos resolve mudar sua embalagem tradicional
Ensino Fundamental Nível I Currículo Brasileiro
1) A sala de Cristiane jogou o Jogo dos círculos. Conte os pontos que ela fez em cada jogada e escreva-os com algarismos (11) e por extenso (onze). Veja o exemplo: 5 + 1 + 5 = 11 pontos ou onze pontos.
Módulo Elementos Básicos de Geometria - Parte 3. Quadriláteros. Professores: Cleber Assis e Tiago Miranda
Módulo Elementos Básicos de Geometria - Parte 3 Quadriláteros. 8 ano/e.f. Professores: Cleber Assis e Tiago Miranda Elementos Básicos de Geometria - Parte 3. Quadriláteros. 1 Exercícios Introdutórios Exercício
Módulo Frações, o Primeiro Contato. 6 o ano/e.f.
Módulo Frações, o Primeiro Contato Frações como Razões. 6 o ano/e.f. Frações, o Primeiro Contato. Frações como Razões. Exercícios Introdutórios Exercício. Sabendo que velocidade média é a razão entre a
Módulo de Princípios Básicos de Contagem. Segundo ano
Módulo de Princípios Básicos de Contagem Permutação simples Segundo ano Permutação Simples 1 Exercícios Introdutórios Exercício 1. De quantas formas se pode dispor quatro pessoas em fila indiana? Exercício
Módulo Frações, o Primeiro Contato. 6 o ano/e.f.
Módulo Frações, o Primeiro Contato Frações como Razões. 6 o ano/e.f. Frações, o Primeiro Contato. Frações como Razões. Exercícios Introdutórios Exercício. Sabendo que velocidade média é a razão entre a
6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Resolução de Exercícios Frações 6 ano E.F. Professores Cleber Assis e Tiago Miranda Resolução de Exercícios Frações 1 Exercícios Introdutórios Exercício 1. a) 0. b) 20. c) 4. d) 1. Determine quanto
7 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Equações e Inequações do Primeiro Grau Eercícios sobre Equações 7 ano E.F. Professores Cleber Assis e Tiago Miranda Equações e Inequações do Primeiro Grau Eercícios sobre Equações 1 Eercícios Introdutórios
Fixação dos Conceitos. 7 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Noções Básicas de Estatística Fixação dos Conceitos 7 ano E.F. Professores Cleber Assis e Tiago Miranda Noções Básicas de Estatística Fixação dos Conceitos 1 Exercícios Introdutórios Exercício 1.
Aritmética dos Restos. Pequeno Teorema de Fermat. Tópicos Adicionais
Aritmética dos Restos Pequeno Teorema de Fermat Tópicos Adicionais Aritmética dos Restos Pequeno Teorema de Fermat 1 Exercícios Introdutórios Exercício 1. Encontre os restos da divisão de 2 24 por a) 5
Módulo de Probabilidade Condicional. Lei Binomial da Probabilidade. 2 a série E.M.
Módulo de Probabilidade Condicional Lei Binomial da Probabilidade. a série E.M. Probabilidade Condicional Lei Binomial da Probabilidade Exercícios Introdutórios Exercício. Uma moeda tem probabilidade p
Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. Volumes e o Princípio de Cavalieri. 3 ano/e.m.
Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides Volumes e o Princípio de Cavalieri. 3 ano/e.m. Volumes e o Princípio de Cavalieri. Geometria Espacial II - volumes e áreas de prismas
SOMENTE COM CANETA AZUL
Nome completo: Turma: Unidade: 1 SIMULADO 6 ANO - ENSINO FUNDAMENTAL Matemática Dia: 8/04 - sexta-feira º A DI 017 ORIENTAÇÕES PARA APLICAÇÃO DO SIMULADO - 1º TRI 1. A prova terá duração de horas e 0 minutos..
Módulo de Matemática Financeira. 1 a série E.M. Professores Tiago Miranda e Cleber Assis
Módulo de Matemática Financeira Taxa Real e Inflação 1 a série E.M. Professores Tiago Miranda e Cleber Assis Matemática Financeira Taxa Real e Inflação 1 Exercícios Introdutórios Exercício 1. O conceito
Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. 3 ano/e.m.
Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides Pirâmide ano/em Pirâmide Geometria Espacial II - volumes e áreas de prismas e pirâmides 1 Exercícios Introdutórios Exercício 1 Determine
Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M.
Módulo de Círculo Trigonométrico Relação Fundamental da Trigonometria a série EM Círculo Trigonométrico Relação Fundamental da Trigonometria Exercícios Introdutórios Exercício Se sen x /, determine Exercício
Módulo de Progressões Aritméticas. 1 a série E.M. Professores Tiago Miranda e Cleber Assis
Módulo de Progressões Aritméticas Definição e Lei de Formação 1 a série E.M. Professores Tiago Miranda e Cleber Assis Progressões Aritméticas Definição e Lei de Formação 1 Exercícios Introdutórios Exercício
Módulo: aritmética dos restos. Divisibilidade e Resto. Tópicos Adicionais
Módulo: aritmética dos restos Divisibilidade e Resto Tópicos Adicionais Módulo: aritmética dos restos Divisibilidade e resto 1 Exercícios Introdutórios Exercício 1. Encontre os inteiros que, na divisão
Módulo de Geometria Anaĺıtica 1. 3 a série E.M.
Módulo de Geometria Anaĺıtica 1 Equação da Reta. 3 a série E.M. Geometria Analítica 1 Equação da Reta. 1 Exercícios Introdutórios Exercício 1. Determine a equação da reta cujo gráfico está representado
Módulo de Introdução à Probabilidade. O que é Probabilidade? 2 a série E.M.
Módulo de Introdução à Probabilidade O que é Probabilidade? a série E.M. Probabilidade O que é Probabilidade? 1 Exercícios Introdutórios Exercício 1. Qual a probabilidade de, aleatoriamente, escolhermos
Desenvolvimento do Sistema de Numeração. 6 ano/e.f.
Módulo Operações Básicas Desenvolvimento do Sistema de Numeração. 6 ano/e.f. Operações Básicas. Desenvolvimento do Sistema de Numeração. 1 Exercícios Introdutórios b) Exercício 1. Observe a tabela abaixo
Máximo Divisor Comum e Mínimo Múltiplo Comum. 6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Resolução de Exercícios Máximo Divisor Comum e Mínimo Múltiplo Comum 6 ano E.F. Professores Cleber Assis e Tiago Miranda Resolução de Exercícios Máximo Divisor Comum e Mínimo Múltiplo Comum 1 Exercícios
Nome: N.º: endereço: data: telefone: PARA QUEM CURSA O 6 Ọ ANO EM Disciplina:
Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 6 Ọ ANO EM 2013 Disciplina: MateMática Prova: desafio nota: QUESTÃO 11 (OBM ADAPTADO) Preenchendo os quadradinhos vazios da tabela
Módulo de Números Naturais. Números Naturais e Problemas de Contagem. 8 o ano
Módulo de Números Naturais Números Naturais e Problemas de Contagem. 8 o ano Números Naturais Números Naturais e Problemas de Contagem 1 Exercícios Introdutórios Exercício 1. Qual a quantidade de elementos
7 o ano/6 a série E.F.
Módulo de Notação Algébrica e Introdução às Equações Eercícios de Notação Algébrica. 7 o ano/6 a série E.F. Eercícios de Notação Algébrica Notação Algébrica e Introdução às Equações. 1 Eercícios Introdutórios
BANCO. por: a) 2; b) 5; c) por 2? a) 78. b) 110. c) 65. d) 51 R.: R.: c) divisível por Responda: Por quê? R.: R.
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES MATEMÁTICA 6º ANO ENSINO FUNDAMENTAL = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
Módulo de Fração como Porcentagem e Probabilidade. Fração como Porcentagem. 6 ano E.F.
Módulo de Fração como Porcentagem e Probabilidade Fração como Porcentagem. 6 ano E.F. Fração como Porcentagem e Probabilidade Fração como Porcentagem. 1 Exercícios Introdutórios Exercício 1. a) 10% 120.
Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cilindro. Professores Cleber Assis e Tiago Miranda
Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera Cilindro. 3 ano/e.m. Professores Cleber Assis e Tiago Miranda Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera.
Módulo de Matrizes e Sistemas Lineares. O Conceito de Matriz
Módulo de Matrizes e Sistemas Lineares O Conceito de Matriz Matrizes e Sistemas Lineares O Conceito de Matriz 1 Exercícios Introdutórios Exercício 1. Considere a matriz a) Determine a sua entrada a 23.
Módulo de Matemática Financeira. Taxas Equivalentes. 1 a série E.M. Professores Tiago Miranda e Cleber Assis
Módulo de Matemática Financeira Taxas Equivalentes 1 a série E.M. Professores Tiago Miranda e Cleber Assis Matemática Financeira Taxas Equivalentes 1 Exercícios Introdutórios Exercício 1. Dizemos que i
Módulo Unidades de Medidas de Comprimentos e Áreas. Exercícios Diversos de Medidas de Comprimento. 6 ano/e.f.
Módulo Unidades de Medidas de Comprimentos e Áreas Exercícios Diversos de Medidas de Comprimento. 6 ano/e.f. Unidades de Medidas de Comprimentos e Áreas. Exercícios Diversos de Medidas de Comprimento.
Operando com vírgulas - Prof. Mitchell
ADIÇÃO DE NÚMEROS DECIMAIS Geralmente realizar uma adição de números decimais é mias simples porque a técnica do algoritmo da adição: Utilizaremos o exemplo da adição de 23,5+ 100, 22 Devemos colocar vírgula
Módulo Binômio de Newton e o Triângulo de Pascal. Desenvolvimento Multinomial. 2 ano/e.m.
Módulo Binômio de Newton e o Triângulo de Pascal Desenvolvimento Multinomial. 2 ano/e.m. Binômio de Newton e o Triângulo de Pascal. Desenvolvimento Multinomial. 1 Exercícios Introdutórios Exercício 1.
Módulo de Números Inteiros e Números Racionais. Números Inteiros e suas operações. 7 ano E.F.
Módulo de Números Inteiros e Números Racionais Números Inteiros e suas operações. 7 ano E.F. Números Inteiros e Números Racionais Números Inteiros e suas operações. 1 Exercícios Introdutórios Exercício
Módulo de Números Inteiros e Números Racionais. Números Inteiros e suas operações. 7 ano E.F.
Módulo de Números Inteiros e Números Racionais Números Inteiros e suas operações. 7 ano E.F. Números Inteiros e Números Racionais Números Inteiros e suas operações. 1 Exercícios Introdutórios Exercício
Módulo de Redução ao Primeiro Quadrante e Funções Trigonométricas. Redução ao Primeiro Quadrante. 7 ano E.F. Professores Tiago Miranda e Cleber Assis
Módulo de Redução ao Primeiro Quadrante e Funções Trigonométricas Redução ao Primeiro Quadrante 7 ano E.F. Professores Tiago Miranda e Cleber Assis Redução ao Primeiro Quadrante e Funções Trigonométricas
Exercícios Variados. 6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Resolução de Exercícios Exercícios Variados 6 ano E.F. Professores Cleber Assis e Tiago Miranda Resolução de Exercícios Exercícios Variados Exercícios Introdutórios Exercício. Uma loja de roupas
Módulo de Elementos Básicos de Geometria Plana - Parte 1. Retas Paralelas Cortadas por uma Transversal. Professores Cleber Assis e Tiago Miranda
Módulo de Elementos Básicos de Geometria Plana - Parte 1 Retas Paralelas Cortadas por uma Transversal. 8 ano E.F. Professores Cleber Assis e Tiago Miranda Elementos Básicos de Geometria Plana - Parte 1.
01- Descubra os números representados com o material dourado: a) centenas + dezenas + unidades + + = Por extenso: centenas + dezenas + unidades + + =
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 3º ANO - ENSINO FUNDAMENTAL ========================================================================== TRABALHANDO COM MATERIAL DOURADO
Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.
Módulo de Introdução à Probabilidade Ferramentas Básicas. a série E.M. Probabilidade Ferramentas Básicas Exercícios Introdutórios Exercício. Uma prova é composta por 5 questões de múltipla escolha com
1 a série E.M. Professores Tiago Miranda e Cleber Assis
Módulo de Função Quadrática Gráfico de uma Função Quadrática a série E.M. Professores Tiago Miranda e Cleber Assis Função Quadrática Gráfico de uma Função Quadrática Eercícios Introdutórios Eercício. Determine
Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.
Módulo de Introdução à Probabilidade Ferramentas Básicas. a série E.M. Probabilidade Ferramentas Básicas Exercícios Introdutórios Exercício. Uma prova é composta por 5 questões de múltipla escolha com
9 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Função Afim Resolução de Exercícios 9 ano E.F. Professores Cleber Assis e Tiago Miranda Funções Afim Resolução de Exercícios 1 Exercícios Introdutórios Exercício 7. Seja a função afim: f : R R x
Mais Exercícios sobre Equações. 7 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Equações e Inequações do Primeiro Grau Mais Eercícios sobre Equações 7 ano E.F. Professores Cleber Assis e Tiago Miranda Equações e Inequações do Primeiro Grau Mais Eercícios sobre Equações 1 Eercícios
Lista de Matemática e interpretação de texto 5 o ano de 14 a 18/03/2016
Lista de Matemática e interpretação de texto 5 o ano de 14 a 18/03/2016 Deus é o nosso refúgio e fortaleza. (Salmos 46:01) SEGUNDA-FEIRA 1. Efetue as divisões: a) 868 4 b) 1736 2 c) 912 3 d) 34 139 8 e)
Matemática em Libras. Parte 4 Quatro operações. Professora Surda Zanúbia Dada
Matemática em Libras Parte 4 Quatro operações Professora Surda Zanúbia Dada Campo Grande - MS 2015 Quatro Operações Profª Surda Zanúbia Dada 1 Ensinando os alunos surdos como fazer adição 4 + 5 = 9 6 +
Módulo Divisibilidade. Exercícios Diversos de Frações como Porcentagens. 6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Divisibilidade Exercícios Diversos de Frações como Porcentagens 6 ano E.F. Professores Cleber Assis e Tiago Miranda Divisibilidade Exercícios Diversos de Frações como Porcentagens 1 Exercícios Introdutórios
Matemática Aula 1-8º Ano. Aulas Presenciais Aulas AVA-EaD Prof.(a) Patrícia Caldana
Aula 1-8º Ano Aulas Presenciais Aulas AVA-EaD Prof.(a) Patrícia Caldana OPERAÇÕES COM NÚMEROS INTEIROS O conjunto dos números inteiros é formado pelos algarismos inteiros positivos e negativos e o zero.
Centro Educacional Juscelino Kubitschek
Centro Educacional Juscelino Kubitschek ALUNO: DATA: / / 2011. ENSINO: Fundamental SÉRIE: 5 ª TURMA: TURNO: DISCIPLINA: Matemática PROFESSOR(A): Equipe de Matemática Valor da Lista: 3,0 Valor Obtido: LISTA
Módulo de Números Inteiros e Números Racionais. Números Racionais e Suas Operações. 7 ano E.F.
Módulo de Números Inteiros e Números Racionais Números Racionais e Suas Operações. ano E.F. Números Inteiros e Números Racionais Números Racionais e Suas Operações. Exercícios Introdutórios Exercício.
Aritmética dos Restos. Problemas com Congruências. Tópicos Adicionais
Aritmética dos Restos Problemas com Congruências Tópicos Adicionais Aritmética dos Restos Problemas com Congruências 1 Exercícios Introdutórios Exercício 1. inteiro n Prove que n 5 + 4n é divisível por
Módulo de Plano Cartesiano e Sistemas de Equações. Discussão de Sistemas de Equações. Professores: Tiago Miranda e Cleber Assis
Módulo de Plano Cartesiano e Sistemas de Equações Discussão de Sistemas de Equações 7 ano E.F. Professores: Tiago Miranda e Cleber Assis Plano Cartesiano e Sistemas de Equações O Plano Cartesiano 1 Exercícios
Quais são os dias da semana em que você, normalmente, não vai à escola?
1) Observe o calendário abaixo e depois responda às questões. Setembro 2012 DOMINGO SEGUNDA- FEIRA TERÇA- FEIRA Pinte no calendário o dia de hoje. Em que dia da semana cairá o último dia 26? Quantos domingos
Módulo Unidades de Medidas de Comprimentos e Áreas. Exercícios Diversos de Áreas de Figuras. 6 ano/e.f.
Módulo Unidades de Medidas de Comprimentos e Áreas Exercícios Diversos de Áreas de Figuras. 6 ano/e.f. Unidades de Medidas de Comprimentos e Áreas. Exercícios Diversos de Áreas de Figuras. 1 Exercícios
a) 5 cadernos - b) 2 cadernos e 3 hidrocores - c) 1 mochila, 1 lancheira e 1 cantil - d) 2 caderno e 2 lápis de cor -
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 2º ANO - ENSINO FUNDAMENTAL ========================================================================== 01- Observe os produtos e seus preços.
Multiplicação Divisão
Multiplicação Divisão 1 Introdução Nesta aula iremos analisar como podemos usar o Sistema Numérico para calcular operações básicas usando a Aritmética Decimal na: Multiplicação; Divisão. 2 MULTIPLICAÇÃO
D 7 C 4 U 5. MATEMÁTICA Revisão Geral Aula 1 - Parte 1. Professor Me. Álvaro Emílio Leite. Valor posicional dos números. milésimos décimos.
MATEMÁTICA Revisão Geral Aula 1 - Parte 1 Professor Me. Álvaro Emílio Leite O que é um algarismo? É um símbolo que utilizamos para formar e representar os números. Exemplo: Os algarismos que compõem o
Observe o que ocorre com as multiplicações com parcelas iguais cujos algarismos são todos iguais a 1:
1 QUESTÃO 1 Ao efetuarmos a operação 111 x 111 obtemos: Logo a soma dos algarismos do resultado é 1+ 2+ 3+ 2+ 1= 9. A conta acima também pode ser feita da seguinte maneira: 111 111 = 111 (100 + 10 + 1)
A razão entre o número de pães de sal e pães doce que podem ser comprados com o dinheiro de Danilo é 15
1. Danilo foi à padaria, mas percebeu que só tinha dinheiro para comprar 15 pães de sal ou 10 pães doces, não sobrando troco nos dois casos. Sendo assim, Danilo resolveu comprar quantidades iguais de pães
SUPERINTENDÊNCIA DE ACOMPANHAMENTO DOS PROGRAMAS INSTITUCIONAIS NÚCLEO DE ORIENTAÇÃO PEDAGÓGICA GERÊNCIA DE DESENVOLVIMENTO CURRICULAR
SUPERINTENDÊNCIA DE ACOMPANHAMENTO DOS PROGRAMAS INSTITUCIONAIS NÚCLEO DE ORIENTAÇÃO PEDAGÓGICA GERÊNCIA DE DESENVOLVIMENTO CURRICULAR 2ª AVALIAÇÃO DIAGNÓSTICA DO 4º ANO DO ENSINO FUNDAMENTAL 2012 MATEMÁTICA
CENTRO EDUCACIONAL NOVO MUNDO 3 o DESAFIO CENM MATEMÁTICA
CENTRO EDUCACIONAL NOVO MUNDO www.cenm.com.br 3 o DESAFIO CENM - 2015 MATEMÁTICA Direção: ANO: 2 EF 1. Leia o texto a seguir e responda o que se pede. Curiosidades sobre cavernas brasileiras De acordo
Provão. Matemática 4 o ano
Provão Matemática 4 o ano 21 Com base em seus estudos sobre sistema de numeração decimal, marque a alternativa correta para escrevermos por extenso, os números: 1.423 94 195 a) Mil quatrocentos e vinte
Módulo de Progressões Geométricas. 1 a série E.M. Professores Tiago Miranda e Cleber Assis
Módulo de Progressões Geométricas Definição e Lei de Formação 1 a série E.M. Professores Tiago Miranda e Cleber Assis Progressões Geométrica Definição e Lei de Formação 1 Exercícios Introdutórios Exercício
Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05
RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim
Módulo Quadriláteros. Quadriláteros Inscritos e Circunscritos. 9 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Quadriláteros Quadriláteros Inscritos e Circunscritos 9 ano E.F. Professores Cleber Assis e Tiago Miranda Quadriláteros Quadriláteros Incritos e Circunscritos Exercício 5. Determine o valor de x
4. Chiquinho tem 3 irmãos, Maria tem 5 irmãos e Camila tem o sucessor do sucessor do número de irmãos de Maria. Quantos irmãos Camila têm?
1. Faça uma relação, com pelo menos 10 números, que fazem parte de sua vida e que são usados para contar, medir, ordenar fornecer uma informação ou um código. 2. Qual é o número natural que não possui
Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental
Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental TEMA III - NÚMEROS E OPERAÇÕES / ÁLGEBRA E FUNÇÕES Este é o tema de maior prioridade para a Matemática
Colégio MATEMÁTICA DESAFIO. QUESTÃO 16 No quadro abaixo, as estrelinhas substituem números reais.
Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA O 6 Ọ ANO DO ENSINO FUNDAMENTAL EM 017 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 16 No quadro abaixo, as estrelinhas substituem
