LISTA UERJ MRU, MRUV E LANÇAMENTOS
|
|
|
- Marcelo Pinhal Franco
- 8 Há anos
- Visualizações:
Transcrição
1 LISTA UERJ MRU, MRUV E LANÇAMENTOS 1. (Uerj 2013) Três pequenas esferas, E, 1 E 2 e E, 3 são lançadas em um mesmo instante, de uma mesma altura, verticalmente para o solo. Observe as informações da tabela: Esfera Material E 1 chumbo v 1 E 2 alumínio v 2 E 3 vidro v 3 Velocidade inicial A esfera de alumínio é a primeira a alcançar o solo; a de chumbo e a de vidro chegam ao solo simultaneamente. A relação entre v, 1 v 2 e v 3 está indicada em: a) v1 v3 v2 b) v1 v3 v2 c) v1 v3 v2 d) v1 v3 v2 2. (Uerj 2013) Três blocos de mesmo volume, mas de materiais e de massas diferentes, são lançados obliquamente para o alto, de um mesmo ponto do solo, na mesma direção e sentido e com a mesma velocidade. Observe as informações da tabela: Material bloco do Alcance do lançamento chumbo A 1 ferro A 2 granito A 3
2 A relação entre os alcances A 1, A 2 e A 3 está apresentada em: a) A 1 > A 2 > A 3 b) A 1 < A 2 < A 3 c) A 1 = A 2 > A 3 d) A 1 = A 2 = A 3 Três bolas X, Y e Z são lançadas da borda de uma mesa, com velocidades iniciais paralelas ao solo e mesma direção e sentido. A tabela abaixo mostra as magnitudes das massas e das velocidades iniciais das bolas. Bolas Massa Velocidade inicial (g) (m/s) X 5 20 Y 5 10 Z (Uerj 2012) As relações entre os respectivos tempos de queda t x X, Y e Z estão apresentadas em: a) t x < t y < t z b) t y < t z < t x c) t z < t y < t x d) t y = t x = t z, t y e t z das bolas 4. (Uerj 2012) As relações entre os respectivos alcances horizontais A x, bolas X, Y e Z, com relação à borda da mesa, estão apresentadas em: a) A x < b) A y = c) A z < d) A y < A y < A x = A y < A z < A z A z A x A x A y e A z das
3 Um trem em alta velocidade desloca-se ao longo de um trecho retilíneo a uma velocidade constante de 108 km/h. Um passageiro em repouso arremessa horizontalmente ao piso do vagão, de uma altura de 1 m, na mesma direção e sentido do deslocamento do trem, uma bola de borracha que atinge esse piso a uma distância de 5 m do ponto de arremesso. 5. (Uerj 2011) O intervalo de tempo, em segundos, que a bola leva para atingir o piso é cerca de: a) 0,05 b) 0,20 c) 0,45 d) 1,00 6. (Uerj 2011) Se a bola fosse arremessada na mesma direção, mas em sentido oposto ao do deslocamento do trem, a distância, em metros, entre o ponto em que a bola atinge o piso e o ponto de arremesso seria igual a: a) 0 b) 5 c) 10 d) (Uerj 2010) Dois automóveis, M e N, inicialmente a 50 km de distância um do outro, deslocam-se com velocidades constantes na mesma direção e em sentidos opostos. O valor da velocidade de M, em relação a um ponto fixo da estrada, é igual a 60 km/h. Após 30 minutos, os automóveis cruzam uma mesma linha da estrada. Em relação a um ponto fixo da estrada, a velocidade de N tem o seguinte valor, em quilômetros por hora: a) 40 b) 50 c) 60 d) 70
4 8. (Uerj 2010) Um foguete persegue um avião, ambos com velocidades constantes e mesma direção. Enquanto o foguete percorre 4,0 km, o avião percorre apenas 1,0 km. Admita que, em um instante t 1, a distância entre eles é de 4,0 km e que, no instante t 2, o foguete alcança o avião. No intervalo de tempo t 2 t 1, a distância percorrida pelo foguete, em quilômetros, corresponde aproximadamente a: a) 4,7 b) 5,3 c) 6,2 d) 8,6 9. (Uerj 2009) Ao se deslocar do Rio de Janeiro a Porto Alegre, um avião percorre essa distância com velocidade média v no primeiro 1/9 do trajeto e 2v no trecho restante. A velocidade média do avião no percurso total foi igual a: 9 a) v 5 8 b) v 5 5 c) v 3 5 d) v 4
5 10. (Uerj 2009) Os gráficos 1 e 2 representam a posição S de dois corpos em função do tempo t. 1 No gráfico 1, a função horária é definida pela equação S = 2 t. 2 Assim, a equação que define o movimento representado pelo gráfico 2 corresponde a: a) S = 2 + t b) S = 2 + 2t 4 c) S = 2 t 3 6 d) S = 2 t 5 Em um jogo de voleibol, denomina-se tempo de voo o intervalo de tempo durante o qual um atleta que salta para cortar uma bola está com ambos os pés fora do chão, como ilustra a fotografia. Considere um atleta que consegue elevar o seu centro de gravidade a 0,45 m do chão e a aceleração da gravidade igual a 10m/s 2.
6 11. (Uerj 2008) O tempo de voo desse atleta, em segundos, corresponde aproximadamente a: a) 0,1 b) 0,3 c) 0,6 d) 0,9 12. (Uerj 2008) A velocidade inicial do centro de gravidade desse atleta ao saltar, em metros por segundo, foi da ordem de: a) 1 b) 3 c) 6 d) 9
7 Desde Aristóteles, o problema da queda dos corpos é um dos mais fundamentais da ciência. Como a observação e a medida diretas do movimento de corpos em queda livre eram difíceis de realizar, Galileu decidiu usar um plano inclinado, onde poderia estudar o movimento de corpos sofrendo uma aceleração mais gradual do que a da gravidade. MICHEL RIVAL Adaptado de Os grandes experimentos científicos. Rio de Janeiro: Jorge Zahar, Observe, a seguir, a reprodução de um plano inclinado usado no final do século XVIII para demonstrações em aula. Admita que um plano inclinado M 1, idêntico ao mostrado na figura, tenha altura igual a 1,0m e comprimento da base sobre o solo igual a 2,0m. Uma pequena caixa é colocada, a partir do repouso, no topo do plano inclinado M 1 e desliza praticamente sem atrito até a base. Em seguida, essa mesma caixa é colocada, nas mesmas condições, no topo de um plano inclinado M 2, com a mesma altura de M 1 e comprimento da base sobre o solo igual a 3,0m. 13. (Uerj 2008) A razão t 1 /t 2 entre os tempos de queda da caixa após deslizar, respectivamente, nos planos M 1 e M 2, é igual a: a) 2 b) 2 c) 1
8 d) (Uerj 2008) A razão v 1 /v 2 entre as velocidades da caixa ao alcançar o sol o após deslizar, respectivamente, nos planos M 1 e M 2, é igual a: a) 2 b) 2 c) 1 d) 2 Um professor e seus alunos fizeram uma viagem de metrô para estudar alguns conceitos de cinemática escalar. Durante o percurso verificaram que, sempre que partia de uma estação, a composição deslocava-se com aceleração praticamente constante durante 15 segundos e, a partir de então, durante um intervalo de tempo igual a T segundos, com velocidade constante. 15. (Uerj 2007) O gráfico que melhor descreve a variação temporal da velocidade v da composição, observada a partir de cada estação, é:
9 16. (Uerj 2007) A variação temporal do deslocamento s da composição, observada a partir de cada estação, está corretamente representada no seguinte gráfico: 17. (Uerj 2005) Em nosso planeta, ocorrem diariamente eventos sísmicos, provocados por diversos fatores. Observe o esquema mostrado na figura a seguir, em que um desses eventos, representado pelo raio sísmico e produzido pela fonte sísmica, atravessa três regiões geológicas distintas - o oceano, o platô e o continente - e chega à estação sismológica, onde é registrado por equipamentos adequados.
10 Considere d A, d B e d C as distâncias percorridas pelo evento sísmico, respectivamente, no oceano, no platô e no continente, e v A, v B e v C as velocidades médias correspondentes a cada um desses trechos. Assim, a razão entre a distância total percorrida pelo evento sísmico e a velocidade média ao longo de toda sua trajetória equivale a: d / v d v d / v a) A A B b) B C C A B C d d d d d d c) A B C A B C d d d v v v A B C d d d d) A B C v v v A B C 18. (Uerj 2005) Numa operação de salvamento marítimo, foi lançado um foguete sinalizador que permaneceu aceso durante toda sua trajetória. Considere que a altura h, em metros, alcançada por este foguete, em relação ao nível do mar, é descrita por h = t - t 2, em que t é o tempo, em segundos, após seu lançamento. A luz emitida pelo foguete é útil apenas a partir de 14 m acima do nível do mar. O intervalo de tempo, em segundos, no qual o foguete emite luz útil é igual a: a) 3 b) 4 c) 5 d) 6
11 19. (Uerj 2004) Ao perceber o sinal vermelho, um motorista, cujo carro trafegava a 80 km/h, pisa no freio e para em 10 s. A desaceleração média do veículo, em km/h 2, equivale, aproximadamente, a: a) 1, b) 8, c) 1, d) 2, (Uerj 2004) Um motorista, parado no sinal, observa um menino arremessando várias bolas de tênis para o ar. Suponha que a altura alcançada por uma dessas bolas, a partir do ponto em que é lançada, seja de 50 cm. A velocidade, em m/s, com que o menino arremessa essa bola pode ser estimada em: a) 1,4 b) 3,2 c) 5,0 d) 9,8 21. (Uerj 2003) Suponha constante a desaceleração de um dos carros no trecho retilíneo entre as curvas Laranja e Laranjinha, nas quais ele atinge, respectivamente, as velocidades de 180 km/h e 150 km/h. O tempo decorrido entre as duas medidas de velocidade foi de 3 segundos. O módulo da desaceleração, em m/s 2, equivale, aproximadamente, a: a) 0 b) 1,4 c) 2,8 d) 10,0
12 22. (Uerj 2003) A função que descreve a dependência temporal da posição S de um ponto material é representada pelo gráfico a seguir. (RAMALHO JÚNIOR, Francisco et alii. "Os fundamentos da física. São Paulo: Moderna, 1993.) Sabendo que a equação geral do movimento é do tipo S = A + B.t + C.t 2, os valores numéricos das constantes A, B e C são, respectivamente: a) 0, 12, 4 b) 0, 12, -4 c) 12, 4, 0 d) 12, -4, (Uerj 2003) O gráfico a seguir representa a variação da velocidade v em relação ao tempo t de dois móveis A e B, que partem da mesma origem. A distância, em metros, entre os móveis, no instante em que eles alcançam a mesma velocidade, é igual a: a) 5
13 b) 10 c) 15 d) (Uerj 2001) Durante um experimento, um pesquisador anotou as posições de dois móveis A e B, elaborando a tabela a seguir. O movimento de A é uniforme e o de B é uniformemente variado. A distância, em metros, entre os móveis A e B, no instante t=6 segundos, corresponde a: a) 45 b) 50 c) 55 d) (Uerj 2001) Durante um experimento, um pesquisador anotou as posições de dois móveis A e B, elaborando a tabela a seguir. O movimento de A é uniforme e o de B é uniformemente variado.
14 A aceleração do móvel B é, em m/s 2, igual a: a) 2,5 b) 5,0 c) 10,0 d) 12,5 26. (Uerj 2001) Suponha que, durante o último segundo de queda, a pedra tenha percorrido uma distância de 45m. Considerando g=10m/s 2 e que a pedra partiu do repouso, pode-se concluir que ela caiu de uma altura, em metros, igual a: a) 105 b) 115 c) 125 d) (Uerj 2001) O gráfico a seguir representa a indicação da velocidade de um carro em movimento, em função do tempo. O deslocamento do carro entre os instantes 4s e 10s, em metros, é igual a: a) 50 b) 72 c) 110 d) 150 "Observo uma pedra que cai de uma certa altura a partir do repouso e que adquire, pouco a pouco, novos acréscimos de velocidade (...) Concebemos no espírito que um movimento é uniforme e, do mesmo modo, continuamente acelerado, quando, em tempos iguais quaisquer, adquire aumentos iguais de velocidade (...) O grau de
15 velocidade adquirido na segunda parte de tempo será o dobro do grau de velocidade adquirido na primeira parte." (GALILEI, Galileu. Duas Novas Ciências. São Paulo: Nova Stella Editorial e Ched Editorial, s.d.) 28. (Uerj 2001) A grandeza física que é constante e a que varia linearmente com o tempo são, respectivamente: a) aceleração e velocidade b) velocidade e aceleração c) força e aceleração d) aceleração e força 29. (Uerj 1999) Foi veiculada na televisão uma propaganda de uma marca de biscoitos com a seguinte cena: um jovem casal estava num mirante sobre um rio e alguém deixava cair lá de cima um biscoito. Passados alguns segundos, o rapaz se atira do mesmo lugar de onde caiu o biscoito e consegue agarrá-lo no ar. Em ambos os casos, a queda é livre, as velocidades iniciais são nulas, a altura de queda é a mesma e a resistência do ar é nula. Para Galileu Galilei, a situação física desse comercial seria interpretada como: a) impossível, porque a altura da queda não era grande o suficiente b) possível, porque o corpo mais pesado cai com maior velocidade c) possível, porque o tempo de queda de cada corpo depende de sua forma d) impossível, porque a aceleração da gravidade não depende da massa dos corpos 30. (Uerj 1997) A velocidade normal com que uma fita de vídeo passa pela cabeça de um gravador é de, aproximadamente, 33 mm/s. Assim, o comprimento de uma fita de 120 minutos de duração corresponde a cerca de: a) 40 m b) 80 m c) 120 m d) 240 m
16 Gabarito: Resposta da questão 1: [B] Supondo a ausência do atrito com o ar, podemos concluir que o movimento das esferas é uniformemente variado e, como tal, 2 2 g.t g.t h g.t h v 0.t v 0.t h v0 2 2 t 2 Onde v0 corresponde à velocidade inicial de lançamento: Como os tempos de queda das esferas são iguais, temos que suas velocidades de lançamento são iguais; portanto, as velocidades v 1 e v 3 são iguais. Como a esfera de alumínio foi a primeira a chegar ao solo, concluímos que sua velocidade inicial é a maior de todas. Assim temos, v1 v3 v2. Resposta da questão 2: [D] Para um objeto lançado obliquamente com velocidade inicial v, 0 formando um ângulo θ com a horizontal, num local onde o campo gravitacional tem intensidade g, o alcance horizontal A é dado pela expressão: 2 v 0 A sen 2θ g Essa expressão nos mostra que o alcance horizontal independe da massa. Portanto, os três blocos apresentarão o mesmo alcance: A 1 = A 2 = A 3.
17 Resposta da questão 3: [D] O movimento de queda das bolas é acelerado com a gravidade. Os tempos de queda são iguais. Resposta da questão 4: [C] Os movimentos horizontais são uniformes. Portanto, o maior alcance será o da bola com maior velocidade inicial. Resposta da questão 5: [C] Como se trata de um lançamento horizontal, o tempo de queda é o mesmo do tempo de queda da queda livre: 1 2h 2(1) 20 4,5 2 g h gt t t = 0,45 s. Resposta da questão 6: [B] Se a velocidade relativa ao vagão é a mesma, o alcance horizontal relativo ao vagão também é o mesmo, ou seja, 5 m. Resposta da questão 7: [A]
18 Seja P o ponto de encontro desses dois automóveis, como indicado na figura. Do instante mostrado até o encontro, que ocorreu no ponto P, passaram-se 30 min ou 0,5 h, a distância percorrida pelo automóvel M é: D M = v M t = 60 (0,5) = 30 km. Nesse mesmo intervalo de tempo, o automóvel N percorreu, então: D N = = 30 km. Assim: v N = DN 20 t 0,5 v N = 40 km/h. Resposta da questão 8: [B] A velocidade do foguete (v f ) é 4 vezes a velocidade do avião (v a ) v f = 4 v a Equacionando os dois movimentos uniformes, com origem no ponto onde está o foguete no instante t 1 : S f = v f t S f = 4 v a t e S a = 4 + v a t.
19 Igualando as funções horárias para instante de alcance (t 2 ): S f = S a 4 v a t 2 = 4 + v a t 2 3 v a t 2 = 4 t 2 = 4 3v. a Substituindo: 4 S f = 4 v a 3v a S f = 16 km = 5,3 km. 3 Resposta da questão 9: [A] Resolução Primeiro trecho V = S/ t v = (L/9)/t 1 = L/(9t 1 ) onde L é o comprimento total do trajeto Então t 1 = L/(9v) Segundo trecho V = S/ t 2v = (8L/9)/t 2 v = 4L/(9t 2 ) t 2 = 4L/(9v) Para todo o trecho V média = L/(t 1 +t 2 ) = L/[5L/(9v)] = 9v/5 Resposta da questão 10: [C] Resolução Pela equação horária do gráfico 1 a velocidade constante é 1 2 m/s. A velocidade é numericamente igual a tangente de alfa tg = 1 2 = 0,5
20 A velocidade do gráfico 2 será numericamente igual a tg(2 ), que é tg(2 ) = 2.tg / (1 tg 2 ) = 2.0,5 / (1 0,25) = , Resposta da questão 11: [C] Pela expressão de Torricelli: v 2 = v a. S 0 = v ,45 0 = v ==> v 0 = 3 m/s Pela expressão de Galileu: v = v 0 + g.t 0 = 3-10.t ==> t = 3 10 = 0,3 s Isto significa que o jogador precisará de 0,3 s para subir e outros 0,3 s para descer, ficando no ar durante 0,6 s. Resposta da questão 12: [B] Pela expressão de Torricelli: v 2 = v a. S 0 = v ,45 0 = v ==> v 0 = 3 m/s Resposta da questão 13: [D] Resposta da questão 14: [C]
21 Resposta da questão 15: [A] Resposta da questão 16: [C] Resposta da questão 17: [A] Resposta da questão 18: [A] Resposta da questão 19: [D] Resposta da questão 20: [B] Resposta da questão 21: [C] Resposta da questão 22: [D] Resposta da questão 23:
22 [C] Resposta da questão 24: [B] Resposta da questão 25: [C] Resposta da questão 26: [C] Resposta da questão 27: [C] Resposta da questão 28: [A] Resposta da questão 29: [D] A própria opção correta é o comentário. Resposta da questão 30: [D]
LISTA UERJ. Bolas Massa (g) Velocidade inicial (m/s) X 5 20 Y 5 10 Z (Uerj 2012) As relações entre os respectivos tempos de queda t x
LISTA UERJ TEXTO PARA AS PRÓXIMAS 2 QUESTÕES: Três bolas X, Y e Z são lançadas da borda de uma mesa, com velocidades iniciais paralelas ao solo e mesma direção e sentido. A tabela abaixo mostra as magnitudes
AULÃO DE FÍSICA UERJ 2014
1. (Uerj 2013) Três pequenas esferas, E, 1 E 2 e E, 3 são lançadas em um mesmo instante, de uma mesma altura, verticalmente para o solo. Observe as informações da tabela: Esfera Material E 1 chumbo v 1
EQUAÇÃO DE TORRICELLI E LANÇAMENTO VERTICAL EXERCÍCIOS
EQUAÇÃO DE TORRICELLI E LANÇAMENTO VERTICAL EXERCÍCIOS 1. Uma partícula, inicialmente a 2 m/s, é acelerada uniformemente e, após percorrer 8 m, alcança a velocidade de 6 m/s. Nessas condições, sua aceleração,
EXERCÍCIOS UERJ 3ª SÉRIE
EXERCÍCIOS UERJ 3ª SÉRIE 1. (Uerj 2012) Uma pessoa empurrou um carro por uma distância de 26 m, aplicando uma força F de mesma direção e sentido do deslocamento desse carro. O gráfico abaixo representa
Notação Científica. n é um expoente inteiro; N é tal que:
Física 1 Ano Notação Científica n é um expoente inteiro; N é tal que: Exemplos: Notação Científica Ordem de Grandeza Qual a ordem de grandeza? Distância da Terra ao Sol: Massa de um elétron: Cinemática
FÍSICA - 3 o ANO MÓDULO 14 LANÇAMENTO VERTICAL E QUEDA LIVRE
FÍSICA - 3 o ANO MÓDULO 14 LANÇAMENTO VERTICAL E QUEDA LIVRE Como pode cair no enem (ENEM) Uma das razões para pensar sobre a Física dos super-heróis é, acima de tudo, uma forma divertida de explorar
PARTE 1. 05) O alcance da pedra é de 12,0m.
PARTE 1 01. (UEFS) Um corpo é lançado, do solo, com velocidade inicial de 20m/s, fazendo um ângulo de 53º com a horizontal. Considerando a resistência do ar desprezível,g =10m/s 2, sen53º =0,8 e cos53º=0,6
BANCO DE QUESTÕES - FÍSICA - 2ª SÉRIE - ENSINO MÉDIO ==============================================================================================
PROFESSOR: Raphael Carvalho BANCO DE QUESTÕES - FÍSICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================== 01- O transporte fluvial de
Notação Científica. n é um expoente inteiro; N é tal que:
Física 1 Ano Notação Científica n é um expoente inteiro; N é tal que: Exemplos: Notação Científica Ordem de Grandeza Qual a ordem de grandeza? Distância da Terra ao Sol: Massa de um elétron: Cinemática
Fís. Semana. Leonardo Gomes (Arthur Vieira)
Semana 4 Leonardo Gomes (Arthur Vieira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 06/03
Aplicação dos conceitos de posição, velocidade e aceleração. Aplicação de derivadas e primitivas de
Ano lectivo 2010-2011 Engenharia Civil Exercícios de Física Ficha 4 Movimento a uma Dimensão Capítulo 3 Conhecimentos e e capacidades a adquirir a adquirir pelo pelo aluno aluno Aplicação dos conceitos
SIMULADO Cinemática Escalar
Fala, FERA! Tranquilo?! Aproveitando nossaa Semana do Tira o Atraso, você se já estiver em dia com todos planos de estudo pode utilizar essa lista de revisão para avaliar como está seu desempenho; como
Introdução à Cinemática
Mecânica: Cinemática Introdução à Cinemática Conceitos Iniciais Prof. Murillo Nascente I- CONCEITOS BÁSICOS DE CINEMÁTICA 1. Cinemática: É a parte da mecânica que estuda os movimentos dos corpos ou partículas
Abril Educação Medidas e movimentos Aluno(a): Número: Ano: Professor(a): Data: Nota:
Abril Educação Medidas e movimentos Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 Diferencie uma grandeza escalar de uma grandeza vetorial. Questão 2 No estudo dos movimentos, é de grande
Aplicando as condições iniciais: 0 0, h0. temos:
1) O Brasil, em 014, sediou o Campeonato Mundial de Balonismo. Mais de 0 equipes de diferentes nacionalidades coloriram, com seus balões de ar quente, o céu de Rio Claro, no interior de São Paulo. Desse
Lista 4 MUV. Física Aplicada a Agronomia
Sigla: Disciplina: Curso: FISAP Física Aplicada a Agronomia Agronomia Lista 4 MUV 01) A posição de um objeto movendo-se ao longo do eixo x é dada por x = 3t - 4t² + t³, onde x está em metros e t em segundos.
2. (Upe-ssa ) Em um treino de corrida, a velocidade de um atleta foi registrada em função do tempo, conforme ilustra a figura a seguir.
1. (Espcex (Aman) 2017) Um trem de 150 m de comprimento se desloca com velocidade escalar constante de 16 m s. Esse trem atravessa um túnel e leva 50 s desde a entrada até a saída completa de dentro dele.
Fundamentos de Mecânica
Fundamentos de Mecânica 45 Lista de exercícios Primeiro semestre de Os exercícios da lista deverão ser todos feitos. Não há necessidade de entregá-los. O conteúdo será cobrado nas provas e provinhas, ao
Movimento Uniformemente Variado (M.U.V.)
Movimento Uniformemente Variado (M.U.V.) A principal característica do movimento uniformemente variado é a aceleração escalar constante. Quando um móvel qualquer se movimenta com aceleração escalar constante,
Equipe de Física. Física
Aluno (a): Série: 3ª Turma: TUTORIAL 2R Ensino Médio Equipe de Física Data: Física Lançamento Vertical Um arremesso de um corpo, com velocidade inicial na direção vertical, recebe o nome de Lançamento
9 ANO Ensino Fundamental
E n s in o F o r t e e d e R e s u l t a do s Estudante: Centro Educacio nal Juscelino K ub itschek G u a r á / Valp ar aíso Exercícios Recuperação Semestral F Í S I C A 9 ANO Ensino Fundamental Data:
FÍSICA - 3 o ANO MÓDULO 12 GRÁFICO DO MU E DO MUV
FÍSICA - 3 o ANO MÓDULO 12 GRÁFICO DO MU E DO MUV S S Como pode cair no enem (ENEM) Para melhorar a mobilidade urbana na rede metroviária, é necessário minimizar o tempo entre estações. Para isso,
Colégio XIX de Março Educação do jeito que deve ser
Colégio XIX de Março Educação do jeito que deve ser 2017 2ª PROVA SUBSTITUTIVA DE FÍSICA Aluno(a): Nº Ano: 1º Turma: Data: 18/09/2017 Nota: Professor(a): Antonio Marcio Valor da Prova: 40 pontos Orientações
Ficha de trabalho 5 AMPLIAÇÃO
Nome: N. o : Turma: Data: Ficha de trabalho 5 AMPLIAÇÃO 1. Uma pedra é lançada do ponto P com uma velocidade de 10 m s 1 numa direcção que forma um ângulo de 45º com a horizontal, atingindo o ponto Q conforme
Movimento Retilíneo Uniforme e Uniformemente Variado MRU e MRUV
Movimento Retilíneo Uniforme e Uniformemente Variado MRU e MRUV Evandro Bastos dos Santos 22 de Fevereiro de 2017 1 Movimento Retilíneo Uniforme(MRU) Um corpo que se desloca em trajetória retilínea e possui
Lista de exercícios Queda dos corpos
1. (UFMT) Galileu, na Torre de Pisa, fez cair vários objetos pequenos, com o objetivo de estudar as leis do movimento dos corpos em queda. A respeito dessa experiência, julgue os itens, desprezando o efeito
Disciplina: Física Ano: 2º Ensino Médio Professora: Daniele Santos Lista de Exercícios 04 Cinemática Vetorial e Composição de Movimentos
INSTITUTO GAY-LUSSAC Disciplina: Física Ano: 2º Ensino Médio Professora: Daniele Santos Lista de Exercícios 04 Cinemática Vetorial e Composição de Movimentos Questão 1. Um automóvel percorre 6,0km para
SUGESTÃO DE ESTUDOS PARA O EXAME FINAL DE FÍSICA- 1 ANO Professor Solon Wainstein SEGUE ABAIXO UMA LISTA COMPLEMENTAR DE EXERCÍCIOS
SUGESTÃO DE ESTUDOS PARA O EXAME FINAL DE FÍSICA- 1 ANO Professor Solon Wainstein # Ler todas as teorias # Refazer todos os exercícios dados em aula. # Refazer todos os exercícios feitos do livro. # Refazer
MRUV Movimento Retilíneo Uniformemente Variado
MRUV Movimento Retilíneo Uniformemente Variado MRUV é o movimento de qualquer móvel com as seguintes características: Aceleração constante e diferente de zero. O módulo da velocidade varia de modo uniforme
FÍSICA - 1 o ANO MÓDULO 19 LANÇAMENTO HORIZONTAL
FÍSICA - 1 o ANO MÓDULO 19 LANÇAMENTO HORIZONTAL v 0 g v y v 0 v 0 v v 0 v y v Como pode cair no enem? e) 2ga Quando arremessamos um corpo horizontalmente, seu alcance depende da velocidade inicial e
LISTA DE EXERCICIOS PARA 4UL TURMAS DE 1º ANO (2014) PROF. KELLER
LISTA DE EXERCICIOS PARA 4UL TURMAS DE 1º ANO (2014) PROF. KELLER Câmara Escura e espelhos planos: exercícios 01 a 05 Espelhos Esféricos: exercícios 06 a 08 Lentes Esféricas: exercícios 09 a 11 Cinemática
Atividade de: FÍSICA 4ª UL / 2015 Série: 1ª (E. P.)
Atividade de: FÍSICA 4ª UL / 2015 Série: 1ª (E. P.) Professor: Thiago Alvarenga Ramos Nota: Valor da Atividade: 2,0 Nome do(a) aluno(a): Nº Turma: 1 C 1 3 Use caneta azul ou preta e escreva com letra legível.
Cinemática Gráficos Cinemáticos 1- Na figura estão representados os diagramas de velocidade de dois móveis em função do tempo. Esses móveis partem de um mesmo ponto, a partir do repouso, e percorrem a
2ª Ficha de Avaliação de Conhecimentos Turma: 11ºA
2ª Ficha de Avaliação de Conhecimentos Turma: 11ºA Física e Química A - 11ºAno (Versão 1) Professora Paula Melo Silva Data: 23 de outubro Ano Letivo: 2018/2019 135 min + 15 min 1. Uma esfera, largada de
1 Introdução 14 Lançamento horizontal (equações) 2 Queda livre e lançamento vertical 15 Lançamento horizontal x lançamento vertical
1 Introdução 14 Lançamento horizontal (equações) Queda livre e lançamento vertical 15 Lançamento horizontal x lançamento vertical 3 Experimento de Galileu (simulador) 16 Lançamento oblíquo (introdução)
LANÇAMENTO DE PROJÉTEIS
LANÇAMENTO DE PROJÉTEIS Considere um objeto disparado de uma altura h com velocidade horizontal. Sob a ação exclusiva da gravidade (g), o objeto toca o solo após um certo tempo de queda (t) cumprindo um
FÍSICA - 1 o ANO MÓDULO 22 CINEMÁTICA VETORIAL
FÍSICA - 1 o ANO MÓDULO 22 CINEMÁTICA VETORIAL r P r 1 1 r 2 r 2 vm r 2 1 a a t Eixo tangente à trajetória a c a Fixação 1) Um móvel percorre 4,0km para leste e 3,0km para norte. Isso ocorre em 20 minutos.
3 - Um objeto é lançado do chão para chegar ao alto de uma plataforma com 5 metros de altura. O lançamento é feito com uma velocidade inicial de 30 m/
1 - Um objeto é lançado a partir de uma plataforma de dez metros de altura com uma velocidade oblíqua de módulo igual a 10 m/s fazendo um ângulo de 30 o com o piso horizontal. Considere a gravidade igual
LISTAGEM DE CONTEÚDOS DE FÍSICA PARA O EXAME 1 ANO / 2012
LISTAGEM DE CONTEÚDOS DE FÍSICA PARA O EXAME 1 ANO / 2012 # Velocidade escalar média # Movimento retilíneo uniforme # Movimento retilíneo uniformemente variado # Movimento de queda livre dos corpos # Movimento
Professor Rafael Colucci Facebook: Rafael Colucci ou Aprenda com o Colucci (FANPAGE)
Me chamo Rafael Colucci, sou licenciado em física pela Universidade Federal de Itajubá e atuo no ensino de física e matemática nos níveis médio e superior Trabalho com criação de conteúdos digitais e possuo
LISTA DE EXERCÍCIOS 1º ANO
Como se deslocam no mesmo sentido, a velocidade relativa entre eles é: V rel = V A - V C = 80-60 = 20 km/h Sendo a distância relativa, S rel = 60 km, o tempo necessário para o alcance é: S rel 60 t = =
Gráficos dos Movimentos
Capítulo 4 Gráficos dos Movimentos (53) (UFB) No gráfico 4.1, da velocidade de um móvel em MUV em função do tempo, pede-se determinar: a) a velocidade inicial Vo e a aceleração a (55) (Vunesp, 2011) O
REVISÃO AULA 06 (20 / 02 / 2018) EQUAÇÃO DE TORRICELLI
REVISÃO AULA 06 (20 / 02 / 2018) EQUAÇÃO DE TORRICELLI REVISÃO 06 (disponível a partir de 20/02/2017) Para receber nosso material semanalmente, inscreva-se: bit.ly/ft2018gratis Fala, FERA! Tranquilo!?
Universidade Federal fluminense. Física I e Física XVIII
Universidade Federal fluminense Física I e Física XVIII Lista 02 Movimento Unidimensional e Queda Livre Questões: 1)A cada segundo o coelho percorre metade da distância restante entre seu nariz e um pé
Composição de Movimento - Anual
Questão 01 - (UFRN/2011) Considere um grande navio, tipo transatlântico, movendo-se em linha reta e com velocidade constante (velocidade de cruzeiro). Em seu interior, existe um salão de jogos climatizado
Trabalho de Recuperação Para os Alunos da 1a série - Física 1. Data de Entrega: Até o dia da Prova de Recuperação de Física.
Dione Dom Trabalho de Recuperação Para os Alunos da 1a série - Física 1. Data de Entrega: Até o dia da Prova de Recuperação de Física. Valor: 1 Ponto 1) A figura a seguir mostra seis vetores que formam
Lista 3 de Mecânica Clássica Movimento Retilíneo Uniformemente Variado - Queda Livre
Lista 3 de Mecânica Clássica Movimento Retilíneo Uniformemente Variado - Queda Livre Prof. Ismael Rodrigues Silva ismael [email protected] As questões com uma bolinha são elementares e requerem uso de
MATEMÁTICA 1ª QUESTÃO. O domínio da função real = 2ª QUESTÃO. O valor de lim +3 1 é C) 2/3 D) 1 E) 4/3 3ª QUESTÃO B) 3 4ª QUESTÃO
MATEMÁTICA 1ª QUESTÃO O domínio da função real = 9 é A) R B) R 3
LISTA EXTRA 2ª SÉRIE
1) Um objeto de 20 kg desloca-se numa trajetória plana retilínea de acordo com a equação: S = 10 + 3 t + t 2, onde s é medido em metros e t em segundos. a) Qual a expressão da velocidade do objeto no instante
FÍSICA PROFº JAISON MATTEI
FÍSICA PROFº JAISON MATTEI 1. Na modalidade esportiva do salto à distância, o esportista, para fazer o melhor salto, deve atingir a velocidade máxima antes de saltar, aliando-a ao melhor ângulo de entrada
Cinemática I Movimento Retilíneo
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.2 Cinemática I Movimento Retilíneo Rafael Silva P. de Santana Engenharia Civil 5º Período Cinemática Na cinemática vamos estudar os movimentos sem
Exercícios 2 MU, MUV, Gráficos
Exercícios 2 MU, MUV, Gráficos 1) (Unitau-SP) Um móvel parte do quilômetro 50, indo até o quilômetro 60, de onde, mudando o sentido do movimento, vai até o quilometro 32. Quais são, respectivamente, a
Mecânica: Cinemática
FACULDADE EDUCACIONAL DE MEDIANEIRA MISSÃO: FORMAR PROFISSIONAIS CAPACITADOS, SOCIALMENTE RESPONSÁVEIS E APTOS A PROMOVEREM AS TRANSFORMAÇÕES FUTURAS Mecânica: Cinemática Prof. Silvio Ap. Barbosa 1. Cinemática:
Professora Daniele Santos Instituto Gay-Lussac 2º ano
Professora Daniele Santos Instituto Gay-Lussac 2º ano 1- Um trem parte de São Paulo com destino ao Rio de Janeiro com velocidade de 60Km/h. Ao mesmo tempo, parte do Rio de Janeiro, com destino a São Paulo,
Aluno(a): Nº. Professor: Fabrízio Gentil Série: 1 o ano Disciplina: Física - Lançamento vertical no vácuo
Lista de Exercícios Pré Universitário Uni-Anhanguera Aluno(a): Nº. Professor: Fabrízio Gentil Série: 1 o ano Disciplina: Física - Lançamento vertical no vácuo 1- Um corpo é abandonado a 80m do solo. Sendo
FÍSICA - 1 o ANO MÓDULO 13 MOVIMENTO UNIFORMEMENTE VARIADO (MUV)
FÍSICA - 1 o ANO MÓDULO 13 MOVIMENTO UNIFORMEMENTE VARIADO (MUV) Como pode cair no enem? A contribuição dada à Física por Newton à Física foi muito grande, mas não se pode esquecer da genialidade de Galileu,
2 O gráfico posição x tempo abaixo, refere se a uma partícula que se desloca em movimento uniforme.
Aula ao vivo 10/03/2014 Introdução à Cinemática 1 Durante uma viagem entre duas cidades, um passageiro decide calcular a velocidade escalar média do ônibus. Primeiramente, verifica que os marcos indicativos
LISTA EXTRA - UERJ. Desprezando o atrito, o trabalho total, em joules, realizado por F, equivale a: a) 117 b) 130 c) 143 d) 156
1. (Uerj 01) Uma pessoa empurrou um carro por uma distância de 6 m, aplicando uma força F de mesma direção e sentido do deslocamento desse carro. O gráfico abaixo representa a variação da intensidade de
Movimento retilíneo uniformemente
15 fev Movimento retilíneo uniformemente variado 01. Resumo 02. Exercícios de Aula 03. Exercícios de Casa 04. Questão Contexto RESUMO A aceleração (média) é a razão entre a variação de velocidade e o intervalo
Plano de Aulas. Física. Módulo 2 Movimentos com velocidade variável
Plano de Aulas Física Módulo Movimentos com velocidade variável Resolução dos exercícios propostos Exercícios dos conceitos CAPÍTULO 1 1 a) A aceleração é constante durante todo o percurso, então: b) a
CURSO PRF 2017 FÍSICA. diferencialensino.com.br FÍSICA NIVELAMENTO 01 1
FÍSICA NIVELAMENTO 01 1 PROFESSOR AULA 001 MATEMÁTICA VICTOR ROCHA (VITINHO) 2 EXERCÍCIOS DE NIVELAMENTO 01) Um automóvel aproxima-se de um paredão, como ilustra a figura. É incorreto afirmar-se que a)
(Queda Livre, Lançamentos Verticais, velocidade media, mru, mruv, derivada e integrais)
Movimento vertical (Queda Livre, Lançamentos Verticais, velocidade media, mru, mruv, derivada e integrais) 1. Três bolinhas idênticas, são lançadas na vertical, lado a lado e em seqüência, a partir do
1º Lista de exercícios Cinemática parte 1
1º Lista de exercícios Cinemática parte 1 Questão 1: Empresas de transportes rodoviários equipam seus veículos com um aparelho chamado tacógrafo, capaz de produzir sobre um disco de papel, o registro ininterrupto
Velocidade: Variação da distância percorrida por um corpo no tempo.
Apostila de Revisão n 1 DISCIPLINA: Física NOME: N O : TURMA: PROFESSOR: Glênon Dutra DATA: Mecânica - Cinemática 1. CINEMÁTICA: Nesse tópico, o foco principal é o conhecimento das relações entre deslocamento,
Professora Florence. Resposta: Resposta:
1. (Espcex (Aman) 2013) Um carro está desenvolvendo uma velocidade constante de 72 km h em uma rodovia federal. Ele passa por um trecho da rodovia que está em obras, onde a velocidade máxima permitida
Fís. fevereiro. Leonardo Gomes (Arthur Vieira)
06 10 fevereiro Leonardo Gomes (Arthur Vieira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA
Fís. Semana. Leonardo Gomes (Arthur Vieira)
Semana 4 Leonardo Gomes (Arthur Vieira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 06/03
FÍSICA. Prof. Emerson. Módulo 3
FÍSICA Prof. Emerson Módulo 3 GRANDEZA FÍSICA A tudo aquilo que pode ser medido, associando-se um valor numérico a uma unidade de medida, dá-se o nome de GRANDEZA FÍSICA. TIPOS DE GRANDEZAS GRANDEZA ESCALAR
2 - A fonte de uma praça dispara cinco jatos d água seqüenciais, como numera a figura a seguir.
1 - Um atirador dispara um revólver formando um ângulo de 37º com a horizontal, em uma região plana, a uma altura de 2 m do solo. O projétil atinge o solo a 88,8 m do ponto de lançamento. Qual é a velocidade
Desconsidere os efeitos do trabalho muscular após o início do salto. a) 4 m/s b) 6 m/s c) 7 m/s d) 8 m/s e) 9 m/s
1. Em julho de 009 comemoramos os 40 anos da primeira viagem tripulada à Lua. Suponha que você é um astronauta e que, chegando à superfície lunar, resolva fazer algumas brincadeiras para testar seus conhecimentos
Plano de Recuperação Semestral 1º Semestre 2016
Disciplina: FÍSICA Série/Ano: 1º ANO Professores: BETO, DIOGO, PH e BILL Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados durante o 1º semestre nos quais apresentou defasagens
INSTITUTO GEREMARIO DANTAS COMPONENTE CURRICULAR: FÍSICA
INSTITUTO GEREMARIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (21) 21087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): 1º Ano: C11 Nº Professora: Saionara Chagas COMPONENTE CURRICULAR:
Fís. fevereiro. Leonardo Gomes (Guilherme Brigagão)
06 10 fevereiro Leonardo Gomes (Guilherme Brigagão) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA
O MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO (MRUV)
O que você deve saber sobre No movimento retilíneo uniforme (MRU), a velocidade não varia e a aceleração é nula. A partir de agora vamos revisar movimentos cuja velocidade varia de maneira uniforme, o
Professora FLORENCE. A aceleração pode ser calculada pelo gráfico através da tangente do ângulo α.
1. Um ponto material desloca-se sobre uma reta e sua velocidade em função do tempo é dada pelo gráfico. Pedem-se: a) a equação horária da velocidade (função de v = f(t)) v(m/s) b) o deslocamento do ponto
Fís. Semana. Leonardo Gomes (Arthur Vieira)
Semana 3 Leonardo Gomes (Arthur Vieira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 06/02
Movimento fev retilíneo e uniforme. 01. Resumo 02. Exercícios de Aula 03. Exercícios de Casa 04. Questão Contexto
08 Movimento fev retilíneo e uniforme (MU) 01. Resumo 02. Exercícios de Aula 03. Exercícios de Casa 04. Questão Contexto RESUMO Ao estudarmos o Movimento Uniforme (ou MU) estamos nos referindo aos movimentos
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Cinemática I. Bruno Conde Passos Engenharia Civil João Victor Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Cinemática I Bruno Conde Passos Engenharia Civil João Victor Engenharia Civil Cinemática Na cinemática vamos estudar os movimentos sem levar em consideração
EXERCÍCIOS DA META 1
EXERCÍCIOS DA META 1 01. (ENEM 2012) Uma empresa de transportes precisa efetuar a entrega de uma encomenda o mais breve possível. Para tanto, a equipe de logística analisa o trajeto desde a empresa até
COLÉGIO APHONSIANO. Educando com Seriedade. Lista de MU e MUV 9º ano Profº: Luciano Dias
1 Conteúdos: - Velocidade Média - Função horária da Posição do MU - Função horária da Posição do MUV - Função horária da Velocidade do MUV - Equação de Torricelli COLÉGIO APHONSIANO Educando com Seriedade
2. O movimento de um corpo sobre uma trajetória determinada obedece à seguinte equação horária: S = t (S em quilômetro e t em horas)
Obs.: As atividades desta bateria contemplam o conteúdo do trimestre 1. Um atleta deseja percorrer 25 km em 2 h. Por dificuldades encontradas no trajeto, percorre 10 km com a velocidade média de 8 km/h.
FÍSICA - 3 o ANO MÓDULO 10 MOVIMENTO UNIFORME
FÍSICA - 3 o ANO MÓDULO 10 MOVIMENTO UNIFORME Velocidade (m/s) Tempo(s) 10 0 15 1 20 2 25 3 30 4 Como pode cair no enem (ENEM) Uma empresa de transportes precisa efetuar a entrega de uma encomenda
CINEMÁTICA MOVIMENTO RETILÍNEO
CINEMÁTICA MOVIMENTO RETILÍNEO 1 Duas partículas A e B estão do lado oposto de uma reta com 500 m de comprimento. A partícula A desloca-se na direção AB e no sentido de B, com uma velocidade constante
Ciências da Natureza e Matemática
1 CEDAE Acompanhamento Escolar 2 CEDAE Acompanhamento Escolar 3 CEDAE Acompanhamento Escolar 4 CEDAE Acompanhamento Escolar 1. (UFRJ) Hortência arremessa uma bola de basquete cujo centro segue uma trajetória
Reforço de Engenharia RESUMO. Movimento Unidimensional. Física 1 1
Movimento Unidimensional RESUMO S v = lim = ds t 0 t dt ds = vdt ds = vdt S = vt S ds S 0 t = vdt t 0 S = S 0 + v(t t 0 ), onde S 0 é uma constante e (t t 0 )o intervalo de tempo. Física 1 1 v a = lim
1.3. Forças e movimentos. Professora Paula Melo Silva
1.3. Forças e movimentos Professora Paula Melo Silva QUEDA LIVRE O filósofo grego Aristóteles acreditava que os corpos mais pesados, abandonados de uma mesma altura, alcançariam o solo antes dos mais leves.
1 série. Ensino Médio. Aluno(a): Professores:PAULO SÉRGIO DIA: 27MÊS:03. Segmento temático: 01. Qual o conceito físico de aceleração?
: Professores:PAULO SÉRGIO. 04 1 série Ensino Médio Turmas:A e B Aluno(a): Segmento temático: MOVIMENTO UNIFORMEMENTE VARIADO (M.U.V.) DIA: 27MÊS:03 2018 01. Qual o conceito físico de aceleração? 02. O
Lista de exercícios para estudar - 1 º Bimestre
Lista de exercícios para estudar - 1 º Bimestre DISCIPLINA: FÍSICA PROFESSOR: ANDERSON 1) Converta 1 hora em segundos. 2) Um quarto de hora corresponde a quantos minutos? 3) Dez minutos correspondem a
Lista de atividades de Física - Cinemática
REDE MEDÉIAS DE EDUCAÇÃO - COLÉGIO NOSSA SENHORA DAS NEVES Orientando para o Bem, o Justo e o Verdadeiro Aluno(a) nº Professora: Sandra Godoy Lista de atividades de Física - Cinemática Nome: 1-(Fuvest)
Gráficos MRU e MRUV- Posição (X) em função do tempo (t) MRU MRUV
Gráficos MRU e MRUV- Posição (X) em função do tempo (t) MRU x = x + v. t o MRUV x= x + v. t+ o o a t 2 2 Gráficos MRU e MRUV velocidade em função do tempo MRU v cons tan te MRUV v = v o + a. t Gráficos
A) 2 m/s. B) 3 m/s. C) 4 m/s. D) 5 m/s. E) 6 m/s. A) 40 Km/h. B) 50 Km/h. C) 60 Km/h. D) 70 Km/h. E) 80 Km/h. A) 140 m. B) 160 m. C) 170 m.
EEMTI GOV. CÉSAR CALS DE OLIVEIRA FILHO BANCO DE QUESTÕES DEPENDÊNCIA (PROGRESSÃO PARCIAL) FÍSICA / 1º ANO ----------------- QUESTÃO 01 ------------------- No século XII Roger bacon propôs um método para
Sala de Estudos FÍSICA - Lucas 1 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos: Cinemática I
Sala de Estudos FÍSICA - Lucas 1 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos: Cinemática I Fundamentos da Cinemática, Velocidade Média e M.U. 1. (Unicamp 2018) Situado na
Colégio XIX de Março Educação do jeito que deve ser
Colégio XIX de Março Educação do jeito que deve ser 2017 2ª PROVA PARCIAL DE FÍSICA Aluno(a): Nº Ano: 1º Turma: Data: 19/08/2017 Nota: Professor(a): Antonio Marcio Valor da Prova: 40 pontos Orientações
1. 2. t = 0 segundos V (m/s) 7,0 6,0 t (s) S = 2 + 4t 2t2
1. Um caminhão se desloca em movimento retilíneo e horizontal com velocidade constante de 20 m/s. Sobre sua carroceria está um canhão, postado para tiros verticais, conforme indica a figura. Despreze a
FÍSICA PROFº JAISON MATTEI
FÍSICA PROFº JAISON MATTEI QUEDA LIVRE Fórmulas: V h V. g. h Aceleração constante e igual g = 1 m/s Velocidade inicial sempre igual a zero. Despreza a resistência do ar. Objetos com formatos e massas diferentes,
EXERCÍCIOS DE REVISÃO PARA PROVA EAD
REVISÃO PARA PROVA EAD Tópicos: Introdução à Física Cinemática Movimento Retilíneo Uniforme Movimento Retilíneo Uniformemente Variado Lançamento Vertical Lançamento Oblíquo EXERCÍCIOS DE REVISÃO PARA PROVA
Nome: Nº: Turma: Os exercícios a seguir foram retirados do livro Aulas de Física, volume I, da Editora Atual.
Física 2ª Lei de Newton I 2 os anos Hugo maio/12 Nome: Nº: Turma: Os exercícios a seguir foram retirados do livro Aulas de Física, volume I, da Editora Atual. 1. Aplica-se uma força F de intensidade 20
FÍSICA 9ºano 2º Trimestre / 2016 BATERIA DE EXERCÍCIOS COMPLEMENTARES
FÍSICA 9ºano 2º Trimestre / 2016 BATERIA DE EXERCÍCIOS COMPLEMENTARES 1. Um atleta deseja percorrer 25 km em 2 h. Por dificuldades encontradas no trajeto, percorre 10 km com a velocidade média de 8 km/h.
