Aluno Turma ELETRICIDADE AULA 01
|
|
|
- Jónatas Fagundes Malheiro
- 8 Há anos
- Visualizações:
Transcrição
1 Aluno Turma 1. Objetivos: ELETRICIDADE AULA 01 Revisar os conceitos fundamentais para o entendimento da eletricidade. 2. Assuntos: 1. Conceitos básicos de eletricidade 1.1. Potência de dez; 1.2. Múltiplos e Submúltiplos; 1.3. Eletrostática; 3. Potência de dez Na prática, representamos uma grandeza com um número compreendido entre 1 e 10, multiplicado pela potência de dez conveniente. Quando um número é assim representado dizemos que está em notação científica. Assim, a potência de dez é a notação científica. A potência de dez é utilizada para abreviar múltiplos (ou submúltiplos) de dez. Assim: 100 = 10 x 10; 1000 = 10 x 10 x 10; = 10 x 10 x 10 x 10 x 10. Para escrevermos estes números de uma maneira abreviada, basta indicar o número de dezenas envolvidas na multiplicação com um pequeno número (expoente) no alto da potencia de 10. Logo, se 100 = 10 x 10, podemos dizer que. Da mesma maneira, e =. Nestes exemplos o expoente é igual ao número de zeros. Para os submúltiplos de dez, também utilizamos o sistema exponencial. Assim: 0,01 = 1/10 x 1/10 ; 0,001 = 1/10 x 1/10 x 1/10 0,00001 = 1/10 x 1/10 x 1/10 x 1/10 x 1/10 1
2 Neste caso, para abreviar esses números indicamos o número de casas decimais com expoente negativo no alto da potencia de 10. Assim, se 0,01 = 1/10 x 1/10, podemos dizer que 0,01 = Da mesma maneira, 0,001 = 10-3 e 0,00001 = Para escrever um número em notação científica devemos obedecer ao seguinte formato: A x 10 B onde A deve ser um número que esteja entre 1 e 9, ou seja, deve ser maior ou igual a 1 e menor que 10 e B o número de zeros (ou casas decimais se o expoente for negativo) do número. Vamos ver alguns exemplos: 40 é igual a 4 vezes 10 1, então em notação científica representa-se 40 = 4 x é igual a 15 vezes 1000, ou 1,5 vezes Como que é igual 10 4, então em notação científica representam-se = 1,5 x ,2 corresponde a 2 dividido por 10, ou 2 multiplicado por 0,1 que corresponde a 1/10. Como 1/10 pode ser representado por 10-1, então em notação científica representa-se 0,2 = 2 x Notamos então que fica muito mais fácil de representar números muito grandes ou muito pequenos utilizando a notação científica e a potencia de dez. Abaixo temos mais alguns números expressos em notação científica: = 10 x 10 x 10 x 10 x 10 x 10 = 10 6 mega = 10 x 10 x 10 x 10 x 10 = = 10 x 10 x 10 x 10 = = 10 x 10 x 10 = 10 3 quilo 100 = 10 x 10 = = 10 = = 1 = ,1 = 1/10 = ,01 = 1/100 = 10-2 centi 2
3 0,001 = 1/1000 = 10-3 mili 0,0001 = 1/ = ,00001 = 1/ = , = 1/ = 10-6 micro 3.1. Prefixos das unidades do Sistema Internacional (SI) Os prefixos para os múltiplos e submúltiplos decimais das unidades definidos no Sistema Internacional (SI) são os seguintes: Os prefixos, desde micro a mega, foram introduzidos em 1874 como fazendo parte do sistema de medidas CGS. Mais tarde, os doze prefixos desde pico até tera foram definidos como fazendo parte do sistema internacional de unidades (SI). Em 1964 foram adicionados os prefixos femto e atto ; em 1975 peta e exa e em 1991 zetta, yotta e yocto. A etimologia dos vários prefixos é a seguinte: exa deriva da palavra grega hexa que significa seis. peta deriva da palavra grega pente que significa cinco. tera do grego téras que significa monstro. giga do grego gígas que significa gigante. mega do grego mégas que significa grande. hecto do grego hekatón que significa cem. 3
4 deca do grego déka que significa dez. deci do latim decimu que significa décimo. mili do latim millesimu que significa milésimo. micro do grego mikrós que significa pequeno. nano do grego nánnos que significa anão. pico do italiano piccolo que significa pequeno. femto do dinamarquês femten que significa quinze. atto do dinamarquês atten que significa dezoito. zepto e zetta derivam do latim septem que significa sete. yocto e yotta derivam do latim octo que significa oito. 4. Texto de apoio 4.1. Histórico da eletricidade A eletricidade como ciência data de 600 a.c. Filósofos gregos desse período já sabiam que o âmbar (uma resina vegetal fossilizada), quando atritada com pele de animal, adquire a propriedade de atrair pequenos pedaços de palha. Por isso, a palavra eletricidade, derivada da palavra elektron (palavra grega que designa o âmbar), Bonjorno & Clinton, No século XVII foram iniciados estudos sistemáticos sobre a eletrificação por atrito, graças a Otto von Guericke. Em 1672, Otto inventa uma maquina geradora de cargas elétricas onde uma esfera de enxofre girava constantemente atritando-se em terra seca. Meio século depois, Stephen Gray faz a primeira distinção entre condutores e isolantes elétricos. Durante o século XVIII as maquinas elétricas evoluem até chegar a um disco rotativo de vidro que é atritado a um isolante adequado. Uma descoberta importante foi o condensador, descoberto independentemente por Ewald Georg von Kleist e por Petrus van Musschenbroek. O condensador consistia em uma maquina armazenadora de cargas elétricas. Eram dois corpos condutores separados por um isolante delgado. Mas uma invenção importante, de uso pratico, foi o pára-raios, feito por Benjamin Franklin. Ele disse que a eletrização de dois corpos atritados era a falta de um dos dois tipos de eletricidade em um dos corpos. Esses dois tipos de eletricidade eram chamadas de eletricidade resinosa e vítrea. Hoje se sabe que a eletrização se dá por falta ou excesso de elétrons em corpos. No século XVIII foi feita a famosa experiência de Luigi Aloisio Galvani em que potenciais elétricos produziam contrações na perna de uma rã morta. A descoberta dos 4
5 potenciais elétricos foi atribuída por Alessandro Volta que inventou a voltaica. Ela consistia em um serie de discos de cobre e zinco alterados, separados por pedaços de papelão embebidos por água salgada. Com essa invenção, obteve-se pela primeira vez uma fonte de corrente elétrica estável. Por isso, as investigações sobre a corrente elétrica aumentaram cada vez mais. Tem início as experiências com a decomposição da água em um átomo de oxigênio e dois de hidrogênio. Em 1802, Humphry Davy separa eletronicamente o sódio e o potássio. Mesmo com a fama das pilhas de Volta, foram criadas pilhas mais eficientes. John Frederic Daniell inventou-as em 1836 na mesma época das pilhas de Georges Leclanché e a bateria recarregável de Raymond Louis Gaston Planté. O físico Hans Christian Örsted observa que um fio de corrente elétrica age sobre a agulha de uma bússola. Com isso, percebe-se que há uma ligação entre magnetismo e eletricidade (tem início o estudo do eletromagnetismo). Em 1831, Michael Faraday descobre que a variação na intensidade da corrente elétrica que percorre um circuito fechado induz uma corrente em uma bobina próxima. Uma corrente induzida também é observada ao se introduzir um ímã nessa bobina. Essa indução magnética teve uma imediata aplicação na geração de correntes elétricas. Uma bobina próxima a um ima que gira é um exemplo de um gerador de corrente elétrica alternada. Os geradores foram se aperfeiçoando até se tornarem as principais fontes de suprimento de eletricidade empregada principalmente na iluminação. Em 1875 é instalado um gerador em Gare du Nord, Paris, para ligar as lâmpadas de arco da estação. Foram feitas maquinas a vapor para movimentar os geradores, e estimulando a invenção de turbinas a vapor e turbinas para utilização de energia hidrelétrica. A primeira hidrelétrica foi instalada em 1886 junto as cataratas do Niágara. Para se distribuir a energia, foram criados inicialmente condutores de ferro, depois os de cobre e finalmente, em 1850, já se fabricavam os fios cobertos por uma camada isolante de guta-percha vulcanizada, ou uma camada de pano. A Publicação do tratado sobre eletricidade e magnetismo, de James Clerk Maxwell, em 1873, representa um enorme avanço no estudo do eletromagnetismo. A luz passa a ser entendida como onda eletromagnética, uma onde que consiste de campos elétricos e magnéticos perpendiculares à direção de sua propagação. Heinrich Hertz, em suas experiências realizadas a partir de 1885, estuda as propriedades das onde eletromagnéticas geradas por uma bobina de indução; nessas experiências observa que se refletidas, refratadas e polarizada, do mesmo modo que a luz. 5
6 Com o trabalho de Hertz fica demonstrado que as ondas de radio e as de luz são ambas ondas eletromagnéticas, desse modo confirmando as teorias de Maxwell; as ondas de radio e as ondas luminosas diferem apenas na sua frequência. Hertz não explorou as possibilidades práticas abertas por suas experiências. Mais de dez anos se passaram até que Guglielmo Marconi utilizou as ondas de radio no seu telegrafo sem fio. A primeira mensagem de radio é transmitida através do Atlântico em Todas essas experiências vieram abrir novos caminhos para a progressiva utilização dos fenômenos elétrico sem praticamente todas as atividades do homem ( acessado em 2011) Histórico da transmissão e do uso da eletricidade Os Sistemas de Potência, como hoje são conhecidos, têm pouco mais de 100 anos. Por volta de 1876 não se sabia como transmitir a energia elétrica gerada. De maneira resumida, os fatos marcantes da evolução dos sistemas de potência se concentram na época da realização da concorrência para a construção do complexo de Niagara Falls, o maior do mundo de então, que se iniciou em A evolução dos conceitos sobre os sistemas de potência foi marcante dentro de um período de 15 anos, praticamente definindo as características dos sistemas como hoje se apresentam. Em 1880, Thomas Alva Edson apresenta sua lâmpada incandescente (em corrente contínua), a mais eficiente de então. Nessa época, na Europa, havia avanços na utilização de corrente alternada. Em 1882, Edson coloca em funcionamento um sistema de corrente contínua em Nova York e funda a empresa Edison Electric Company. Em 1885, George Westinghouse Jr. compra os direitos da patente de Goulard-Gibbs para construir transformadores de corrente alternada e encarrega William Stanley dessa tarefa. Em 1886, já há cerca de 60 centrais de corrente contínua (Edison) com cerca de lâmpadas. Na mesma época, Stanley coloca em operação a primeira central em corrente alternada (Westinghouse) em Great Barrington, Massachusetts. Os sistemas de corrente alternada se multiplicaram rapidamente e, já em 1887, existiam cerca de 121 sistemas desse tipo em funcionamento, com cerca de lâmpadas. Entre as novas empresas, se destacam a empresa do próprio Westinghouse que cresce contabilizando lâmpadas em corrente alternada. A medição da energia elétrica consumida começa a ser um problema importante para os sistemas de corrente alternada. Para os sistemas de corrente contínua, existia medidores do tipo eletroquímico. Assim, os sistemas em corrente alternada cobravam por "número de 6
7 lâmpadas". A solução do problema se deu com Shallenberger, então engenheiro chefe de Westinghouse, que coloca em funcionamento um medidor de energia em corrente alternada que dava uma leitura direta de quanta energia havia sido consumida e, portanto, superior ao medidor eletroquímico de Edison. Um desenvolvimento fundamental se deu quando da publicação, por Nikola Tesla, de um artigo em que mostrava que seria possível construir um motor em corrente alternada. Westinghouse compra a patente de Tesla e contrata seus serviços para desenvolver o motor, que só ficará pronto em 1892, e neste mesmo ano entra em funcionamento o primeiro motor de indução de Tesla. A comissão responsável pela concorrência pública para a licitação das obras de Niagara Falls decide que o sistema será em corrente alternada. Enquanto isso, na Alemanha, é colocado em funcionamento um sistema de 100 HP (74,6 kw) com transmissão de 160 km, em corrente alternada, V. A empresa de Edison, a Edson General Electric Company, junta-se com a Thomson-Houston, formando a General Electric que passa a produzir em larga escala transformadores e alternadores. Em 1896, a Westinghouse ganha a concorrência para fornecer os alternadores e transformadores de Niagara Falls que entra em funcionamento em ( acesso em 2011) Revisão de conceitos básicos Matéria Matéria é tudo o que tem massa e ocupa um lugar no espaço, ou seja, possui volume. Ex.: madeira, ferro, água, areia, ar, ouro e tudo o mais que imaginemos, dentro da definição acima. Obs.: a ausência total de matéria é o vácuo Corpo Corpo é qualquer porção limitada de matéria. Ex.: tábua de madeira, barra de ferro, cubo de gelo, pedra Objeto Objeto é um corpo fabricado ou elaborado para ter aplicações úteis ao homem. Ex.: mesa, lápis, estátua, cadeira, faca, martelo. 7
8 Molécula Menor parte da matéria que ainda conserva suas características Átomos Todas as substâncias são formadas de pequenas partículas chamadas átomos. Para se ter uma ideia, eles são tão pequenos que uma cabeça de alfinete pode conter 60 milhões deles. Os gregos antigos foram os primeiros, a saber, que a matéria é formada por tais partículas, as quais chamaram átomo, que significa indivisível. Os átomos, porém são compostos de partículas menores: os prótons, os nêutrons e os elétrons. No átomo, os elétrons orbitam no núcleo, que contém prótons e nêutrons. Elétrons são minúsculas partículas que vagueiam aleatoriamente ao redor do núcleo central do átomo, sua massa é cerca de 1840 vezes menor que a do Núcleo. Prótons e nêutrons são as partículas localizadas no interior do núcleo, elas contém a maior parte da massa do átomo O Interior do Átomo No centro de um átomo está o seu núcleo, que apesar de pequeno, contém quase toda a massa do átomo. Os prótons e os nêutrons são as partículas nele encontradas, cada um com uma massa atômica unitária. O Número de prótons no núcleo estabelece o número atômico do elemento químico e, o número de prótons somado ao número de nêutrons é o número de massa atômica. Os elétrons ficam fora do núcleo e tem pequena massa. Há no máximo sete camadas em torno do núcleo e nelas estão os elétrons que orbitam o núcleo. Cada camada pode conter um número limitado de elétrons fixado em 8 elétrons por camada. As características elétricas das Partículas são: Prótons: tem carga elétrica positiva. Nêutrons: não tem carga elétrica. Elétrons: tem carga elétrica negativa. ( acesso em 2011) Então, qualquer tipo de matéria é formada por átomos, onde no centro de todo átomo existe um conjunto formado por dois tipos de partículas: os prótons e os nêutrons e a sua 8
9 volta, como se fossem satélites, giram os elétrons, partículas em movimento permanente. As trajetórias desses elétrons se organizam em camadas sucessivas chamadas órbitas eletrônicas. Os prótons do núcleo e os elétrons das órbitas se atraem entre si. A esta força de atração recíproca chamamos de força elétrica. É a força elétrica que mantém os elétrons girando à volta dos prótons do núcleo. Sem ela, os elétrons se perderiam no espaço e os átomos não existiriam. Os elétrons, entretanto, repelem outros elétrons e os prótons repelem outros prótons. Dizemos, por isto, que as partículas com carga igual se repelem e as partículas com carga oposta se atraem. Convencionou-se chamar a carga dos prótons de positiva (+) e a carga dos elétrons de negativa (-). Normalmente, cada átomo é eletricamente neutro, em outras palavras, tem quantidades iguais de carga negativa e positiva, ou seja, há tantos prótons em seu núcleo, quantos elétrons ao redor, no exterior. Os prótons estão fortemente ligados ao núcleo dos átomos. Somente os elétrons podem ser transferidos de um corpo para outro. Podemos dizer que um corpo está eletrizado quando possui excesso ou falta de elétrons. Se há excesso de elétrons, o corpo está eletrizado negativamente; se há falta de elétrons, o corpo está eletrizado positivamente. A quantidade de elétrons em falta ou em excesso caracteriza a carga elétrica Q do corpo, podendo ser positiva no primeiro caso e negativa no segundo. (www. geocities.yahoo.com.br, acesso em 2011) Condutores de eletricidade São os meios materiais nos quais há facilidade de movimento de cargas elétricas, devido a presença de "elétrons livres". Ex: fio de cobre, alumínio, etc Isolantes de eletricidade São os meios materiais nos quais não há facilidade de movimento de cargas elétricas. Ex: vidro, borracha, madeira seca, etc. 9
10 5. Exercícios 5.1. O que representa a figura abaixo? Fale-me um pouco sobre ela Considerando que todo material possui carga elétrica, então quando tentamos aproximar dois materiais com cargas elétricas de sinais iguais sentimos uma força de entre eles. Já, se tentarmos aproximar dois materiais de cargas elétricas de sinais contrários, sentiremos uma força de entre eles Fale-me sobre a informação que a figura abaixo lhe transmite E qual a informação que a figura seguinte lhe transmite. Qual a diferença entre as duas últimas figuras? 5.5. Utilizando os elementos abaixo construa um circuito elétrico. Para isso basta interligar tais elementos corretamente. 10
11 5.6. Qual das duas lâmpadas apresentadas abaixo tem maior potência? Considerando que elas são do mesmo tipo, qual delas ilumina mais? 5.7. O que significa cada símbolo na escadinha apresentado na figura abaixo? 5.8. Fale-me sobre a figura abaixo 11
HISTÓRIA DA ELETRICIDADE
HISTÓRIA DA ELETRICIDADE Descoberta: Ao esfregar um âmbar a um pedaço de pele de carneiro, Tales de Mileto observou que pedaços de palhas e fragmentos de madeira começaram a ser atraídas pelo próprio âmbar.
Eletricidade Professor Pisciotta
Eletricidade O estudo da eletricidade se iniciou na Antigüidade, por volta do século VI a.c, com o filósofo e matemático grego Tales de Mileto. Ele, dentre os maiores sábios da Grécia Antiga, foi quem
O que é a eletricidade?
O que é a eletricidade? Vídeo 1 Esses são fenômenos naturais atualmente conhecidos como manifestação da eletricidade, porém antigamente não se sabia disso. O que era a eletricidade? O âmbar atrai pedaços
Eletricidade e Magnetismo
Eletricidade e Magnetismo De Gilbert à Faraday e Maxwell Victor O. Rivelles Instituto de Física da Universidade de São Paulo e-mail: [email protected] http://www.fma.if.usp.br/~rivelles Convite à
Curso Técnico em Mecânica ELETRICIDADE
Curso Técnico em Mecânica - 2016 ELETRICIDADE Aula 02 Noções de elestrostática Prof. Dra. Giovana Tripoloni Tangerino https://giovanatangerino.wordpress.com [email protected] [email protected]
CARGAS ELÉTRICAS AULA 01
CARGAS ELÉTRICAS AULA 01 Professor Jocemar Bueno www.maisfisica.com [email protected] http://www.maisfisica.com +AULA 01 Linha do Tempo A história sempre nos ensina como uma série de eventos podem
Introdução à Eletricidade
G10CK/ALAMY/EASYPIX BRASIL Introdução à Eletricidade Eletricidade é uma palavra derivada do grego élektron, que significa âmbar. Resina vegetal fossilizada Ao ser atritado com um pedaço de pele de animal,
Eletricidade. Centro de Formação Profissional Orlando Chiarini - CFP / OC Pouso Alegre MG Inst.: Anderson
Eletricidade Centro de Formação Profissional Orlando Chiarini - CFP / OC Pouso Alegre MG Inst.: Anderson Eletricidade Ementa Proposta 1. Fundamentos de eletricidade: Histórico; Materiais isolantes, condutores
Eletricidade e Magnetismo I
Eletricidade e Magnetismo I Magnetismo Victor O. Rivelles Instituto de Física da Universidade de São Paulo Edifício Principal, Ala Central, sala 314 e-mail: [email protected] http://www.fma.if.usp.br/~rivelles
ELETRICIDADE 1 ELETROSTÁTICA. Estrutura atômica, Carga Elétrica e Eletrização
ELETRICIDADE 1 ELETROSTÁTICA Estrutura atômica, Carga Elétrica e Eletrização Professor: Danilo Carvalho de Gouveia Slides elaborados a partir da aula do prof. Amaury Menezes e referências complementares
ELETRICIDADE. Professor Paulo Christakis, M.Sc. 20/10/2016 1
ELETRICIDADE 20/10/2016 1 Eletricidade é dividida em: Eletrostática: parte da Eletricidade que estuda as cargas elétricas em repouso. Eletrodinâmica: parte da Eletricidade que estuda as cargas elétricas
FÍSICA III FÍSICA III BIBLIOGRAFIA BÁSICA
04/02/2015 FÍSICA III FÍSICA III Estuda a natureza e seus fenômenos em seus aspectos mais gerais. Analisa suas relações e propriedades, além de descrever e explicar a maior parte de suas consequências.
ELETRICIDADE BÁSICA. 1 Evolução da Eletricidade
1 Evolução da Eletricidade ELETRICIDADE BÁSICA A palavra Eletricidade provém do latim electricus, que significa literalmente produzido pelo âmbar por fricção. Este termo tem as suas origens na palavra
Cursos Técnicos em Informática e Redes de computadores. Eletricidade Prof. Msc. Jean Carlos
Cursos Técnicos em Informática e Redes de computadores Eletricidade 2012.1 Prof. Msc. Jean Carlos Eletricidade Aula_01 Objetivo da aula Revisar potência de dez; Conhecer os Múltiplos e Submúltiplos; O
Física Geral e Experimental -4 Eletricidade
Física Geral e Experimental -4 Eletricidade Ementa do Curso Introdução: Processos de Eletrização Lei de Coulomb e aplicações Campos Elétricos de distribuições discretas/contínuas de cargas A Lei de Gauss
Princípios de Eletricidade e Magnetismo
Princípios de Eletricidade e Magnetismo Engenharias 1 Ementa Eletrostática Carga Elétrica Condutores e Isolantes Processos de Eletrização Lei de Coulomb Campo Elétrico Potencial Elétrico Circuitos I Tensão
Unidade 8. Eletricidade e Magnetismo
Unidade 8 Eletricidade e Magnetismo Eletrostática e Eletrodinâmica Os fenômenos elétricos estão associados aos elétrons. Cargas Elétricas As cargas elétricas podem ser positivas ou negativas Cargas opostas
NR-10 ELETRICIDADE. Tópicos de. Prof. Pedro Armando da Silva Jr. Engenheiro Eletricista, Dr.
NR-10 Tópicos de ELETRICIDADE Prof. Pedro Armando da Silva Jr. Engenheiro Eletricista, Dr. [email protected] Matéria É tudo aquilo que possui massa e ocupa lugar no espaço. Os átomos são formados
HISTORIA DA ELETRICIDADE
1 HISTORIA DA ELETRICIDADE RESUMO OS PRIMEIROS PASSOS Grécia Antiga - Tales descobre as propriedades do âmbar. Ásia Menor descobre-se as propriedades de um pedaço de rocha atrair pequenos pedaços de ferro
ELETRICIDADE BÁSICA TEORIA ATÔMICA
Matéria TEORIA ATÔMICA É tudo aquilo que ocupa lugar no espaço Molécula Núcleo: Prótons carga elétrica positiva Nêutrons carga elétrica nula Eletrosfera: Elétrons carga elétrica negativa Átomo É a menor
H1- Compreender as grandezas relacionadas com o campo de conhecimento em eletricidade. Aula 1
H1- Compreender as grandezas relacionadas com o campo de conhecimento em eletricidade. Aula 1 Técnico em Eletromecânica - Agosto o de 2009 Prof. Dr. Emerson S. Serafim 1 Eletrostática: CONTEÚDO Átomo-Lei
CONSTRUÇÃO DE LINHAS DE TRANSMISSÃO
CONSTRUÇÃO DE LINHAS DE TRANSMISSÃO NOÇÕES DE PROJETO E CONSTRUÇÃO DACQ.C Revisão: Mai/2007 Direitos autorais reservados a Furnas Centrais Elétricas S.A. DACQ.C Divisão de Apoio e Controle de Qualidade
Cap. 1 Princípios da Eletrostática
Cap. 1 Princípios da Eletrostática Instituto Federal Sul-rio-grandense Curso Técnico em Eletromecânica Disciplina de Eletricidade Básica Prof. Rodrigo Souza Sumário 1 - Princípios da Eletrostática 1.1
Eletrização por atrito
Eletrização por atrito Quando do atrito entre dois corpos, a energia aplicada é suficiente para que um corpo transfira elétrons para o outro, tornando um corpo carregado positivamente e o outro negativamente.
Módulo de Eletricidade Básica. Odailson Cavalcante de Oliveira IFRN- Campus João Câmara
Módulo de Eletricidade Básica Odailson Cavalcante de Oliveira IFRN- Campus João Câmara 1 O que esperar do curso? Identificar as principais grandezas elétricas, fazendo a devida relação entre as mesmas
O átomo. O Interior do Átomo
O átomo Todas as substâncias são formadas de pequenas partículas chamadas átomos. Para se ter uma idéia, eles são tão pequenos que uma cabeça de alfinete pode conter 60 milhões deles. Os gregos antigos
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA ELETRICIDADE E MAGNESTISMO - ET72F Profª Elisabete N Moraes
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA ELETRICIDADE E MAGNESTISMO - ET72F Profª Elisabete N Moraes ELETRIZAÇÃO Eletrostática Estuda os fenômenos elétricos em
Figura 1 - O pente que foi utilizado para pentear os cabelos atrai pequenos pedaços
CAPÍTULO 1 CARGAS ELÉTRICAS, ISOLANTES E CONDUTORES Cargas elétricas Em 1600, William Gilbert publicou um livro sobre eletricidade e magnetismo que é considerado o início da história moderna da eletricidade
Prof. Fábio de Oliveira Borges
Carga elétrica e a lei de Coulomb Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil https://cursos.if.uff.br/!fisica2-0117/doku.php
DEPARTAMENTO DE MECÂNICA PROF. JOSÉ EDUARDO. Grandezas. De base Derivada
MEDIÇÃO INDUSTRIAL DEPARTAMENTO DE MECÂNICA PROF. JOSÉ EDUARDO Grandezas De base Derivada DEPARTAMENTO DE MECÂNICA Grandezas de Base COMPRIMENTO TEMPO GRANDEZAS DE BASE MASSA QUANTIDADE DE MATÉRIA CORRENTE
AULA 2- CARGA ELÉTRICA PROF: RAFAEL M. SANTOS
AULA 2- CARGA ELÉTRICA PROF: RAFAEL M. SANTOS CARGAS ELÉTRICAS CAPÍTULO 21 21.1 - O QUE É FÍSICA? 21.2 - CARGAS ELÉTRICAS 21.3 - CONDUTORES E ISOLANTES 21.4 - LEI DE COULOMB 21.5 - A CARGA É QUANTIZADA
Bacharelado em Engenharia Civil
Bacharelado em Engenharia Civil Disciplina: Física III Prof a.: D rd. Mariana de F. Gardingo Diniz [email protected] EMENTA Carga elétrica. Campo elétrico. Lei de Gauss. Potencial elétrico.
Sistema Internacional de Unidades (SI) e Medida
Área do Conhecimento: Ciências da Natureza e Matemática Componente Curricular: Física Prof. Dr. Mário Mascarenhas Sistema Internacional de Unidades (SI) e Medida Sistema adotado oficialmente no Brasil
Física Aplicada A Aula 1. Profª. Me. Valéria Espíndola Lessa
Física Aplicada A Aula 1 Profª. Me. Valéria Espíndola Lessa [email protected] Este material está disponibilizado no endereço: http://matvirtual.pbworks.com/w/page/52894125 /UERGS O que é Física?
PROCESSOS DE ELETRIZAÇÃO
PROCESSOS DE ELETRIZAÇÃO Considera-se um corpo eletrizado quando este tiver número diferente de prótons e elétrons, ou seja, quando não estiver neutro. O processo de retirar ou acrescentar elétrons a um
Sabe-se do dia a dia que há materiais que conduzem eletricidade com facilidade e outros não. Isso implica na classificação de dois tipos de materiais
Sabe-se do dia a dia que há materiais que conduzem eletricidade com facilidade e outros não. Isso implica na classificação de dois tipos de materiais em relação à condução da eletricidade: os materiais
Energia É definida como tudo aquilo capaz de realizar ou produzir trabalho. Ela existe em diversas modalidades sob várias formas:
1. Instalações Elétricas de Baixa Tensão: 1.1. Introdução A energia elétrica está presente em inúmeras atividades do ser humano. Ela é sinônimo de desenvolvimento de um país e de padrão de vida de sua
Eletricidade Aula ZERO. Profª Heloise Assis Fazzolari
Eletricidade Aula ZERO Profª Heloise Assis Fazzolari Plano de aulas O objetivo da disciplina é dar ao aluno noções de eletricidade e fenômenos relacionados. Critério de Avaliação Quatro provas bimestrais
Prof. Thiago Miranda de Oliveira
Prof. Thiago Miranda de Oliveira Dentre todos os fenômenos que ocupavam os físicos, a eletricidade foi o que trouxe mais contribuições fundamentais para a física no século XVIII. Os primeiros registros
ELETRICIDADE. Introdução 1: A palavra eletricidade provem do grego, da palavra eléktron, que significa âmbar.
ELETRICIDADE Introdução 1: A palavra eletricidade provem do grego, da palavra eléktron, que significa âmbar. O âmbar é um tipo de resina fóssil, de origem vegetal, utilizado na fabricação de utensílios.
ELETRÔNICA X ELETROTÉCNICA
ELETRÔNICA X ELETROTÉCNICA ELETRÔNICA É a ciência que estuda a forma de controlar a energia elétrica por meios elétricos nos quais os elétrons têm papel fundamental. Divide-se em analógica e em digital
Prof. Marcelo França
Prof. Marcelo França CARGA ELÉTRICA O estudo da Eletricidade remonta à antiga Grécia com as observações de Thales de Mileto (580 a.c. - 546 a.c.). Thales descreve a atração de pequenas sementes pelo (
Curso Técnico em Mecânica ELETRICIDADE
Curso Técnico em Mecânica - 2016 ELETRICIDADE Aula 03 Tensão e corrente Prof. Dra. Giovana Tripoloni Tangerino https://giovanatangerino.wordpress.com [email protected] [email protected] Relembrando
Universidade Federal do Maranhão - Campus Imperatriz Centro de Ciências Sociais, Saúde e Tecnologia Licenciatura em Ciências Naturais - LCN
Universidade Federal do Maranhão - Campus Imperatriz Centro de Ciências Sociais, Saúde e Tecnologia Licenciatura em Ciências Naturais - LCN Física Módulo 1 No encontro de hoje... Medição Grandezas Físicas,
INTRODUÇÃO A ELETRICIADE BÁSICA
1 INTRODUÇÃO A ELETRICIADE BÁSICA Na eletricidade básica existem três grandezas fundamentais que são a tensão elétrica, a corrente elétrica, a resistência elétrica. Para estuda-las utilizaremos o conceito
Comprimento metro m Massa quilograma kg Tempo segundo s. Temperatura termodinâmica Kelvin K
INTRODUÇÃO O Sistema Internacional e s ( S.I.) O SI é dividido em três grupos, a seguir: Sete s de Base Duas s Suplementares s derivadas Tabela 1 - s de Base do SI Comprimento metro m Massa quilograma
Tópico 01: Estudo de circuitos em corrente contínua (CC) Profa.: Ana Vitória de Almeida Macêdo
Disciplina Eletrotécnica Tópico 01: Estudo de circuitos em corrente contínua (CC) Profa.: Ana Vitória de Almeida Macêdo Conceitos básicos Eletricidade Eletrostática Eletrodinâmica Cargas elétricas em repouso
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Técnico Integrado em Informática
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE 3ª Lista de Exercícios Eletricidade Instrumental Técnico Integrado em Informática Aluno (a): Ano/Série: Matrícula: Professor:
ELETRICIDADE CAPÍTULO 1 VARIÁVEIS DE CIRCUITOS ELÉTRICOS
ELETRICIDADE CAPÍTULO 1 VARIÁVEIS DE CIRCUITOS ELÉTRICOS 1 - INTRODUÇÃO 1.1 HISTÓRICO DA CIÊNCIA ELÉTRICA 1 - INTRODUÇÃO O PRIMEIRO TRANSISTOR CHIP DE COMPUTADOR 1 - INTRODUÇÃO 1 - INTRODUÇÃO 1 - INTRODUÇÃO
Aula 2 Eletrostática Prof. Marcio Kimpara
ELETRICIDADE Aula 2 Eletrostática Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul Prof. Marcio Kimpara 2 Eletricidade Os primeiros relatos sobre a eletricidade datam desde antes de Cristo.
CARGAS EL E ÉT É R T I R CA C S A
CARGAS ELÉTRICAS Tales de Mileto VI a.c Atritou âmbar com peles de animais Percebe atração de pequenas partículas por tais materiais. Percebe que 2 pedaços de âmbar se repeliam mutuamente. Âmbar = elektron,
Eletricidade e Magnetismo I (Eletromagnetismo)
Eletricidade e Magnetismo I (Eletromagnetismo) Histórico 1 Fenômenos elétricos - Eletricidade Inpe: 1.672 pessoas morreram no país atingidas por raios entre 2000 e 2013. Ao menos 30 pessoas morreram atingidas
Guia do Professor: Condutividade!!! Reconhecer a condutividade como a movimentação de elétrons e íons.
Guia do Professor: Condutividade!!! Reconhecer a condutividade como a movimentação de elétrons e íons. INTRODUÇÃO Experiências com relação à eletricidade vêm sendo executadas há muito tempo pelo homem.
Microfone e altifalante. Conversão de um sinal sonoro num sinal elétrico. sinal elétrico num sinal sonoro.
Microfone e altifalante Conversão de um sinal sonoro num sinal elétrico. Conversão de um sinal elétrico num sinal sonoro. 1 O funcionamento dos microfones e dos altifalantes baseia-se na: - acústica; -
Centro Paula Souza ETEC Raposo Tavares Instalação e Manutenção de Computadores IMC Prof. Amaral
Eletrônica Básica Conceitos de Tensão, Corrente e Resistência Elétrica Aulas de 04 a 25/08 Mesmo pensando somente em Informática, temos que conhecer algumas grandezas elétricas básicas. Essas grandezas
Fundamentos de Física. Vitor Sencadas
Fundamentos de Física Vitor Sencadas [email protected] Grandezas físicas e sistemas de unidades 1.1. Introdução A observação de um fenómeno é incompleta quando dela não resultar uma informação quantitativa.
Cargas elétricas de mesmo sinal se repelem; cargas elétricas de sinais opostos se atraem
Os dois tipos de eletricidade Eletrização Estudos realizados por William Gilbert no início do século XVII evidenciou a existência de dois tipos de eletricidade: a atrativa e a repulsiva, possibilitando
Unidades básicas do SI
EDUCANDO: Nº: TURMA: DATA: / / EDUCADOR: Leonardo, Mariana e Rosiméri Ciências 9º ano do Ensino Médio Avaliação Unidades de medida: Medir uma grandeza física significa compará-la com outra grandeza física
LIÇÃO 01 - CARGAS ELÉTRICAS E A LEI DE COULOMB. Eletromagnetismo - Instituto de Pesquisas Científicas
ELETROMAGNETISMO LIÇÃO 01 - CARGAS ELÉTRICAS E A LEI DE COULOMB Quase tudo o que fazemos depende da eletricidade. Quando ligamos um carro, a TV ou o rádio estamos usando da eletricidade. Hospitais necessitam
GOIÂNIA, 25_ / 02 / PROFESSOR: Jonas Tavares. Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações:
GOIÂNIA, 25_ / 02 / 2016 PROFESSOR: Jonas Tavares DISCIPLINA: Física SÉRIE: 3º ALUNO(a): No Anhanguera você é + Enem Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: -
Sistemas de Geração, Transmissão e Distribuição de Energia Elétrica.
Sistemas de Geração, Transmissão e Distribuição de Energia Elétrica. Ímã: Princípios de Eletromecânica Ímã é um objeto formado por material ferromagnético que apresenta um campo magnético à sua volta.
INTRODUÇÃO À ENGENHARIA
INTRODUÇÃO À ENGENHARIA 2015 AULA PRÁTICA No. 02 POTÊNCIA DE DEZ E NOTAÇÃO CIENTÍFICA PROF. ANGELO BATTISTINI NOTA NOME RA TURMA NOTA Objetivos: Nesta aula vamos estudar Notação Científica e como representar
QUESTÕES DA PROVA DE RÁDIO ELETRICIDADE - PARTE - 2
QUESTÕES DA PROVA DE RÁDIO ELETRICIDADE - PARTE - 2 QUESTÃO 50 Se aumentarmos o valor da corrente através de um fio condutor, o que acontece com o campo magnético: a. Diminui a intensidade b. Aumenta a
Sejam todos bem-vindos! Física III. Prof. Dr. Cesar Vanderlei Deimling
Sejam todos bem-vindos! Física III Prof. Dr. Cesar Vanderlei Deimling O segundo semestre O plano de ensino Bibliografia: A natureza e os tipos de carga Tipos de materiais Força entre cargas elétricas (A
Ismael Rodrigues Silva Física-Matemática - UFSC. cel: (48)
Ismael Rodrigues Silva Física-Matemática - UFSC cel: (48)9668 3767 Ramos da Mecânica... Grandezas... Sistema Internacional... Unidades Derivadas... Cálculo com Unidades... Potências de 10... Prefixos do
Do que somos feitos? >>Vídeo: Física- Química- Os Primeiros Modelos Atômicos (Dalton, Thomson, Rutherford, Bohr)<<
Prof. Gabriel Aká Do que somos feitos? >>Vídeo: Física Química Os Primeiros Modelos Atômicos (Dalton, Thomson, Rutherford, Bohr)>Átomo
Eletricidade e Magnetismo I
Eletricidade e Magnetismo I Eletrostática Victor O. Rivelles Instituto de Física da Universidade de São Paulo Edifício Principal, Ala Central, sala 314 e-mail: [email protected] http://www.fma.if.usp.br/~rivelles
Referências bibliográficas: H. 23-2, 23-3, 23-5, 23-6 S. 22-2, 22-3, 22-4 T. 18-1, 18-2
Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Física III Prof. Dr. Ricardo Luiz Viana Referências bibliográficas: H. 23-2, 23-3, 23-5, 23-6 S. 22-2, 22-3, 22-4 T. 18-1,
Eletricidade. Profa. Ana Barros. Curso Eletricista -Montador
Eletricidade Profa. Ana Barros Curso Eletricista -Montador Janeiro 2009 Plano de Curso 1) Carga Elétrica 1.1 Propriedades 1.2 Estrutura atômica 2) Isolantes e condutores 3) Processos de Eletrização 3.1
Átomo A m a m t a é t r é ia i a prim i a m a do Universo
Á tom o A matéria prima do Universo Á tom o A palavra Átomo Tipos de Átomos Estrutura e Carga Elétrica do Átomo Massa do Átomo Modelos Atômicos A palavra átom o Desde a Grécia antiga, dois filósofos Leucipo
AULA 05 Magnetismo Transformadores
AULA 05 Magnetismo Transformadores MAGNETISMO As primeiras observações de fenômenos magnéticos são muito antigas. Acredita-se que estas observações foram realizadas pelos gregos, em uma cidade denominada
ELETROIMÃ. Parte I. 2. Observar as forças de origem magnética produzidas a partir de corrente elétrica e compará-las com um ímã.
ELETROIMÃ Parte I Shizue Shimizu Introdução Uma bobina quando percorrida por corrente elétrica, constitui um ímã. Portanto, a corrente elétrica tem efeito magnético. Com esta experiência, vamos verificar
Prof. Renato. ETEC de Vila Formosa ETEC Prof. Camargo Aranha SESI Carrão. Física 1ª. Série. Aula 1
Aula 1 1. Apresentação (Conhecimento / Reconhecimento) 1.1 Pessoal Nome, Formação, Profissão, Residência... 1.2 Disciplina (Levantamento / Classificação) Física 1ª. Série 2ª. Série 3ª. Série Mecânica /
H1- Compreender as grandezas relacionadas com o campo de conhecimento em eletricidade. Aula 1
H1- Compreender as grandezas relacionadas com o campo de conhecimento em eletricidade. Aula 1 Técnico em Eletromecânica - Julho de 2010 Prof. Dr. Emerson S. Serafim 1 Eletrostática: CONTEÚDO Átomo-Lei
TRANSFORMADOR MONOFÁSICO. Prof. Nelson M. Kanashiro 1. N0ÇÕES DE ELETROMAGNETISMO I I. Densidade de Fluxo Magnético ou simplesmente Campo Magnético,
TRASFORMADOR MOOFÁSCO 1 0ÇÕES DE ELETROMAGETSMO Os materiais magnéticos, denominados como Magnetitas ou Ímãs Permanentes já eram conhecidos pelos gregos a mais de 2500 anos Certas pedras da região da Magnésia
Revisão 1 H 99,985 2 H 0, C 98,89 13 C 1,11 14 N 99,63 15 N 0,37 16 O 99, O 0, O 0,204
Revisão Número de massa A característica fundamental que define um elemento químico é o número de prótons (Z) no núcleo. Se chamarmos de N o número de nêutrons no núcleo, o número de massa A é dado por:
Física. Leo Gomes (Vitor Logullo) 20 e Magnetismo
Magnetismo Magnetismo 1. Para ser atraído por um ímã, um parafuso precisa ser: a) mais pesado que o ímã b) mais leve que o ímã c) de latão e cobre d) imantado pela aproximação do ímã e) formando por uma
DISCIPLINA: FISICA II - Eletricidade e Magnetismo. INFORMAÇÕES IMPORTANTES:
DISCIPLINA: FISICA II - Eletricidade e Magnetismo http://cursos.if.uff.br/fisica2 INFORMAÇÕES IMPORTANTES: 1. Plano do curso: o que será visto em cada aula 2. As datas de todos exames 3. Os critérios de
Matemática Régis Cortes SISTEMA MÉTRICO
SISTEMA MÉTRICO 1 Unidades de medida ou sistemas de medida Para podermos comparar um valor com outro, utilizamos uma grandeza predefinida como referência, grandeza esta chamada de unidade padrão. As unidades
A Natureza Elétrica dos Materiais
A Natureza Elétrica dos Materiais As primeiras ideias sobre a constituição da matéria Demócrito Gregos ÁTOMOS - A matéria possuia espaço vazio; - Indestrutíveis; - Dotadas de movimento; - Diversos formatos.
Química Geral -Aula 2 Átomo e estrutura atômica. *Mas afinal, de que são feitas as coisas?
Química Geral -Aula 2 Átomo e estrutura atômica *Mas afinal, de que são feitas as coisas? Átomo na Grécia antiga 2 teorias (Demócrito, Leucipo e Aristóteles) Demócrito, Leucipo e Aristóteles Átomo como
CE01) Determine o número de elétrons existentes em uma carga de 1,0 C.
Lista 13 Carga elétrica e Eletrização CARGA ELÉTRICA http://www.portalsaofrancisco.com.br/alfa/carga-eletrica/carga-eletrica.php Q = n. e Q carga elétrica n números de carga em excesso e = 1,6.10-19 C
Unidades estruturais que constituem as substâncias
Unidades estruturais que constituem as substâncias As caraterísticas específicas de cada substância dependem da sua constituição, ou seja, do tipo de partículas ou unidades estruturais que formam a substância
CABEAMENTO. Instrutor: Vinicius Barbosa Lima
CABEAMENTO Instrutor: Vinicius Barbosa Lima Objetivos da disciplina Conceitos fundamentais Conhecer os tipos de cabos Análise das especificações Estudo dos conectores Análise dos materiais Geometria e
Cargas Elétricas: ELETROSTÁTICA
Cargas Elétricas: ELETROSTÁTICA Capítulo 10 4º bimestre Colégio Contato Unidade Farol Professora Thaís Freitas 9º ano - 2015 A eletrostática, basicamente, é a parte da eletricidade que estuda as cargas
Ismael Rodrigues Silva Física-Matemática - UFSC. cel: (48)
Ismael Rodrigues Silva Física-Matemática - UFSC cel: (48)9668 3767 Maxwell formulou um conjunto de 4 equações (equações de Maxwell) que desempenham no eletromagnetismo o mesmo papel que as leis de Newton
Avaliação da cadeira
Avaliação da cadeira Trabalho de síntese 20% Trabalhos práticos (4/5) 40% Exame final 40% Metrologia Ciência da medição - desenvolvimento de métodos e procedimentos de medição; - desenho de equipamento
FÍSICA MÓDULO 1. Carga Elétrica. Professor Sérgio Gouveia
FÍSICA Professor Sérgio Gouveia MÓDULO 1 Carga Elétrica INTRODUÇÃO Se atritarmos um pente de plástico com um pedaço de flanela verificaremos que o pente se torna capaz de atrair objetos leves como fios
TABELA PERIÓDICA PARTE 1
PROJETO KAL - 2016 QUÍMCA AULA 06 TABELA PERÓDCA PARTE 1 Recordar é viver: Modelo Atômico de Rutherford-Bohr: Também conhecido como modelo atômico planetário, ele mostra como os elétrons se comportam ao
ELETRODINÂMICA E ELETROMAGNETISMO
ELETRODINÂMICA E ELETROMAGNETISMO 20/10/2016 1 O QUE ESTUDAMOS AGORA? As causas e os efeitos das cargas elétricas em movimento, fundamentais nos dias de hoje pelo fato de possibilitarem o funcionamento
Apresentação da Disciplina de Física 1
Apresentação da Disciplina de Física 1 Prof. Nelson Elias e-mail: [email protected] http://nelias.wikidot.com/start Livro Texto: Fundamentos de Física: Halliday, Resnick, Walker. Volumes 1 e 2. Preferencialmente
Corrente elétrica pode ser entendida como sendo a quantidade de elétrons que atravessa a secção de um condutor em um segundo.
Corrente, Tensão, Resistência, Potência e Freqüência. Conceitos Básicos Mesmo pensando somente em Informática, temos que conhecer algumas grandezas elétricas básicas. Essas grandezas são: Corrente, tensão,
Eletromagnetismo: Bobinas, Eletroímanes e Motores Elétricos.
Eletromagnetismo: Bobinas, Eletroímanes e Motores Elétricos www.fator-f.com [email protected] Campo Magnético criado por uma corrente elétrica Campo Magnético criado por um fio, percorrido por uma corrente
Medição em Química e Física
Medição em Química e Física Hás-de fazê-la desta maneira: o comprimento será de trezentos côvados; a largura, de cinquenta côvados; e a altura, de trinta côvados. Génesis, VI, 15 Professor Luís Gonçalves
Condensador equivalente de uma associação em série
Eletricidade Condensadores São componente constituído por dois condutores separados por um isolador: os condutores são chamados armaduras (ou placas) do condensador e o isolante é o dielétrico do condensador.
Instalações Elétricas Prediais A ENG04482
Instalações Elétricas Prediais A ENG04482 Prof. Luiz Fernando Gonçalves AULA 2 Conceitos Fundamentais Porto Alegre - 2012 Tópicos Energia elétrica Fontes de eletricidade Fontes de tensão e corrente Geração
Introdução ao Sistema Internacional de Unidades (SI)
Introdução ao Sistema Internacional de Unidades (SI) Introdução, histórico, peculiaridades, usos, definições: 1. N. Baccan, J. C. de Andrade, O. E. S. Godinho, J. S. Barone, "Química Analítica Quantitativa
O Sistema Internacional de Unidades - SI
O Sistema Internacional de Unidades - SI http://www.inmetro.gov.br/consumidor/unidlegaismed.asp As informações aqui apresentadas irão ajudar você a compreender melhor e a escrever corretamente as unidades
