EXPERIMENTO 2: Portas Lógicas
|
|
|
- Orlando Maranhão de Caminha
- 8 Há anos
- Visualizações:
Transcrição
1 DEE - Departamento de Engenharia Elétrica Laboratório de Circuitos Digitais I ELE 1065 EXPERIMENTO 2: Portas Lógicas OBS: A partir deste experimento se faz necessário levar o pré-lab. Pode-se utilizar o roteiro e ir preenchendo o mesmo. O preenchimento sim deve ser manuscrito. Não há necessidade de reescreve-lo. 1 OBJETIVOS Nesta aula será feita uma introdução à instrumentação básica do laboratório e serão realizados experimentos simples para familiarização com elementos discretos. 2 INTRODUÇÃO As portas lógicas são elementos básicos na montagem de circuitos digitais. Apesar de que sua aplicação esteja diminuindo, pelo uso de FPGA s e circuitos com escala de integração maiores, ainda é muito importante o estudo de circuitos digitais com as portas mais simples. 2.1 Encapsulamento e pinagem Primeiramente, é necessário entender como serão feitas as ligações dos pinos de um circuito integrado (CI). Encapsulamento; Alimentação; GND; Entradas e saídas. Há vários tipos de encapsulamento de CIs. A Fig. 1 e a Tab. 1 mostram alguns tipos de encapsulamento. Os encapsulamentos diferem no formato e no número de pinos. No encapsulamento DIP (Dual In-line Package), há duas fileiras de terminais no sentido longitudinal do CI. Um chanfro ou ponto num dos lados indica o pino 1, na parte superior esquerda e a numeração aumenta no sentido antihorário, como indica a figura.
2 Os manuais de trazem a pinagem correta, indicando os pinos de alimentação (Vcc ou Vdd), aterramento (GND), e as entradas e saídas, que dependem da função lógica implementada. Além do formato do encapsulamento, também há o efeito do espaçamento ou passo, entre os terminais do CI e a sua altura. Alguns dados são fornecidos na Tab. 1. Figura 1: Alguns tipos de encapsulamento de CIs. Na Fig. 2 tem-se a pinagem do circuito integrado 7400 (NAND), onde pode-se observar os pinos de alimentação (14), terra (7), entradas e saídas para quatro portas lógicas num encapsulamento DIP de 14 pinos. Os manuais (datasheets) podem ser conseguidos em páginas da internet, como por exemplo Características Figura 2: Pinagem do componente 7400 ( Apesar de se trabalhar com o conceito de sinais digitais, na verdade os sinais aplicados às entradas e lidos nas saídas dos CIs são sinais analógicos. É interessante conhecer algumas características de portas lógicas quanto aos níveis de tensão e corrente Tensão de saída versus Tensão de entrada Nos manuais há tabelas indicando parâmetros de interesse quando se trabalha com portas lógicas. Algumas delas referem-se às tensões de entrada e saída para os níveis lógicos 0 e 1. A figura 3 fornece uma relação entre a tensão de entrada e de saída de um inversor. V IH(min) : V IL(max) : V OH(min) : V OL(max) : Mínima tensão de entrada considerada como nível alto; Máxima tensão e entrada considerada como nível baixo; Mínima tensão de saída considerada como nível alto; Máxima tensão de saída considerada como nível baixo. Note: A transição não é abrupta, como pode-se observar na Figura 3.
3 Figura 3: Relação entrada-saída de um inversor. Esses valores são importantes para determinar os níveis de tensão máximos e mínimos da entrada e saída de uma porta lógica. Se esta estiver sujeita a ruídos, por exemplo, o nível de tensão pode ser modificado, o que pode causar chaveamentos indesejados Correntes de entrada e saída Além dos níveis de tensão adequados nas entradas e saídas, cada componente possui limites de corrente que pode absorver ou fornecer. Isto é importante para estabelecer, por exemplo, quantas portas lógicas podem ser colocadas na saída de outra. Por convenção assume-se que a corrente absorvida pela porta é positiva, e a corrente fornecida pela porta é negativa. Para uma porta inversora, pode-se definir: I IL(max) : I OL(max) : I IH(max) : I OH(max) : Máxima corrente fornecida por entrada em nível baixo; Máxima corrente absorvida por saída em nível baixo; Máxima corrente absorvida por entrada em nível alto; Máxima corrente fornecida por saída em nível alto Tempo de propagação Como observado, as portas lógicas são na verdade dispositivos analógicos que apresentem formas de onda contínuas. A transição do nível lógico 0 para 1 não ocorre de maneira abrupta ou imediata, o que limita a sua velocidade de operação. O tempo de propagação de uma porta lógica reflete a velocidade ou frequência que esta pode operar, e indica o tempo que uma determinada entrada leva para produzir uma saída. A Fig. 4 indica os tempos para uma configuração inversora: t PHL : Tempo para uma entrada em nível alto produzir uma saída em nível baixo. t PLH : Tempo para uma entrada em nível baixo produzir uma saída em nível alto. Os tempos são medidos em relação a 50% da amplitude pico-a-pico dos sinais. Figura 4: Tempos de propagação numa porta inversora.
4 3 PRÉ LABORATÓRIO Nota: A parte de Pre-Laboratório (item 3) e Experimental (item 4) pode e feito diretamente neste roteiro. 3.1 Introdução a) Fale sobre encapsulamento e pinagem. b) Explique o porquê de se trabalhar com o conceito de sinais digitais se na verdade os sinais aplicados às entradas e lidos nas saídas dos CIs são sinais analógicos. c) A figura 3 fornece um gráfico com a relação entre a tensão de entrada e de saída de um inversor. Estude-a muito bem (pois será perguntado a respeito na aula) e explique o que são V IH(min), V IL(max),V OH(min) e V OL(max). d) Explique o que é tempo de propagação e explique t PHL e t PLH. Nota: Se necessário pode inserir folhas (com margens) entre o item 31 e 3.2.
5 3.2 Consulte os manuais (data sheets) das portas 7400 (NAND) e 7402 (NOT): a) Desenhe e identifique os pinos (In, Out, Vcc e GND). b) Preencha a tabela com as características de entrada e saída. Vcc V OH V OL V IH V IL t PLH t PHL 7400 (NAND) c) Trace o gráficos, semelhante fig Para cada circuitos abaixo faça: As funções lógicas (na íntegra) e depois as simplifique ao máximo. Coloque passo a passo a simplificação algébrica. Monte a tabela verdade. Coloque a pinagem dos circuitos, como indicado nas figura 5d. Simulação dos seus circuitos manualmente e/ou com software adequado, fornecendo as formas de onda de saída dos circuitos. Considere que nas entradas devem ocorrer todas as combinações possíveis. Sugestão: Utilizar software MaxPlus II. (Tutorial encontra-se no site, na pagina da disciplina)
6 (Se achar conveniente pode simular com software adequado e dar um print na tela do resultado, conforme figura abaixo). Figura 5a: Circuito lógico 1. Figura 5b: Circuito lógico 2. Figura 5c: Circuito lógico 3. Figura 5d: Circuito lógico 4.
7 3.4 Considerando o circuito da figura 5a, pode-se observar na figura 6a que a mesma estava inicialmente com a entrada em nível lógico alto (1) e a saída em baixo (0), uma vez que este circuito se comporta como uma inversora. No instante t=0ms a entrada passou imediatamente para nível lógico baixo (0) e a saída demorou 5ns para alterar para nível lógico alto (1). Isto ocorre devido ao atraso (delay), ou tempo de propagação, intrínseco as portas lógicas Utilizando agora o circuito da figura 5d, considere que o mesmo está em nível lógico baixo (0) e que no instante t=0ms, a entrada passe imediatamente para nível lógico baixo (1). Utilizando a figura 6b, faça um gráfico, semelhante o da figura 6a, com o nível lógico de cada ponto ( A, X, Y, Z, S) do circuito em cada instante (5, 10, 15, 20, 25 e 30ms) considerando um delay de 5ms. Obs: Note que a saída S depende da combinação dos níveis lógicos no ponto A e Z. Não foi considerado, e não precisa ser considerado neste exercício, o tempo de subida e/ou descida em relação ao tempo (slew rate). Figura 6a: Resp. do circ. 5a. Figura 6b: Resp. do circ. 5d
8 Atenção: Antes de fazer leia todo o roteiro. 4.1 Alimentação do módulo 4 PARTE EXPERIMENTAL a) Meça e anote com o multímetro o valor de (Vcc) fornecido pelo módulo. Verifique se está dentro dos limites indicados no manual. Vcc = b) Meça e anote com o multímetro os níveis de tensão correspondentes a 0 e 1 de uma das chaves do módulo; 4.2 Curva Entrada-Saída Nível Lógico 0 (Chave para baixo) = Nível Lógico 1 (Chave para cima) = Levantar alguns pontos importantes entre entrada e saída. Monte um inversor com uma porta 7400 e monte a instrumentação como indicado na Fig. 7. NÃO CONECTAR O FIO POSITIVO DA FONTE ANTES DO PROF. OU TECNICO VERFICAR A MONTAGEM. Figura 7: Aparato para medição de curva entrada-saída. Obs: A alimentação do CI (Vcc/GND) deve ser conectada normalmente no módulo verde. Todos os terras devem estar no mesmo ponto. a) Aplique uma tensão de 0V na entrada do circuito, e anote o valor da tensão de saída, V S1 ; Valor de tensão Low na entrada V IL = Valor de tensão medido na saída V out = b) Aumente lentamente a tensão de entrada até notar que a tensão de saída cai rapidamente. Reduza um pouco a tensão de entrada, repetindo a operação algumas vezes, e obtenha o valor da tensão de entrada que provoca esta mudança, chamando-a V llmax. Esta tensão serve como uma medida para localizar em qual ponto da curva há uma rápida variação; Valor máximo de tensão Low na entrada V ILmax = Valor de tensão medido na saída V out = c) Coloque agora a tensão de entrada em 5V e anote o valor da saída V S0 ; Valor de tensão High na entrada V ILmax = Valor de tensão medido na saída V out =
9 d) Diminua lentamente a tensão de entrada até notar que a tensão de saída sobe rapidamente. Aumente um pouco a tensão de entrada, repetindo a operação algumas vezes, e obtenha o valor da tensão de entrada que provoca esta mudança, chamando-a de V t0. Esta tensão serve como uma medida para localizar em qual ponto da curva há uma rápida variação; Valor mínimo de tensão High na entrada V ILmax = Valor de tensão medido na saída V out = e) Trace a curva utilizando, semelhante fig. 8, utilizando os valores encontrados nos itens anteriores (a, b, c, d). Não precisa inserir no gráfico V OHmin e V OLmax, apenas os V out correspondentes a V ILmax e V IHmin. Figura 8: Resposta de entrada e saída.
10 4.3 Pulsos espúrios Glitches Montar (utilizar) o circuito da figura 5d. Ajustar sinal do gerador: Ajuste o gerador de funções de modo a ter na sua saída uma forma de onda quadrada com amplitude de 0 e 5 V e frequência em 1KHz e verificar com o canal 1 osciloscópio. (NÃO COLOCAR O SINAL NO CIRCUITO SEM ANTES MOSTRAR PARA O PROFESSOR OU TECNICO) Após mostrar para o professor ou algum responsável pela aula, conectar o sinal no circuito. e com o canal 1 do osciloscópio verificar a entrada e com o canal 2 a saída. a) Ajustar inicial do Osciloscópio: (Deixar no modo acoplamento CC). Canal 1 (Ch1) no sinal de entrada (Pto A) Canal 2 (Ch2) na saída (Pto S ) Apertar o botão autoset. Ajuste vertical dos canais em 2V/div. Ajuste horizontal dos canais em 500us/div. Verificar o sinal no (Pto A) e (Pto S). Desenhar, salvar ou tirar foto para fazer depois a discussão (item 5). b) Ajustar inicial do Osciloscópio: Ajuste horizontal em 50 ns/div. Ajuste vertical dos canais em 2V/div. Desenhar sinal de entrada e saída (ponto S) verificado. Verificar o sinal no (Pto A) e (Pto S). Desenhar, salvar ou tirar foto para fazer depois a discussão (item 5). c) Ajustar inicial do Osciloscópio: Manter em 50 ns/div. Manter em 2V/div. Verificar o sinal no (Pto A) e (Pto Y). Desenhar, salvar ou tirar foto para fazer depois a discussão (item 5). d) Qual tempo de propagação médio por uma porta lógica, já que o mesmo se propaga por 4 portas. Compare com o resultado fornecido no manual? R:
11 5 DISCUSSÃO E CONCLUSÃO Integrantes que fizeram aula pratica: Nome: RA. Obs: Este item será feito em casa e entregue no dia seguinte. Colocar no escaninho do professor. 5.1 Faça a discussão dos itens 4.1, 4.2 e 4.3.
EXPERIMENTO 5: Flip-Flop
DEE - Departamento de Engenharia Elétrica Laboratório de Circuitos Digitais I ELE 1065 EXPERIMENTO 5: Flip-Flop 1 - OBJETIVOS Estudos de dispositivos de memória com Flip-Flops e outros dispositivos correlatos.
Caracterização de Portas Lógicas
Caracterização de Portas Lógicas Versão 2015 RESUMO Esta experiência tem como objetivo um estudo dos elementos básicos do nosso universo de trabalho, ou seja, as portas lógicas. Para isto serão efetuados
EXPERIÊNCIA 05 CIRCUITOS COM AMPLIFICADOR OPERACIONAL PROFS ELISABETE GALEAZZO, LEOPODO YOSHIOKA E ANTONIO C. SEABRA
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS EXPERIÊNCIA 05 CIRCUITOS COM AMPLIFICADOR OPERACIONAL
Introdução teórica Aula 8: Fonte de Tensão Regulada. Regulador LM7805. Fonte de tensão regulada. EEL7011 Eletricidade Básica Aula 8 EEL/CTC/UFSC
Introdução teórica Aula 8: Fonte de Tensão Regulada Regulador LM7805 78xx é o nome de uma popular família de reguladores positivos de tensão. É um componente comum em muitas fontes de alimentação. Eles
Aula Prática: Filtros Analógicos
Curso Técnico Integrado em Telecomunicações PRT60806 Princípios de Telecomunicações Professor: Bruno Fontana da Silva 2015-1 Aula Prática: Filtros Analógicos Objetivos: em laboratório, montar um circuito
AMPLIFICADORES OPERACIONAIS APLICAÇÕES LINEARES
EN 2603 ELETRÔNICA APLICADA LABORATÓRIO Nomes dos Integrantes do Grupo AMPLIFICADORES OPERACIONAIS APLICAÇÕES LINEARES 1. OBJETIVOS a. Verificar o funcionamento dos amplificadores operacionais em suas
CARACTERIZAÇÃO DE PORTAS LÓGICAS
CARACTERIZAÇÃO DE PORTAS LÓGICAS E.T.M./2001 (revisão) R.C.S./2002 (revisão) E.T.M./2003 (revisão da parte experimental) E.T.M./2004 (revisão) E.T.M. e R.C.S./2005 (reorganização) RESUMO Esta experiência
Trabalho prático nº 2 de Electrónica 2009/2010
Trabalho prático nº 2 de Electrónica 2009/2010 Título: Amplificador operacional. Configuração inversora. Sumário Proceder se á à montagem de circuitos simples com amplificadores operacionais (ampops) em
2 Objetivos Verificação e análise das diversas características de amplificadores operacionais reais.
Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 6 1 Título Prática 6 Características dos Amplificadores Operacionais 2 Objetivos Verificação e análise das diversas características
Pré-Laboratório (Para ser entregue no início da aula prática)
UNIVERIDDE FEDERL DE ITJUÁ Instituto de Engenharia de istemas e Tecnologia da Informação LORTÓRIO DE ELETRÔNIC DIGITL I ELT 512 tividade de Laboratório 2 luno: luno: luno: Objetivos: Turma: Investigar
Laboratório Experimental
1 Roteiro de práticas de Introdução à Intrumentação Biomédica Prof. Adilton Carneiro Laboratório Experimental Prática I: Caracterização e construção de circuitos básicos com amplificadores operacionais
Departamento de Engenharia Elétrica e de Computação SEL 384 Laboratório de Sistemas Digitais I Profa. Luiza Maria Romeiro Codá PRÁTICA Nº2
Departamento de Engenharia Elétrica e de Computação SEL 384 Laboratório de Sistemas Digitais Profa. Luiza Maria Romeiro Codá PRÁTCA Nº2 CARACTERÍSTCAS ELÉTRCAS DOS Cs 1. Objetivos: Aprender quais os cuidados
Experiência 2 Metrologia Elétrica. Medições com Osciloscópio e Gerador de Funções
Experiência 2 Metrologia Elétrica Medições com Osciloscópio e Gerador de Funções 1) Meça uma onda senoidal de período 16,6ms e amplitude de 4V pico a pico, centrada em 0V. Em seguida configure o menu Measures
Introdução teórica Aula 10: Amplificador Operacional
Introdução Introdução teórica Aula 10: Amplificador Operacional O amplificador operacional é um componente ativo usado na realização de operações aritméticas envolvendo sinais analógicos. Algumas das operações
PSI LABORATÓRIO DE CIRCUITOS ELÉTRICOS GUIA DE EXPERIMENTOS. EXPERIÊNCIA 2 - Medição de Grandezas Elétricas: Valor Eficaz e Potência
ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS 1º Semestre de 2016 GUIA DE EXPERIMENTOS EXPERIÊNCIA
INVERSOR LÓGICO INTRODUÇÃO TEÓRICA. Para a tecnologia TTL esses valores são bem definidos: Nível lógico 1 = + 5V Nível lógico 0 = 0v
Invasor Lógico INVERSOR LÓGICO OBJETIVOS: a) Entender o significado de compatível com TTL ; b) Aprender como interpretar especificações das folhas de dados (Data Book); c) Identificar a representação eletrônica
LABORATÓRIO CICUITOS ELÉTRICOS
LABORATÓRIO CICUITOS ELÉTRICOS NEURY BOARETTO JOINVILLE 2010 AULA PRÁTICA 1 Objetivos 1. Verificar o funcionamento do osciloscópio na medida de tensão e período Material Usado 1 Multímetro digital 1 Matriz
ELETRÔNICA / INSTALAÇÕES ELÉTRICAS EXPERIÊNCIA 10
1 OBJEIVOS: Determinar o ganho de tensão de circuitos com amplificador operacional; 2 - EQUIPAMENO a) Gerador de sinais; b) Osciloscópio digital; c) Unidade Central de Processamento PU-2000; d) Placa de
9. Portas lógicas. 9. Portas lógicas. Escola Superior de Tecnologia e Gestão de Felgueiras - Politécnico do Porto
Sumário: Projecto de um circuito digital Portas lógicas universais Famílias lógicas LEI FÍSICA 1 Projecto de um circuito digital: 1. Traduzir o problema numa tabela de verdade 2. Obter da tabela, a função
Trabalho prático nº 5 de Electrónica 2009/2010
Trabalho prático nº 5 de Electrónica 29/21 Título: Circuito amplificador com um transístor em montagem de emissor comum (com e sem degenerescência do emissor). Sumário Proceder se á à montagem de um circuito
4.9 Características Básicas dos CIs Digitais
CIs digitais são uma coleção de resistores, diodos e transistores fabricados em um pedaço de material semicondutor (geralmente silício), denominado substrato, comumente conhecido como chip. CIs digitais
No. USP Nome Nota Bancada
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS Marcelo N.P. Carreño, Cinthia Itiki, Inés Pereyra 2019 Experiência
Caracterização de Portas Lógicas
Caracterização de Portas Lógicas Versão 2015 1. Caracterização Elétrica e Temporal 1.1. Portas Lógicas e Circuitos Integrados Digitais As funções lógicas podem ser implementadas de maneiras diversas, sendo
PORTAS NAND (NE) INTRODUÇÃO TEÓRICA
PORTAS NAND (NE) PORTAS NAND (NE) OBJETIVOS: a) Verificar experimentalmente o funcionamento de uma porta NAND; b) Utilizar uma porta NAND como inversor; c) Demonstrar que uma porta NAND é universal; d)
2 Objetivos Verificação e análise das diversas características de amplificadores operacionais reais.
Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 6 1 Título Prática 11 Características dos Amplificadores Operacionais 2 Objetivos Verificação e análise das diversas características
PSI LABORATÓRIO DE CIRCUITOS ELÉTRICOS
ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS GUIA DE EXPERIMENTOS Experiência 2 - Medição de Grandezas Elétricas
PSI LABORATÓRIO DE CIRCUITOS ELÉTRICOS
ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3031 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS GUIA DE EXPERIMENTOS Experiência 2 - Medição de Grandezas Elétricas
Lab.04 Osciloscópio e Gerador de Funções
Lab.04 Osciloscópio e Gerador de Funções OBJETIVOS Capacitar o aluno a utilizar o osciloscópio e o gerador de funções; Usar o osciloscópio para observar e medir formas de onda de tensão e de corrente.
Trabalho prático nº 4 de Electrónica 2008/2009
Trabalho prático nº 4 de Electrónica 2008/2009 Título: Circuito amplificador com um transístor em montagem de emissor comum (com e sem degenerescência do emissor). Sumário Proceder se á à montagem de um
ELD - Eletrônica Digital Aula 2 Famílias Lógicas. Prof. Antonio Heronaldo de Sousa
ELD - Eletrônica Digital Aula 2 Famílias Lógicas Prof. Antonio Heronaldo de Sousa Agenda - Contextualização - Elementos Básicos (Fonte de Tensão, Chaves e LEDs) - O Transistor - Sinais de Entrada e Saída
No. USP Nome Nota Bancada GUIA E ROTEIRO EXPERIMENTAL
ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS EXPERIÊNCIA 2 - MEDIÇÃO DE GRANDEZAS ELÉTRICAS Profa. Elisabete
GUIA DE EXPERIMENTOS
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI 3031 LABORATÓRIO DE CIRCUITOS ELÉTRICOS GUIA DE EXPERIMENTOS EXPERIÊNCIA 1: INSTRUMENTAÇÃO
1.1 Montar o circuito de acordo com o apresentado na figura 1. Cuidado ao montar, especialmente verificando a conexão de cada um dos "jumpers".
I. Lista de Material 01 módulo MCM5/EV com fonte de alimentação 01 gerador de funções com cabos 01 osciloscópio com 02 pontas de prova 01 multímetro digital 01 chave de fenda pequena fios para ligação
Trabalho prático nº 3 de Electrónica 2009/2010
Trabalho prático nº 3 de Electrónica 2009/2010 Título: Amplificador operacional. ConFiguração não inversora (seguidor de tensão). Sensor de temperatura. Sumário Utilizar se á o circuito do trabalho prático
Trabalho de Laboratório. Electrónica Geral LERCI. Circuitos com Transistores MOS
Trabalho de Laboratório Electrónica Geral LERCI Circuitos com Transistores MOS Número Nome Grupo: Professor: Instituto Superior Técnico Departamento de Engenharia Electrotécnica e de Computadores Área
ELD - Eletrônica Digital Aula 2 Famílias Lógicas. Prof. Antonio Heronaldo de Sousa
ELD - Eletrônica Digital Aula 2 Famílias Lógicas Prof. Antonio Heronaldo de Sousa Agenda - Contextualização - Elementos Básicos (Fonte de Tensão, Chaves e LEDs) - O Transistor - Sinais de Entrada e Saída
Relatório: Experimento 1
Relatório: Experimento 1 Nome 1: Assinatura 1: Nome 2: Assinatura 2: Nome 3: Assinatura 3: Nome 4: Assinatura 4: Turma: Procedimento I: seleção dos parâmetros da forma de onda no gerador de funções e medida
ROTEIRO OFICIAL 12 Amplificador Operacional no Modo Sem Realimentação Comparador
UTFPR DAELT Engenharia Elétrica e/ou Controle e Automação Disciplina: Laboratório de Eletrônica ET74C Prof.ª Elisabete Nakoneczny Moraes ROTEIRO OFICIAL 12 Amplificador Operacional no Modo Sem Realimentação
Transistor como chave. DP - Exercícios
Transistor como chave. DP - Exercícios Introdução : Um transistor pode operar como uma chave eletrônica quando opera nas regiões do corte e da saturação. Dependendo da aplicação dessa chave alguns cuidados
1. Objetivos. Analisar a resposta harmônica do amplificador e compará-la com os resultados esperados.
1. Objetivos Estudar o emprego de transistores bipolares em circuitos amplificadores através de projeto e implementação de um circuito amplificador em emissor comum. Analisar a resposta harmônica do amplificador
SINAIS E SISTEMAS MECATRÓNICOS
SINAIS E SISTEMAS MECATRÓNICOS Laboratório #1: Introdução à utilização de aparelhos de medida e geração de sinal: multímetro, osciloscópio e gerador de sinais Mestrado Integrado em Engenharia Mecânica
1º Trabalho de laboratório Iniciação ao uso da instrumentação electrónica. Circuitos RC simples. Circuitos com AmpOps. Parte III
1º Trabalho de laboratório Iniciação ao uso da instrumentação electrónica. Circuitos RC simples. Circuitos com AmpOps. Parte III Alunos: Turma: Data: / /2006 A entregar na aula de / /2006 Docente: Classificação:
Escola Politécnica - USP
Escola Politécnica - USP PSI 2327 Laboratório de Eletrônica III Exp 3: Geradores de Varredura Equipe:- - - Turma: Profs: - - Data de Realização do Experimento: Nota: Bancada: 2005 1. Introdução Esta experiência
GUIA DE EXPERIMENTOS
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI 3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS GUIA DE EXPERIMENTOS EXPERIÊNCIA 1: INSTRUMENTAÇÃO
INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO. Grupo:... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Experiência 7
INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO Laboratório de Eletromagnetismo (4300373) Grupo:......... (nomes completos) Prof(a).:... Diurno Noturno Data : / / Experiência 7 MAPEAMENTO DE CAMPO MAGNÉTICO
Dispositivos e circuitos com FET s. Lista equipamentos. Capacitor 0.1 uf eletrolítico. 2 x Resistor 10K Protoboard + fios CI CD4007
EN2719 Lab #4 Dispositivos e circuitos com FET s Lista equipamentos Resistor 1M capacitor 47uF eletrolítico Resistor 2K2 Transistor JFET BF245 Resistor 6K8 Capacitor 0.1 uf eletrolítico 2 x Resistor 10K
Guias de Laboratório da Unidade Curricular Eletrónica 2 (Licenciatura em Engenharia Eletrotécnica e de Computadores)
Guias de Laboratório da Unidade Curricular Eletrónica 2 (Licenciatura em Engenharia Eletrotécnica e de Computadores) Jorge Manuel Martins ESTSetúbal, julho de 2017 Índice Lab. 1 - Estudo de um Amplificador
PSI LABORATÓRIO DE CIRCUITOS ELÉTRICOS
ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS GUIA DE EXPERIMENTOS Experiência 2 - Medição de Grandezas Elétricas
Escola Politécnica - USP
Escola Politécnica - USP PSI 2325 Laboratório de Eletrônica I Exp 8: Amplificadores para Pequenos Sinais Equipe: - Turma: - - Profs: - - Data de Realização do Experimento: Nota: Bancada: 2002 1. Objetivos
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI 3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS GUIA EXPERIMENTAL EXPERIÊNCIA 1: INSTRUMENTAÇÃO
UFJF FABRICIO CAMPOS
Cap 8 ) Famílias Lógicas e Circuitos Integrados Estudaremos o funcionamento interno dos dispositivos de cada Família Lógica Os CIs são constituídos pelo conjunto de diversas portas digitais integradas
DESCARGA EM CIRCUITO RC
INSTITUTO DE FÍSICA DA UNIVERSIDADE DE SÃO PAULO Laboratório de Eletromagnetismo (4300373) 2 o SEMESTRE DE 2013 Grupo:......... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Data : / / 1. Introdução
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 2307 Laboratório de Eletrônica Exp. 5 Amplificadores de Pequenos Sinais e Exp. 6 Amplificadores de
Introdução teórica aula 12: Pisca- Pisca Controlado por Luz
Introdução teórica aula 12: Pisca- Pisca Controlado por Luz IC555 O IC555 é um circuito integrado (chip) utilizado em uma variedade de aplicações como temporizador ou multivibrador. O CI foi projetado
ELT703 - EXPERIÊNCIA N 3: ERROS DC (OFFSET) E SLEW RATE
ELT03 EXPERIÊNCIA N 3: ERROS DC (OFFSET) E SLEW RATE 1. OBJETIVOS: Levantamento da V IO, I B, I B e seus efeitos na relação de saída; Ajuste de Offset externo e interno; Medição do Slew Rate (Taxa de Subida)..
Experimento 6 Corrente alternada: circuitos resistivos
1. OBJETIVO Experimento 6 Corrente alternada: circuitos resistivos O objetivo desta aula é estudar o comportamento de circuitos resistivos em presença de uma fonte de alimentação de corrente alternada.
INSTITUTO DE FÍSICA DA UNIVERSIDADE
INSTITUTO DE FÍSICA DA UNIVERSIDADE DE SÃO PAULO Laboratório de Eletromagnetismo (4300373) 2 o SEMESTRE DE 2013 Grupo:......... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Data : / / Experiência
Famílias Lógicas I Características Gerais
Famílias Lógicas I Características Gerais SISTEMAS DIGITAIS II Prof. Marcelo Wendling Nov/10 Texto base: Sistemas Digitais Tocci (7ª edição). Capítulo 8. 1 Introdução Com a vasta utilização dos Circuitos
Departamento de Engenharia Elétrica e de Computação SEL 405 Lab. de Introdução aos Sistemas Digitais I Profa. Luiza Maria Romeiro Codá PRÁTICA Nº 3:
Departamento de Engenharia Elétrica e de Computação SEL 405 Lab. de Introdução aos Sistemas Digitais I Profa. Luiza Maria Romeiro Codá PRÁTICA Nº 3: GATES COLETOR ABERTO, TRI-STATE E SCHIMITT TRIGGER 1.
GUIA DE EXPERIMENTOS
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI 3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS GUIA DE EXPERIMENTOS EXPERIÊNCIA 1: INSTRUMENTAÇÃO
Centro Federal de Educação Tecnológica de Pelotas CEFET-RS. Aula 04. Inversor CMOS. Prof. Sandro Vilela da Silva.
Centro Federal de Educação Tecnológica de Pelotas CEFET-RS Projeto Físico F Digital Aula 04 Inversor CMOS Prof. Sandro Vilela da Silva [email protected] Copyright Parte dos slides foram realizados
DISPOSITIVOS ESPECIAIS BUFFERS/DRIVERS
DISPOSITIVOS ESPECIAIS BUFFERS/DRIVERS TRI-STATE PORTAS EXPANSÍVEIS/EXPANSORAS SCHMITT - TRIGGER OBJETIVOS: a) Entender o funcionamento de dispositivos lógicos especiais como: Buffers, Drivers, elementos
EXPERIÊNCIA 7 MUX e DEMUX
1 MEC UTFPR-CT DAELT CURSO: ENGENHARIA INDUSTRIAL ELÉTRICA DISCIPLINA: ELETRÔNICA DIGITAL Prof.: EXPERIÊNCIA 7 MUX e DEMUX DATA REALIZAÇÃO: DATA ENTREGA: ALUNOS: e e Planejamento: Execução: Relatório:
AULA LAB 01 PARÂMETROS DE SINAIS SENOIDAIS 2 MEDIÇÃO DE VALORES MÉDIO E EFICAZ COM MULTÍMETRO
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA DEPARTAMENTO ACADÊMICO DE ELETRÔNICA CURSO SUPERIOR DE TECNOLOGIA EM SISTEMAS ELETRÔNICOS Retificadores (ENG - 20301) AULA LAB 01 PARÂMETROS
Microeletrônica. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microeletrônica.php. Sala 5017 E
Microeletrônica Prof. Fernando Massa Fernandes https://www.fermassa.com/microeletrônica.php Sala 5017 E [email protected] http://www.lee.eng.uerj.br/~germano/microeletronica_2016-2.html (Prof. Germano
P U C E N G E N H A R I A LABORATÓRIO DE DCE4 EXPERIÊNCIA 7: Filtros Ativos. Identificação dos alunos: 1. Turma: Professor: Conceito:
P U C LABORATÓRIO DE DCE4 E N G E N H A R I A EXPERIÊNCIA 7: Filtros Ativos Identificação dos alunos: Data: 1. Turma: 2. 3. Professor: Conceito: I. Lista de Material 01 osciloscópio digital 02 pontas de
MEDIÇÃO DE GRANDEZAS ELÉCTRICAS UTILIZAÇÃO DO OSCILOSCÓPIO E DO MULTÍMETRO
TRABALHO PRÁTICO MEDIÇÃO DE GRANDEZAS ELÉCTRICAS UTILIZAÇÃO DO OSCILOSCÓPIO E DO MULTÍMETRO Objectivo - Este trabalho tem como objectivo a familiarização com alguns dos equipamentos e técnicas de medida
ELECTRÓNICA I. ANÁLISE EM CORRENTE ALTERNADA DE UM CIRCUITO RC Guia de Montagem do Trabalho Prático
Universidade do Minho Circuito RC - Guia de Montagem Escola de Engenharia Dep. Electrónica Industrial 1/8 ELECTRÓNICA I ANÁLISE EM CORRENTE ALTERNADA DE UM CIRCUITO RC Guia de Montagem do Trabalho Prático
Experiência 9 Redes de Primeira ordem Circuitos RC. GUIA e ROTEIRO EXPERIMENTAL
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos - PSI - EPUSP PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS 1º semestre de 2019 Experiência 9 Redes de
TRABALHO AMPLIFICADOR DE INSTRUMENTAÇÃO
CURSO DE ENGENHARIA ELÉTRICA DISCIPLINA: ELETRÔNICA II PROFESSOR: VLADEMIR DE J. S. OLIVEIRA TRABALHO AMPLIFICADOR DE INSTRUMENTAÇÃO 1. COMPONENTES DA EQUIPE Alunos Nota: Data: 2. OBJETIVOS - Implementação
Leia atentamente o texto da Aula 6, Corrente alternada: circuitos resistivos, e responda às questões que seguem.
PRÉ-RELATÓRIO 6 Nome: turma: Leia atentamente o texto da Aula 6, Corrente alternada: circuitos resistivos, e responda às questões que seguem. 1 Explique o significado de cada um dos termos da Equação 1,
EXPERIMENTO7: OSCILOSCÓPIO DIGITAL CIRCUITO RC
EXPERIMENTO7: OSCILOSCÓPIO DIGITAL CIRCUITO RC Nesse experimento você utilizará o osciloscópio como uma ferramenta para observar os sinais de tensão elétrica em um circuito contendo um resistor e um capacitor
Experimento 6 Corrente alternada: circuitos resistivos
1. OBJETIO Experimento 6 Corrente alternada: circuitos resistivos O objetivo desta aula é estudar o comportamento de circuitos resistivos em presença de uma fonte de alimentação de corrente alternada.
Relatório de Prática no LABORATORIO
Cod. Disc: TURMA: GRUPO: NOME: Sistemas Digitais Relatório de Prática no LABORATORIO Aula 6 Aula 7 e 8 a parte: Decodificador e Display 2ª etapa Projeto Prático Somador e Subtrator PROF. MSc. MÁRIO OLIVEIRA
SOLUÇÃO : 2) Converter os números da base 10 para a base 5. N1 = (134) 10 N2 = (245) 10. Resposta : N1 = (1014) 5 N2 = (1440) 5
LISTA D XRCÍCIOS D N-671 2004 Matéria da prova é referente a toda à matéria. As listas de exercícios aplicadas durante as aulas são parte integrante desta lista de exercícios, além dos exercícios do livro
- Eletrônica digital - Capítulo 2 Circuitos Combinacionais
- Eletrônica digital - Capítulo 2 Circuitos Combinacionais Introdução Lógica para tomada de decisões George Boole (1854): Uma investigação das leis do pensamento Termo álgebra booleana Relacionamento entre
EPUSP PCS 2011/2305/2355 Laboratório Digital. Frequencímetro
Frequencímetro Versão 2014 RESUMO Esta experiência tem como objetivo a familiarização com duas classes de componentes: os contadores e os registradores. Para isto, serão apresentados alguns exemplos de
Experimento 6 Corrente alternada: circuitos resistivos
1 OBJETIVO Experimento 6 Corrente alternada: circuitos resistivos O objetivo desta aula é estudar o comportamento de circuitos resistivos em presença de uma fonte de alimentação de corrente alternada 2
PCS 3115 (PCS2215) Sistemas Digitais I. Tecnologia CMOS. Prof. Dr. Marcos A. Simplicio Jr. versão: 3.0 (Jan/2016) Adaptado por Glauber De Bona (2018)
PCS 3115 (PCS2215) Sistemas Digitais I Tecnologia CMOS Prof. Dr. Marcos A. Simplicio Jr. versão: 3.0 (Jan/2016) Adaptado por Glauber De Bona (2018) Nota: as imagens de Pokémons que aparecem nesta aula
No. USP Nome Nota Bancada
ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3031/3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS EXPERIÊNCIA 03 GUIA DE EXPERIMENTOS / RELATÓRIO COMPORTAMENTO
Microeletrônica. Prof. Fernando Massa Fernandes. Aula 21. Sala 5017 E.
Microeletrônica Aula 21 Prof. Fernando Massa Fernandes Sala 5017 E [email protected] https://www.fermassa.com/microeletronica.php Revisão MOSFET pass gate NMOS é bom para passar sinal lógico 0
CADERNO DE EXPERIÊNCIAS
CADERNO DE EXPERIÊNCIAS Disciplina: ELETRÔNICA III Curso: ENGENHARIA ELÉTRICA Fase: 8ª Conteúdo: Carga horária: 75 horas Semestre: 01/2011 Professor: PEDRO BERTEMES FILHO / RAIMUNDO NONATO G. ROBERT 1.
MEDIÇÃO DE GRANDEZAS ELÉCTRICAS UTILIZAÇÃO DO OSCILOSCÓPIO E DO MULTÍMETRO
TRABALHO PRÁTICO MEDIÇÃO DE GRANDEZAS ELÉCTRICAS UTILIZAÇÃO DO OSCILOSCÓPIO E DO MULTÍMETRO Objectivo Este trabalho tem como objectivo a familiarização com alguns dos equipamentos e técnicas de medida
ELETRÔNICA / INSTALAÇÕES ELÉTRICAS EXPERIÊNCIA 06
ELERÔNICA / INSALAÇÕES ELÉRICAS 1 - OBJEIVOS a) determinar o ganho de tensão de um amplificador transistorizado a partir de valores medidos; b) determinar o ganho de corrente de um amplificador transistorizado
