Capítulo 5 Astrofísica estelar: o diagrama HR

Tamanho: px
Começar a partir da página:

Download "Capítulo 5 Astrofísica estelar: o diagrama HR"

Transcrição

1 UFABC NHZ3043 NOÇÕES DE ASTRONOMIA E COSMOLOGIA Curso Prof. Germán Lugones Capítulo 5 Astrofísica estelar: o diagrama HR

2 Classificação espectral Espectros estelares foram obtidos para muitas estrelas bem antes do início do século 20. Os espectros ainda não eram muito bem entendidos, por isso a classificação antiga foi feita de acordo com as intensidades das linhas do hidrogênio. Foi adotada a ordem alfabética A, B, C, D, E... sendo A a classe com linhas mais fortes, B a seguinte, e assim por diante. A classificação se estendia até a letra P. Na década de 1920, os astrônomos perceberam que as estrelas poderiam ser melhor classificadas de acordo com sua temperatura superficial. Em vez de adotar uma classificação inteiramente nova; eles reordenaram as categorias alfabéticas existentes em uma nova sequência com base na temperatura. No esquema moderno, as estrelas mais quentes são do tipo O, porque elas têm linhas de absorção de hidrogênio muito fracas e estavam classificadas perto do fim na classificação antiga. Em ordem de temperatura decrescente, as classes espectrais (ou tipos espectrais) sobreviventes são atualmente O, B, A, F, G, K, M. (As outras letras foram retiradas.) Cada tipo espectral se subdivide em 10 sub-classes, sendo 0 a mais quente, dentro da classe, e 9 a mais fria. Para lembrar: Oh, Be A Fine Girl (Guy), Kiss Me

3 Spectral Class Surface Temperature (K) Noteworthy Absorption Lines Familiar Examples O 30,000 Ionized helium strong; multiply ionized heavy elements; hydrogen faint B 20,000 Neutral helium moderate; singly ionized heavy elements; hydrogen moderate A 10,000 Neutral helium very faint; singly ionized heavy elements; hydrogen strong F 7000 Singly ionized heavy elements; neutral metals; hydrogen moderate G 6000 Singly ionized heavy elements; neutral metals; hydrogen relatively faint K 4000 Singly ionized heavy elements; neutral metals strong; hydrogen faint M 3000 Neutral atoms strong; molecules moderate; hydrogen very faint Mintaka (O9) Rigel (B8) Vega (A0), Sirius (A1) Canopus (F0) Sun (G2), Alpha Centauri (G2) Arcturus (K2), Aldebaran (K5) Betelgeuse (M2), Barnard s star (M5) Surface Temperature (K) Color 30,000 Blue-violet 20,000 Blue 10,000 White 7000 Yellow-white 6000 Yellow 4000 Orange 3000 Red

4 650 nm 400 nm Hydrogen 30,000 K 20,000 K 10,000 K 7000 K Sodium 6000 K 4000 K Helium Carbon Iron Magnesium Oxygen Oxygen Helium Calcium Iron O B A F G K Comparison of spectra observed for seven different stars having a range of surface temperatures. These are not actual spectra, which are messy and complex, but simplified artists renderings illustrating notable spectral features. The spectra of the hottest stars, at the top, show lines of helium and multiply ionized heavy elements. In the coolest stars, at the bottom, helium lines are absent, but lines of neutral atoms and molecules are plentiful. At intermediate temperatures, hydrogen lines are strongest K M Many molecules

5

6 Cada linha escura no espectro de uma estrela está associada à presença de um elemento químico na atmosfera da estrela. Isso pode nos levar a pensar que as estrelas com linhas espectrais diferentes têm composição química diferente. No entanto, atualmente se sabe que a composição química das estrelas em geral é praticamente a mesma: aproximadamente 90% hidrogênio e aproximadamente 10 % hélio; todos os outros elementos juntos contribuem entre 1% e 2% da composição e são chamados de metais. Portanto, o hidrogênio é de longe o elemento químico mais abundante nas estrelas, e ainda assim as linhas do hidrogênio, embora fortes em algumas estrelas, são fracas em outras. Como isso se explica? Na verdade, mais do que a composição química, é a temperatura que

7 Na verdade, mais do que a composição química, é a temperatura que determina o espectro das estrelas. Consideremos uma linha de Balmer do hidrogênio. Essas linhas se originam em transições entre o segundo nível de energia do hidrogênio e qualquer outro nível acima dele: transições de nível para cima (n 2 > 2) resultam em absorção, transições de nível para baixo (n 2 = 2) resultam em emissão. Então, para uma estrela ter linhas de Balmer intensas, ela precisa ter muitos átomos de hidrogênio excitados ao nível n=2. Isso acontece em estrelas com temperatura em torno de K (kt =0, 86 ev); para temperaturas muito mais baixas, como a do Sol por exemplo, o hidrogênio está no estado fundamental, e poucas colisões podem acontecer que sejam energéticas o suficiente para excitar o hidrogênio. Já em estrelas com temperaturas muito mais altas, o hidrogênio está quase todo ionizado, devido às freqüentes colisões, e novamente existem muito poucos átomos excitados. Assim, as linhas de Balmer ficam fracas em estrelas muito quentes ou muito frias, apesar de o hidrogênio existir abundantemente em todas.

8 A classificação espectral é função da temperatura superficial, mas também é função do índice de cor. Surface Temperature (K) Color 30,000 Blue-violet 20,000 Blue 10,000 White 7000 Yellow-white 6000 Yellow 4000 Orange 3000 Red

9 Classificação de luminosidade A classificação espectral de Harvard só leva em conta a temperatura das estrelas. Considerando que a luminosidade de uma estrela é dada por L =4ºR 2 æt 4 ef vemos que a luminosidade de uma estrela com maior raio é maior, para a mesma temperatura. Em 1943, foram introduzidas seis diferentes classes de luminosidade (de Morgan- Keenan), baseadas nas larguras de linhas espectrais que são sensíveis à gravidade superficial: Ia - supergigantes superluminosas. Exemplo: Rigel (B8Ia) Ib - supergigantes. Exemplo: Betelgeuse (M2Iab) II - gigantes luminosas. Exemplo: Antares (MII) III - gigantes. Exemplo: Aldebarã (K5III) IV - subgigantes. Exemplo: α Crucis (B1IV) V - anãs (sequência principal). Exemplo: Sírius (A1V)

10 A classe de luminosidade de uma estrela pode ser conhecida pelo seu espectro. Isso é possível porque a largura das linhas espectrais depende fortemente da gravidade superficial, que é diretamente relacionada à luminosidade: A aceleração gravitacional na superfície de uma estrela é dada por g: g = GM R 2 Para estrelas de massas iguais, ã do g é que muito p maior para uma anã do que para uma gigante. Quanto maior a gravidade superficial, maior a pressão e, portanto, maior o número de colisões entre as partículas na atmosfera da estrela. As colisões perturbam os níveis de energia dos átomos, fazendo com que eles fiquem mais próximos ou mais afastados entre si do que o normal. Assim, os átomos perturbados podem absorver fótons de energia e comprimento de onda levemente maior ou menor do que os que os fótons absorvidos nas transições entre níveis não perturbados. O efeito disso é que as linhas ficam alargadas (alargamento colisional ou de pressão). Portanto, para uma mesma temperatura, quanto menor a estrela, mais alargada será a linha, e vice-versa.

11 Super-gigantes Gigantes Sub-gigantes SP Anã branca

12 O diagrama HR O Diagrama de Hertzsprung-Russell, conhecido como diagrama HR, foi descoberto em , como uma relação existente entre a luminosidade de uma estrela e sua temperatura superficial. Tanto a luminosidade (ou magnitude absoluta) como a temperatura superficial de uma estrela, são características facilmente determináveis para estrelas de distâncias conhecidas: a primeira pode ser encontrada a partir da magnitude aparente, e a segunda a partir de sua cor ou tipo espectral. Hertzsprung descobriu que estrelas da mesma cor podiam ser divididas entre luminosas, que ele chamou de gigantes, e estrelas de baixa luminosidade, que ele chamou de anãs. Dessa forma, o Sol e a estrela Capela têm a mesma classe espectral, isto é, a mesma cor, mas Capela, uma gigante, é cerca de 100 vezes mais luminosa que o Sol.

13 K range 10,000 Ia Ib II Luminosity (solar units) MAIN SEQUENCE III IV V 30,000 10, Surface temperature (K) Spectral classification Nesse diagrama, a temperatura cresce para a esquerda, e a luminosidade para cima. A maior parte das estrelas está alinhada ao longo de uma estreita faixa na diagonal que vai do extremo superior esquerdo (estrelas quentes e muito luminosas), até o extremo inferior direito (estrelas frias e pouco luminosas). Essa faixa é chamada sequência principal. O fator que determina onde uma estrela se localiza na sequência principal é a sua massa: estrelas mais massivas são mais quentes e mais luminosas. As estrelas da sequência principal têm, por definição, classe de luminosidade V, e são chamadas de anãs.

14 K range 10,000 Ia Ib II Luminosity (solar units) MAIN SEQUENCE III IV V 30,000 10, Surface temperature (K) Spectral classification Um número substancial de estrelas também se concentra acima da sequência principal, na região superior direita (estrelas frias e luminosas). Essas estrelas são chamadas gigantes, e pertencem à classe de luminosidade II ou III. Bem no topo do diagrama existem algumas estrelas ainda mais luminosas: são chamadas supergigantes, com classe de luminosidade I.

15 K range 10,000 Ia Ib II Luminosity (solar units) MAIN SEQUENCE III IV V 30,000 10, Surface temperature (K) Spectral classification Finalmente, algumas estrelas se concentram no canto inferior esquerdo (estrelas quentes e pouco luminosas): são chamadas anãs brancas. Apesar do nome, essas estrelas na verdade cobrem um intervalo de temperatura e cores que abrange desde as mais quentes, que são azuis ou brancas e têm temperatura superficiais de até K, até as mais frias, que são vermelhas e têm temperaturas superficiais de apenas 3500 K. Estima-se que em torno de 90% das estrelas nas vizinhanças do Sol são estrelas da sequência principal. Aproximadamente 10% são anãs brancas e menos do que 1% são gigantes ou supergigantes.

16 10,000 BLUE GIANTS Deneb Rigel Canopus RED GIANT REGION Antares 10,000 Fig. da esquerda: diagrama HR das100 estrelas mais brilhantes do céu Luminosity (solar units) Mira Capella Vega Sirius A Altair Sun MAIN SEQUENCE Arcturus Procyon A a Centauri Betelgeuse 100 R 10 R 1 R 0.1 R Luminosity (solar units) Sirius B Altair Sirius A Procyon A Sun WHITE DWARF REGION Procyon B MAIN SEQUENCE a Centauri RED DWARFS Barnard s star Proxima Centauri 100 R 10 R e Eridani 1 R 0.1 R Fig. da direita: diagrama HR das estrelas vizinhas do Sol (até ~5pc). 30,000 10, Surface temperature (K) 30,000 10, Surface temperature (K) Spectral classification Spectral classification Ao interpretar o diagrama HR, temos de levar em conta os efeitos de seleção: Se fizermos um diagrama HR de uma amostra de estrelas limitada por magnitude aparente, um grande número de estrelas intrinsecamente brilhantes vão aparecer. Se fizermos outro diagrama HR, com uma amostra de estrelas limitada pela distância ao Sol, o diagrama será diferente. A aparência do diagrama HR de estrelas pertencentes a um determinado aglomerado de estrelas depende fortemente da idade do aglomerado e, por isso, esses diagramas são importantes para estudos de evolução estelar.

17 Diagrama HR e tamanho das estrelas Lembremos que: L 2 4 = 4π R σ Tef portanto: = 1 L R 2 T 4πσ ef log ( 4π R ) L = 4logTef + log σ 2 * y = a x + b Logo, em um diagrama HR cujos eixos sejam log(l) e log(t) temos linhas diagonais que permitem identificar o raio da estrela.

18

19 Diagrama HR e populações estelares Aglomerados estelares: São grupos auto-gravitantes de estrelas que estão associadas entre si. As estrelas de um aglomerado estelar formaram-se da mesma nuvem de gás e portanto têm a mesma idade, a mesma composição química e a mesma distância. Existem aglomerados abertos, com dezenas a centenas de estrelas, como as Plêiades, a 410 anos-luz da Terra, com uma idade de aproximadamente 20 milhões de anos. Também existem aglomerados globulares com cerca de membros ou mais. São compactos, têm forma esférica, e suas estrelas figuram entre as mais velhas da Galáxia. O estudo dos aglomerados estelares permitiu que se estabelecessem dois tipos de populações estelares: Estrelas da População I - são jovens e ricas em metais. Estrelas da População II - são mais velhas e pobres em metais.

20 Aglomerados jovens As principais diferenças entre populações são apresentadas em diagramas H-R de diferentes aglomerados. No aglomerado jovem das Plêiades (~ 20 milhões de anos): Todas as estrelas estão ainda na Sequência Principal As Plêiades: ricas em metais: (Z ~ 0,01), pertencem à População I.

21 Aglomerados velhos Diagrama para um aglomerado bem mais velho: Omega Centauri ( > 10 bilhões de anos): A sequência principal vai desde estrelas tipo M até o ponto chamado de turnoff em F. Há uma grande concentração no ramo das gigantes, como aparece na parte superior. A metalicidade é muito baixa: Z < 0,001 (pobres em metais): é de População II. As Plêiades, mais ricas em metais (Z ~ 0,01), pertencem à População I.

22 Jovem Velho

23 A relação massa-luminosidade As massas das estrelas podem ser determinadas no caso de estrelas duplas orbitando uma em torno da outra, aplicando-se a Terceira Lei de Kepler. Essas observações têm mostrado que as massas das estrelas aumentam de baixo para cima ao longo da sequência principal. Pode-se, portanto, estabelecer uma relação empírica massaluminosidade, que por sua vez permite estimar as massas das estrelas baseadas em seu tipo espectral. Para estrelas com massas grandes, maiores do que 3 massas solares, a luminosidade é proporcional ao cubo da massa; já para massas pequenas, menores do que 0,5 massa solar, a luminosidade é proporcional à potência 2,5 da massa, ou seja: M 3M Ø,L/ M 3 3M Ø M 0, 5M Ø,L/ M 4 M 0, 5M Ø,L/ M 2,5 As massas das estrelas variam entre 0,08 e 100 massas solares. As luminosidades das estrelas variam entre 10-4 e vezes a luminosidade do sol.

24

25 Distâncias das estrelas Métodos usados para determinar distâncias dentro do sistema solar: radares ou leis de Kepler para os movimentos orbitais. No caso das estrelas as distâncias envolvidas são grandes demais, i.e. precisamos de outros métodos de determinação da distância. Para estrelas próximas podemos determinar a paralaxe estelar. Este método tem atualmente um limite de ~ 400 pc com Hiparcos. Exemplos: Próxima Centauro: p = 0,772'' d = 1,3 pc (ou 4,24 a.l.); Sirius : p = 0,38'' d = 2,63 pc (ou 8,58 a.l.); α Crux : p = 0,01'' d = 100 pc; β Crux : p = 0,0029'' d = 345 pc;

26 Paralaxe espectroscópica: Uma das aplicações mais importantes do diagrama HR é a determinação de distâncias estelares. Suponha, por exemplo, que uma determinada estrela tem um espectro que indica que ela está na sequência principal e tem tipo espectral G2. Sua luminosidade, então, pode ser encontrada a partir do diagrama HR e será em torno de 1L (M = +5).

27 Conhecendo-se sua magnitude aparente, portanto, sua distância pode ser conhecida a partir do seu módulo de distância: onde (m-m) é o módulo de distância, e (m M) = log d! d = 10 (m M+5)/5 m = magnitude aparente M = magnitude absoluta d = distância em parsecs. Essa maneira de se obter as distâncias das estrelas, a partir do seu tipo espectral e da sua classe de luminosidade, é chamada método das paralaxes espectroscópicas.

28 Em geral, a classe espectral sozinha não é suficiente para se conhecer a luminosidade da estrela de forma única. É necessário conhecer também sua classe de luminosidade. Por exemplo, uma estrela de tipo espectral G2 pode ter uma luminosidade de 1L se for da sequência principal, ou de 10 L (M=0), se for uma gigante, ou ainda de 100 L (M= 5), se for uma supergigante. É necessário distinguir as classes de luminosidade. Como? Como mencionado antes, isso é possível usando o alargamento colisional das linhas; lembrar que estrelas maiores apresentam linhas mais estreitas.

29 Escala de distância ~ Paralaxe espectroscópica Paralaxe estelar Distância Radar Terra

Fundamentos de Astronomia e Astrofísica. Estrelas. Rogério Riffel.

Fundamentos de Astronomia e Astrofísica. Estrelas. Rogério Riffel. Fundamentos de Astronomia e Astrofísica Estrelas Rogério Riffel http://astro.if.ufrgs.br Propriedades Estrelas são esferas autogravitantes de gás ionizado, cuja fonte de energia é a transmutação de elementos

Leia mais

A espectroscopia e as estrelas

A espectroscopia e as estrelas Elementos de Astronomia A espectroscopia e as estrelas Rogemar A. Riffel Radiação de Corpo Negro Corpo negro: corpo que absorve toda a radiação que incide sobre ele, sem refletir nada; -Toda a radiação

Leia mais

ESTRELAS. Sérgio Mittmann dos Santos. Astronomia Licenciatura em Ciências da Natureza IFRS Câmpus Porto Alegre 2018/2

ESTRELAS. Sérgio Mittmann dos Santos. Astronomia Licenciatura em Ciências da Natureza IFRS Câmpus Porto Alegre 2018/2 ESTRELAS Sérgio Mittmann dos Santos Astronomia Licenciatura em Ciências da Natureza IFRS Câmpus Porto Alegre 2018/2 Estrelas São esferas autogravitantes de gás ionizado, cuja fonte de energia é a transmutação

Leia mais

Aula 18 - Classes de luminosidade e Diagrama HR.

Aula 18 - Classes de luminosidade e Diagrama HR. Aula 18 - Classes de luminosidade e Diagrama HR. Maria de Fátima Oliveira Saraiva, Kepler de Oliveira Filho & Alexei Machado Müller O diagrama HR é uma das ferramentas mais importantes da Astrofísica Estelar;

Leia mais

Aula 8 - Classes de Luminosidade e Diagrama HR.

Aula 8 - Classes de Luminosidade e Diagrama HR. Aula 8 - Classes de Luminosidade e Diagrama HR. Área 2, Aula 8 Alexei Machado Müller, Maria de Fátima Oliveira Saraiva & Kepler de Oliveira Filho Diagrama HR comparando a luminosidade das estrelas com

Leia mais

FSC1057: Introdução à Astrofísica. Estrelas. Rogemar A. Riffel

FSC1057: Introdução à Astrofísica. Estrelas. Rogemar A. Riffel FSC1057: Introdução à Astrofísica Estrelas Rogemar A. Riffel Propriedades Estrelas são esferas autogravitantes de gás ionizado, cuja fonte de energia é a transformação de elementos através de reações nucleares,

Leia mais

Estrelas (I) Gastão B. Lima Neto Vera Jatenco-Pereiro IAG/USP

Estrelas (I)  Gastão B. Lima Neto Vera Jatenco-Pereiro IAG/USP Estrelas mais próximas e mais brilhantes Movimento das estrelas Tamanho das estrelas Temperatura Cores e espectros: classificação espectral Abundância química Diagrama H-R Estrelas (I) Gastão B. Lima Neto

Leia mais

Astrofísica Geral. Tema 10: As estrelas

Astrofísica Geral. Tema 10: As estrelas ma 10: As estrelas Outline 1 Medidas diretas fundamentais 2 Medidas indiretas fundamentais 3 Classificação espectral 4 Bibliografia 2 / 30 Outline 1 Medidas diretas fundamentais 2 Medidas indiretas fundamentais

Leia mais

Departamento de Astronomia - Instituto de Física Universidade Federal do Rio Grande do Sul

Departamento de Astronomia - Instituto de Física Universidade Federal do Rio Grande do Sul Departamento de Astronomia - Instituto de Física Universidade Federal do Rio Grande do Sul FIS2001 - FUNDAMENTOS DE ASTRONOMIA E ASTROFÍSICA 2.a PROVA 2008/1 TURMA:A Prof.a Maria de Fátima O. Saraiva NOME:

Leia mais

Astrofísica Geral. Tema 10: As estrelas. Alexandre Zabot

Astrofísica Geral. Tema 10: As estrelas. Alexandre Zabot Astrofísica Geral Tema 10: As estrelas Alexandre Zabot Índice Medidas diretas fundamentais Medidas indiretas fundamentais Classificação espectral Bibliografia 1 31 Índice Medidas diretas fundamentais Medidas

Leia mais

As propriedades físicas das estrelas: Distâncias Luminosidades Tamanhos Massas. Classificação de estrelas segundo sua:

As propriedades físicas das estrelas: Distâncias Luminosidades Tamanhos Massas. Classificação de estrelas segundo sua: As propriedades físicas das estrelas: Distâncias Luminosidades Tamanhos Massas Classificação de estrelas segundo sua: Cor Temperatura Características espectrais ESTIMATIVAS DE DISTÂNCIA Método simples

Leia mais

Espectros estelares. Roberto Ortiz EACH/USP

Espectros estelares. Roberto Ortiz EACH/USP Espectros estelares Roberto Ortiz EACH/USP O tamanho das estrelas Vimos que a luminosidade de uma estrela relaciona se com o seu raio e sua temperatura: L * /L s = (R * /R s ) 2 (T * /5780) 4 onde a temperatura

Leia mais

Capítulo 10 ESTRELAS: CLASSIFICAÇÃO ESPECTRAL

Capítulo 10 ESTRELAS: CLASSIFICAÇÃO ESPECTRAL Capítulo 10 ESTRELAS: CLASSIFICAÇÃO ESPECTRAL Cor e Temperatura Tipos Espectrais O Diagrama H-R Classes de Luminosidade Aglomerados estelares Bibliografia: Zeilik & Smith, 1987 Introductory Astronomy &

Leia mais

Capítulo 10 ESTRELAS: CLASSIFICAÇÃO ESPECTRAL

Capítulo 10 ESTRELAS: CLASSIFICAÇÃO ESPECTRAL 112 Capítulo 10 ESTRELAS: CLASSIFICAÇÃO ESPECTRAL Características Observacionais Cor e Temperatura Classificação Espectral Seqüência de tipos espectrais O Diagrama H-R A Seqüência Principal Populações

Leia mais

ESTRELAS. Sérgio Mittmann dos Santos. Astronomia Licenciatura em Ciências da Natureza IFRS Câmpus Porto Alegre 2013/2

ESTRELAS. Sérgio Mittmann dos Santos. Astronomia Licenciatura em Ciências da Natureza IFRS Câmpus Porto Alegre 2013/2 ESTRELAS Sérgio Mittmann dos Santos Astronomia Licenciatura em Ciências da Natureza IFRS Câmpus Porto Alegre 2013/2 Estrelas São esferas autogravitantes de gás ionizado, cuja fonte de energia é a transmutação

Leia mais

Departamento de Astronomia - Instituto de Física Universidade Federal do Rio Grande do Sul

Departamento de Astronomia - Instituto de Física Universidade Federal do Rio Grande do Sul Departamento de Astronomia - Instituto de Física Universidade Federal do Rio Grande do Sul FIS2001 - FUNDAMENTOS DE ASTRONOMIA E ASTROFÍSICA 2.a PROVA 2007/2 TURMA A Prof.a Maria de Fátima O. Saraiva NOME:

Leia mais

Introdução à Astrofísica. Espectroscopia. Rogemar A. Riffel

Introdução à Astrofísica. Espectroscopia. Rogemar A. Riffel Introdução à Astrofísica Espectroscopia Rogemar A. Riffel Radiação de Corpo Negro Corpo negro: corpo que absorve toda a radiação que incide sobre ele, sem refletir nada; - Toda a radiação emitida pelo

Leia mais

As propriedades físicas das estrelas: Distância Luminosidade Tamanho Massa. Estrelas são classificadas segundo sua:

As propriedades físicas das estrelas: Distância Luminosidade Tamanho Massa. Estrelas são classificadas segundo sua: As propriedades físicas das estrelas: Distância Luminosidade Tamanho Massa Estrelas são classificadas segundo sua: Cor Temperatura superficial Características espectrais Distâncias dentro do sistema solar

Leia mais

Astronomia Galáctica Semestre:

Astronomia Galáctica Semestre: Astronomia Galáctica Semestre: 2016.1 Sergio Scarano Jr 26/07/2016 A Estrutura e Composição da Estrela Sol Temperatura Superficial 5.770 K Região de convecção Coroa Regiões Claras Subida de gás quente

Leia mais

Radiação Eletromagnética

Radiação Eletromagnética Radiação Eletromagnética Objetivos nergia e informação (>99%) vinda dos astros aixas do espectro adiação de corpo negro (equilíbrio termodinâmico) edida de movimentos (efeito Doppler) spectros contínuos

Leia mais

Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Astronomia. Fundamentos de Astronomia e Astrofísica: FIS2001

Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Astronomia. Fundamentos de Astronomia e Astrofísica: FIS2001 Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Astronomia Fundamentos de Astronomia e Astrofísica: FIS2001 Prof. Rogério Riffel 1 Extinção Atmosférica A atmosfera é praticamente

Leia mais

CLASSIFICAÇÃO ESTELAR:

CLASSIFICAÇÃO ESTELAR: CLASSIFICAÇÃO ESTELAR: TÓPICO 2 AS ESTRELAS NÃO SÃO IGUAIS Jane C. Gregório Hetem 2.1 Espectros Estelares 2.2 A ordem dos tipos espectrais 2.3 Comparando as diversas categorias de estrelas 2.4 O tamanho

Leia mais

Estrelas: espetros, luminosidades, raios e massas

Estrelas: espetros, luminosidades, raios e massas Estrelas: espetros, luminosidades, raios e massas Laurindo Sobrinho 24 de novembro de 2012 NASA 1 Luminosidade e brilho aparente Luminosidade (L) - quantidade energia emitida pela estrela por unidade de

Leia mais

Estrelas (I) Gastão B. Lima Neto Vera Jatenco-Pereiro IAG/USP

Estrelas (I)  Gastão B. Lima Neto Vera Jatenco-Pereiro IAG/USP Estrelas mais próximas e mais brilhantes Movimento das estrelas Tamanho das estrelas Temperatura Cores e espectros: classificação espectral Abundância química Diagrama H-R Estrelas binárias: definição

Leia mais

Estrelas: espectros, luminosidades e massas

Estrelas: espectros, luminosidades e massas Estrelas: espectros, luminosidades e massas J. L. G. Sobrinho sobrinho@uma.pt Grupo de Astronomia da Universidade da Madeira http://www3.uma.pt/investigacao/astro/grupo/index.htm Janeiro de 2013 Resumo

Leia mais

Estrelas: Distâncias, Magnitudes e Classificaçao Espectral (Caps. 8 e 10)

Estrelas: Distâncias, Magnitudes e Classificaçao Espectral (Caps. 8 e 10) Estrelas: Distâncias, Magnitudes e Classificaçao Espectral (Caps. 8 e 10) AGA215 Elisabete M. de Gouveia Dal Pino Astronomy: A Beginner s Guide to the Universe, E. Chaisson & S. McMillan (Caps. 11, 13

Leia mais

Estrelas. Silvia Rossi CEU

Estrelas. Silvia Rossi CEU Estrelas Silvia Rossi CEU 2-2010 estrelas... O que é uma estrela? São objetos que aquecem e iluminam planetas em um sistema. Uma estrela é uma bola de plasma (gás ionizado) mantida unida por sua própria

Leia mais

Tópicos Especiais em Física. Vídeo-aula 5: astrofísica estelar 09/07/2011

Tópicos Especiais em Física. Vídeo-aula 5: astrofísica estelar 09/07/2011 Tópicos Especiais em Física Vídeo-aula 5: astrofísica estelar 09/07/2011 Propriedades fundamentais das estrelas Formação estelar Evolução estelar Estágios finais das estrelas Estrelas: o que são? Enormes

Leia mais

Estrelas (I) Gastão B. Lima Neto Vera Jatenco-Pereiro IAG/USP

Estrelas (I)  Gastão B. Lima Neto Vera Jatenco-Pereiro IAG/USP Estrelas mais próximas e mais brilhantes Movimento das estrelas Tamanho das estrelas Temperatura Cores e espectros: classificação espectral Abundância química Diagrama H-R Estrelas binárias: definição

Leia mais

Aula - 3 Estrelas Luminosidade e temperatura

Aula - 3 Estrelas Luminosidade e temperatura Aula - 3 Estrelas Luminosidade e temperatura Valdir Guimaraes ( ) Curso Astrofísica Nuclear - 2016 Como homem atual vê o céu Valdir Guimaraes ( ) Curso Astrofísica Nuclear - 2016 Evolução das estrelas

Leia mais

Departamento de Astronomia - Instituto de Física Universidade Federal do Rio Grande do Sul

Departamento de Astronomia - Instituto de Física Universidade Federal do Rio Grande do Sul Departamento de Astronomia - Instituto de Física Universidade Federal do Rio Grande do Sul FIS2010 - FUNDAMENTOS DE ASTRONOMIA E ASTROFÍSICA A 2.a PROVA 2012/1 - TURMA C - Profa. Maria de Fátima Saraiva

Leia mais

Alex C. Carciofi. Aula 8. A Escada Cósmica: escalas de distância em astronomia

Alex C. Carciofi. Aula 8. A Escada Cósmica: escalas de distância em astronomia Alex C. Carciofi Aula 8 A Escada Cósmica: escalas de distância em astronomia Revisão Propriedades Fundamentais de uma Estrela: determinação Temperatura: - cores ou tipo espectral Composição química - Análise

Leia mais

Curso de Introdução à Astronomia e Astrofísica ESTRELAS AULA 1. Flavio D Amico estas aulas são de autoria de Hugo Vicente Capelato

Curso de Introdução à Astronomia e Astrofísica ESTRELAS AULA 1. Flavio D Amico estas aulas são de autoria de Hugo Vicente Capelato Curso de Introdução à Astronomia e Astrofísica ESTRELAS AULA 1 Flavio D Amico damico@das.inpe.br estas aulas são de autoria de Hugo Vicente Capelato A Constelação de Orion e as 3 Marias super Betelgeuse:

Leia mais

Estrelas norm ais e suas propriedades

Estrelas norm ais e suas propriedades Notas de aula Introdução à A stronom ia (AGA210) Estrelas norm ais e suas propriedades Ejnar H ertzprung H enry N. Russel Enos Picazzio Eles criaram uma das mais poderosas ferramentas da astronomia moderna:

Leia mais

Estrelas J O NAT HAN T. QUARTUCCIO I N S T I T U T O D E P E S Q U I S A S C I E N T Í F I C A S A S T R O L A B

Estrelas J O NAT HAN T. QUARTUCCIO I N S T I T U T O D E P E S Q U I S A S C I E N T Í F I C A S A S T R O L A B Estrelas J O NAT HAN T. QUARTUCCIO I N S T I T U T O D E P E S Q U I S A S C I E N T Í F I C A S A S T R O L A B Em uma noite escura, em um lugar afastado da poluição luminosa, olhamos para o céu e vemos

Leia mais

Para perceber porque é que os corpos quentes radiam energia é necessário perceber o que é o calor.

Para perceber porque é que os corpos quentes radiam energia é necessário perceber o que é o calor. A informação do BI dos Corpos Celestes Para perceber porque é que os corpos quentes radiam energia é necessário perceber o que é o calor. Para perceber o espectro estelar (que é mais complicado que o do

Leia mais

Universidade da Madeira. Estrelas. Grupo de Astronomia. Laurindo Sobrinho. 05 janeiro 2015 NASA

Universidade da Madeira. Estrelas. Grupo de Astronomia. Laurindo Sobrinho. 05 janeiro 2015 NASA Estrelas Laurindo Sobrinho 05 janeiro 2015 NASA 1 Luminosidade e brilho aparente Luminosidade (L) - energia emitida por uma estrela por unidade de tempo. Brilho aparente (b) fluxo de energia por unidade

Leia mais

Pelo uso de filtros é possível identificar em que comprimentos de onda um objeto é mais brilhante que outro

Pelo uso de filtros é possível identificar em que comprimentos de onda um objeto é mais brilhante que outro Introdução à Astronomia Semestre: 2014.1 1 Sergio Scarano Jr 19/05/2014 Cores Observadas das Estrelas Cores e Espectros de Estrelas Diferentes Pelo uso de filtros é possível identificar em que comprimentos

Leia mais

Evolução Estelar II. Aglomerados estelares e o diagrama H-R

Evolução Estelar II. Aglomerados estelares e o diagrama H-R Evolução Estelar II Aglomerados estelares e o diagrama H-R Idéias básicas Testes de modelos e teorias de evolução estelar Problema: Evolução estelar ocorre numa escala de tempo de bilhões de anos Astrônomos

Leia mais

INFORMAÇÃO. Distribuição da radiação* ESPECTRO

INFORMAÇÃO. Distribuição da radiação* ESPECTRO ESPECTROSCOPIA INFORMAÇÃO Distribuição da radiação* ESPECTRO Através do espectro de um objeto astronômico pode-se conhecer informações sobre temperatura, pressão, densidade, composição química, estrutura,

Leia mais

Uma aula sobre espectros eletromagnéticos

Uma aula sobre espectros eletromagnéticos Uma aula sobre espectros eletromagnéticos Baseado no texto de Francisco Jablonski (INPE) chico@das.inpe.br http://www.das.inpe.br/~chico 1 O que entendemos por espectro? 2 O que entendemos por espectro?

Leia mais

Lista Deduza a relação m = M 2.5 log 10 F 10, ), onde M é a magnitude absoluta do Sol, e F 10, o fluxo da radiação solar em 10 pc de distância.

Lista Deduza a relação m = M 2.5 log 10 F 10, ), onde M é a magnitude absoluta do Sol, e F 10, o fluxo da radiação solar em 10 pc de distância. Introdução à Física Estelar - 2016.3 Lista 1 1. Sirius se encontra a 2.64 parsecs da Terra. (a) Determine o módulo de distância de Sirius. (b) Na verdade, Sirius é uma estrela dupla, cuja componente mais

Leia mais

Introdução à Física Estelar

Introdução à Física Estelar Introdução à Física Estelar 2. Classificação de Espectros Prof. Pieter Westera pieter.westera@ufabc.edu.br http://professor.ufabc.edu.br/~pieter.westera/estelar.html Classificação Espectral de Estrelas

Leia mais

Astronomia Galáctica Semestre:

Astronomia Galáctica Semestre: Astronomia Galáctica Semestre: 016.1 Sergio Scarano Jr 6/07/016 Gráfico Teórico dos Raios Estelares 1000000-10 10000-5 http://astro.unl.edu/naap/hr/animations/hr.html 100 0 1 5 1/100 10 Luminosidade (Sol

Leia mais

Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Astronomia. Estrelas. Prof. Tibério B. Vale

Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Astronomia. Estrelas. Prof. Tibério B. Vale Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Astronomia Estrelas Prof. Tibério B. Vale Propriedades Estrelas são esferas autogravitantes de gás ionizado, cuja fonte de

Leia mais

Pelo uso de filtros é possível identificar em que comprimentos de onda um objeto é mais brilhante que outro

Pelo uso de filtros é possível identificar em que comprimentos de onda um objeto é mais brilhante que outro Introdução à Astronomia Semestre: 2014.1 1 Sergio Scarano Jr 19/05/2014 Cores Observadas das Estrelas Cores e Espectros de Estrelas Diferentes Pelo uso de filtros é possível identificar em que comprimentos

Leia mais

O Sol e as demais Estrelas

O Sol e as demais Estrelas Fundamentos de Astronomia e Astrofísica O Sol e as demais Estrelas Rogério Riffel http://astro.if.ufrgs.br/esol/esol.htm Dados gerais Maior objeto do sistema solar Diâmetro (da fotosfera): 1 391 980 km

Leia mais

Universidade da Madeira. Grupo de Astronomia. Nós s e o Universo. (c) 2009/2014 Grupo de Astronomia da Universidade da Madeira

Universidade da Madeira. Grupo de Astronomia. Nós s e o Universo. (c) 2009/2014 Grupo de Astronomia da Universidade da Madeira Nós s e o Universo 1 (c) 2009/2014 da Universidade da Madeira A Terra, a Lua e o Sol 2 Sol Terra http://umbra.nascom.nasa.gov/sdac.html http://www.msss.com/earth/earth.html 700 000 Km 6 370 Km 3 O raio

Leia mais

Estrelas Parte II. Victoria Rodrigues 24/05/14

Estrelas Parte II. Victoria Rodrigues 24/05/14 Estrelas Parte II Victoria Rodrigues victoria_souzarodrigues@hotmail.com 24/05/14 Sumário Parte I O que são? Nascimento estelar; Evolução Parte II Evolução: Estrelas maiores que o Sol; Supernovas; Estrelas

Leia mais

Evidências de formação estelar recente nebulosas de emissão excitadas pela radiação de estrelas jovens e quentes

Evidências de formação estelar recente nebulosas de emissão excitadas pela radiação de estrelas jovens e quentes Evidências de formação estelar recente nebulosas de emissão excitadas pela radiação de estrelas jovens e quentes Formação de estrelas na nossa Galáxia ainda continua existindo Sítios de formação estelar

Leia mais

Estrelas: Como se medem: distâncias temperaturas massa raios

Estrelas: Como se medem: distâncias temperaturas massa raios Estrelas: Como se medem: distâncias temperaturas massa raios 1UA =150 millhões de km =r raio da orbita r/d= tg ( p) = p (radianos) p (em segundos de arco) = 206265 p (radianos) d= 1/p p=1 d=1 pc Primeira

Leia mais

Nascimento e Evolução das Estrelas. Prof. Dr. Alan Alves Brito

Nascimento e Evolução das Estrelas. Prof. Dr. Alan Alves Brito Nascimento e Evolução das Estrelas Prof. Dr. Alan Alves Brito Referências Bennett, J., Donahue, M., Schneider, N., & Voit, M. The Essential Cosmic Perspective. Sixth Edition. Kepler, S.O., Oliveira Saraiva,

Leia mais

O brilho aparente e a Luminosidade das estrelas. Roberto Ortiz EACH/USP

O brilho aparente e a Luminosidade das estrelas. Roberto Ortiz EACH/USP O brilho aparente e a Luminosidade das estrelas Roberto Ortiz EACH/USP Primeiras estimativas Hiparco (séc. II a.c.) catalogou cerca de 2000 estrelas, visualmente. Ele classificou as conforme seu brilho

Leia mais

Prof. Eslley Scatena Blumenau, 10 de Outubro de

Prof. Eslley Scatena Blumenau, 10 de Outubro de Grupo de Astronomia e Laboratório de Investigações Ligadas ao Estudo do Universo Prof. Eslley Scatena Blumenau, 10 de Outubro de 2017. e.scatena@ufsc.br http://galileu.blumenau.ufsc.br Determinação de

Leia mais

AULA 1. ESCALAS DE DISTÂNCIA e de tamanho NO UNIVERSO

AULA 1. ESCALAS DE DISTÂNCIA e de tamanho NO UNIVERSO AULA 1 ESCALAS DE DISTÂNCIA e de tamanho NO UNIVERSO CONSTELAÇÃO DE Orion Estrelas são os componentes mais básicos do universo. 100 trilhões de km (10 12 km) Betelgeuse gigante vermelha (velha e massiva)

Leia mais

AULA 1. ESCALAS DE DISTÂNCIA e de tamanho NO UNIVERSO

AULA 1. ESCALAS DE DISTÂNCIA e de tamanho NO UNIVERSO AULA 1 ESCALAS DE DISTÂNCIA e de tamanho NO UNIVERSO CONSTELAÇÃO DE Orion Estrelas são os componentes mais básicos do universo. O universo observável contém tantas estrelas quanto grãos de areia somando

Leia mais

Astronomia. O nosso Universo

Astronomia. O nosso Universo Astronomia O nosso Universo O sistema solar Distância entre a Lua e a Terra: 384.000 Km (aprox. 1 seg-luz Velocidade da luz (c) : 300.000 Km/s Distância média entre a Terra e o Sol: 146 milhões Km (aprox.

Leia mais

6 as Olimpíadas Nacionais de Astronomia

6 as Olimpíadas Nacionais de Astronomia 6 as Olimpíadas Nacionais de Astronomia Prova da eliminatória regional 30 de Março de 2011 15:00 Duração máxima 120 minutos Nota: Ler atentamente todas as questões. Existe uma tabela com dados no final

Leia mais

Diagrama HR. M sol. Classe Espectral Temperatura Superficial (x1000 o C) / / / K5 3.8 M5 2.5 M0 3.

Diagrama HR. M sol. Classe Espectral Temperatura Superficial (x1000 o C) / / / K5 3.8 M5 2.5 M0 3. Introdução à Astronomia Semestre: 2014.1 1 Sergio Scarano Jr 19/05/2014 Diagrama HR: Tempo de Vida na Sequência Principal 1000000-10 Spica 10000-5 L/L MM sol ) sol = (M Regulus Vega Sírius Altair Procyon

Leia mais

Estrelas (II) Gastão B. Lima Neto Vera Jatenco-Pereira IAG/USP

Estrelas (II)  Gastão B. Lima Neto Vera Jatenco-Pereira IAG/USP sistemas múltiplos sistemas binários tipos de binárias determinação de massas estelares tempo de vida na Seq. Principal teorema de Vogt-Russell Estrelas (II) Gastão B. Lima Neto Vera Jatenco-Pereira IAG/USP

Leia mais

Nascimento, vida e morte das estrelas. Alan Alves Brito Professor Adjunto

Nascimento, vida e morte das estrelas. Alan Alves Brito Professor Adjunto Nascimento, vida e morte das estrelas Alan Alves Brito Professor Adjunto O que é uma estrela? Berçários Estelares Manchas brancas na nuvem escura: regiões de formação estelar recente A nuvem é escura

Leia mais

Meio interestelar. Roberto Ortiz EACH/USP

Meio interestelar. Roberto Ortiz EACH/USP Meio interestelar Roberto Ortiz EACH/USP Noções intuitivas A observação do céu noturno a olho nu propicia a detecção de cerca de 6000 estrelas. Diversas regiões parecem estar desprovidas de estrelas. Essas

Leia mais

EVOLUÇÃO ESTELAR I. Estrelas de baixa massa 0,25 M M 2,5 M. Estrelas de massa intermediária 2,5 M < M 12 M

EVOLUÇÃO ESTELAR I. Estrelas de baixa massa 0,25 M M 2,5 M. Estrelas de massa intermediária 2,5 M < M 12 M EVOLUÇÃO ESTELAR I Estrelas de baixa massa 0,25 M M 2,5 M Estrelas de massa intermediária 2,5 M < M 12 M Maior parte da vida das estrelas sequência principal (SP) Característica da fase de sequência principal

Leia mais

Sétima Aula. Introdução à Astrofísica. Reinaldo R. de Carvalho

Sétima Aula. Introdução à Astrofísica. Reinaldo R. de Carvalho Sétima Aula Introdução à Astrofísica Reinaldo R. de Carvalho (rrdecarvalho2008@gmail.com) pdf das aulas estará em http://cosmobook.com.br/?page_id=440 Capítulo 7!! Classificação dos Espectros Estelares!

Leia mais

Energia certa significa: quando a energia do fóton corresponde à diferença nos níveis de energia entre as duas órbitas permitidas do átomo de H.

Energia certa significa: quando a energia do fóton corresponde à diferença nos níveis de energia entre as duas órbitas permitidas do átomo de H. ESPECTROSCOPIA II A relação da luz com as linhas espectrais O que acontece se átomos de H forem bombardeados por fótons? R. Existem três possibilidades: 1) a maioria dos fótons passa sem nenhuma interação

Leia mais

13 as Olimpíadas Nacionais de Astronomia

13 as Olimpíadas Nacionais de Astronomia 13 as Olimpíadas Nacionais de Astronomia Prova da final nacional PROVA TEÓRICA 25 de maio de 2018 Duração máxima 120 minutos Notas: Leia atentamente todas as questões. As primeiras 6 questões são de escolha

Leia mais

Estrelas (II) Gastão B. Lima Neto Vera Jatenco-Pereira IAG/USP

Estrelas (II)  Gastão B. Lima Neto Vera Jatenco-Pereira IAG/USP sistemas múltiplos sistemas binários tipos de binárias determinação de massas estelares teorema de Vogt-Russell Estrelas (II) Gastão B. Lima Neto Vera Jatenco-Pereira IAG/USP www.astro.iag.usp.br/~aga210

Leia mais

Departamento de Astronomia - Instituto de Física Universidade Federal do Rio Grande do Sul

Departamento de Astronomia - Instituto de Física Universidade Federal do Rio Grande do Sul Departamento de Astronomia - Instituto de Física Universidade Federal do Rio Grande do Sul FIS2001 - FUNDAMENTOS DE ASTRONOMIA E ASTROFÍSICA 3.a PROVA 2011/2 NOME: TURMA:C I. ( 0,2 pontos cada) Nas questões

Leia mais

Capítulo 13 ESTRELAS VARIÁVEIS

Capítulo 13 ESTRELAS VARIÁVEIS Capítulo 13 ESTRELAS VARIÁVEIS Este capítulo é dedicado ao estudo das estrelas variáveis, cuja luminosidade varia com o tempo por meio de uma relação bem definida. Estas estrelas encontram-se em uma região

Leia mais

AGA 210 Introdução à Astronomia Lista de Exercícios 06 Estrelas

AGA 210 Introdução à Astronomia Lista de Exercícios 06 Estrelas AGA 210 Introdução à Astronomia Lista de Exercícios 06 Estrelas Questão 01: Qual(is) informação(ões) podemos extrair das observações astrométricas? Qual a relevância em se estimar a posição das estrelas

Leia mais

Universidade da Madeira. à Astronomia. Introdução. (c) 2009/2014 Grupo de Astronomia da Universidade da Madeira. 1Grupo de Astronomia

Universidade da Madeira. à Astronomia. Introdução. (c) 2009/2014 Grupo de Astronomia da Universidade da Madeira. 1Grupo de Astronomia Introdução à Astronomia 1 (c) 2009/2014 da Universidade da Madeira Sol Terra 2 http://umbra.nascom.nasa.gov/sdac.html http://www.msss.com/earth/earth.html 700 000 Km 6 370 Km O raio do Sol é cerca de 110

Leia mais

Nascimento, vida e morte das estrelas. Alan Alves Brito Professor Adjunto

Nascimento, vida e morte das estrelas. Alan Alves Brito Professor Adjunto Nascimento, vida e morte das estrelas Alan Alves Brito Professor Adjunto Referências Andery, M. et al. Para compreender a ciência: uma perspectiva histórica. 16a edição. Rio de Janeiro: Garamond, 2012.

Leia mais

Estrelas (I) Agradecimentos: Prof. Gastão B. Lima Neto e Prof. Vera Jatenco

Estrelas (I) Agradecimentos: Prof. Gastão B. Lima Neto e Prof. Vera Jatenco Estrelas (I) O que são estrelas? Distribuição das Estrelas na Via-Láctea Estrelas mais próximas e mais brilhantes Movimento das Estrelas e a Determinação de Distâncias Propriedades das Estrelas: tamanho

Leia mais

Tipos de galáxias Classificações das elípticas Características gerais Determinação da massa Perfil de brilho Formação e Evolução

Tipos de galáxias Classificações das elípticas Características gerais Determinação da massa Perfil de brilho Formação e Evolução Galáxias Elípticas Tipos de galáxias Classificações das elípticas Características gerais Determinação da massa Perfil de brilho Formação e Evolução Marlon R. Diniz Classificação de Hubble Sa Sb Sc E0 E2

Leia mais

Universidade Junior 2017 Astronomia: Dos conceitos à prática aula 1

Universidade Junior 2017 Astronomia: Dos conceitos à prática aula 1 Universidade Junior 2017 Astronomia: Dos conceitos à prática aula 1 Jorge Filipe Gameiro Centro de Astrofísica da Universidade do Porto, Instituto de Astrofísica e Ciências do Espaço, Departamento Física

Leia mais

Estrelas: propriedades observáveis

Estrelas: propriedades observáveis Notas de aula Introdução à Astronomia (AGA210) Estrelas: propriedades observáveis Os trabalhos em espectroscopia astrofísica de Annie Jump Cannon (à esquerda) e Henrietta Swan Leavitt, foram fundamentais

Leia mais

A VIA-LÁCTEA PARTE I. a nossa Galáxia

A VIA-LÁCTEA PARTE I. a nossa Galáxia A VIA-LÁCTEA PARTE I a nossa Galáxia Definição: Uma galáxia é um conjunto de matéria estelar e interestelar - estrelas, gás, poeira, estrelas de nêutrons, buracos negros isolado no espaço e mantido junto

Leia mais

PROPRIEDADE DAS ESTRELAS E CLASSIFICAÇÃO ESTRELAR

PROPRIEDADE DAS ESTRELAS E CLASSIFICAÇÃO ESTRELAR 2 Jane C. Gregório Hetem PROPRIEDADE DAS ESTRELAS E CLASSIFICAÇÃO ESTRELAR 2.1 Introdução 2.2 Contexto Histórico 2.3 Propriedades 2.3.1 Luz proveniente dos astros: Radiação Eletromagnética 2.3.2 Temperatura

Leia mais

Movimento próprio de estrelas Formação e evolução Estágios finais na evolução de estrelas Enxames

Movimento próprio de estrelas Formação e evolução Estágios finais na evolução de estrelas Enxames Movimento próprio de estrelas Formação e evolução Estágios finais na evolução de estrelas Enxames João Lima jlima@astro.up.pt Instituto de Astrofísica e Ciências do Espaço Centro de Astrofísica Departamento

Leia mais

AGA0299 INFORMAÇÕES GERAIS 06/MAR/2018

AGA0299 INFORMAÇÕES GERAIS 06/MAR/2018 AGA0299 INFORMAÇÕES GERAIS 06/MAR/2018 Paula R. T. Coelho http://www.astro.iag.usp.br/~pcoelho Monitor: nenhum :( Terças e quintas, 16:00 na sala 02, e às vezes na A304 (Lab. de informática)

Leia mais

Estrelas Variáveis e Aglomerados de Estrelas

Estrelas Variáveis e Aglomerados de Estrelas Estrelas Variáveis e Aglomerados de Estrelas - Estrelas Variáveis: relação período-luminosidade (R-PL) - Aglomerados Abertos e Globulares: Idades Diagrama H-R e Diagrama cor-magnitude Sandra dos Anjos

Leia mais

REVISÃO DE CONCEITOS DE EVOLUÇÃO ESTELAR AGA0299

REVISÃO DE CONCEITOS DE EVOLUÇÃO ESTELAR AGA0299 REVISÃO DE CONCEITOS DE EVOLUÇÃO ESTELAR AGA0299 DEFINIÇÕES Fluxo e Luminosidade Distâncias no céu Magnitudes ( é o fluxo de referência (zero-point) para um dado filtro fotométrico) Módulo de distância

Leia mais

Astrofísica Geral. Tema 14: Aglomerados de estrelas.

Astrofísica Geral. Tema 14: Aglomerados de estrelas. merados de estrelas. Outline 1 Aglomerados estelares 2 Populações estelares 3 Medidas com aglomerados 4 Bibliografia 2 / 23 Índice 1 Aglomerados estelares 2 Populações estelares 3 Medidas com aglomerados

Leia mais

Universidade Federal do Rio Grande do Sul. FIS FUNDAMENTOS DE ASTRONOMIA E ASTROFÍSICA 3.a PROVA /1

Universidade Federal do Rio Grande do Sul. FIS FUNDAMENTOS DE ASTRONOMIA E ASTROFÍSICA 3.a PROVA /1 Universidade Federal do Rio Grande do Sul FIS2001 - FUNDAMENTOS DE ASTRONOMIA E ASTROFÍSICA 3.a PROVA - 2007/1 NOME: 1. A figura abaixo é uma representação artística da Via Láctea, como apareceria vista

Leia mais

Prof. Eslley Scatena Blumenau, 07 de Novembro de

Prof. Eslley Scatena Blumenau, 07 de Novembro de Grupo de Astronomia e Laboratório de Investigações Ligadas ao Estudo do Universo Prof. Eslley Scatena Blumenau, 07 de Novembro de 2017. e.scatena@ufsc.br http://galileu.blumenau.ufsc.br Gás e Poeira Interestelar

Leia mais

Astronomia Galáctica Semestre:

Astronomia Galáctica Semestre: Astronomia Galáctica Semestre: 2016.1 Sergio Scarano Jr 10/10/2016 Via Láctea Galáxia espiral barrada do tipo SBc (ou SBbc), seu bojo é boxy e pode conter uma estrutura em X O problema da distância! MW

Leia mais

Estrelas (II) Gastão B. Lima Neto Vera Jatenco-Pereira IAG/USP

Estrelas (II)  Gastão B. Lima Neto Vera Jatenco-Pereira IAG/USP sistemas múltiplos sistemas binários tipos de binárias determinação de massas estelares teorema de Vogt-Russell Estrelas (II) Gastão B. Lima Neto Vera Jatenco-Pereira IAG/USP www.astro.iag.usp.br/~aga210

Leia mais

Evolução Estelar: Pós-Seqüência Principal

Evolução Estelar: Pós-Seqüência Principal Fundamentos de Astronomia e Astrofísica Evolução Estelar: Pós-Seqüência Principal Tibério B. Vale Veja mais em: http://astro.if.ufrgs.br/estrelas/node14.htm Evolução Final das Estrelas O destino final

Leia mais

13. Determinação das distâncias das galáxias

13. Determinação das distâncias das galáxias 13. Determinação das distâncias das galáxias 1 Indicadores de distância relações entre grandezas que dependem da distância (como o fluxo ou o tamanho aparente) e grandezas que não dependem da distância

Leia mais

Universidade da Madeira. A escala do Universo. Grupo de Astronomia. Laurindo Sobrinho. 26 de abril de 2017

Universidade da Madeira. A escala do Universo. Grupo de Astronomia. Laurindo Sobrinho. 26 de abril de 2017 A escala do Universo Laurindo Sobrinho 26 de abril de 2017 1 1 O Sistema Solar Universidade da Madeira 2 Sol Terra http://umbra.nascom.nasa.gov/sdac.html http://www.msss.com/earth/earth.html 700 000 Km

Leia mais

Alex C. Carciofi. Aula 7. Estrelas: massa, raio, temperatura O Diagrama HR

Alex C. Carciofi. Aula 7. Estrelas: massa, raio, temperatura O Diagrama HR Alex C. Carciofi Aula 7 Estrelas: massa, raio, temperatura O Diagrama HR O Sol e outras estrelas Propriedades Fundamentais de uma Estrela - Luminosidade - Massa - Raio - Temperatura - Composição química

Leia mais

14. Determinação das distâncias das galáxias

14. Determinação das distâncias das galáxias 14. Determinação das distâncias das galáxias 1 Indicadores de distância relações entre grandezas que dependem da distância (como o fluxo ou o tamanho aparente) e grandezas que não dependem da distância

Leia mais

13 as Olimpíadas Nacionais de Astronomia

13 as Olimpíadas Nacionais de Astronomia 13 as Olimpíadas Nacionais de Astronomia Prova da eliminatória regional 18 de abril de 2018 15:00 (Continente e Madeira) / 14:00 (Açores) Duração máxima 120 minutos Notas: Leia atentamente todas as questões.

Leia mais

7 as Olimpíadas Nacionais de Astronomia

7 as Olimpíadas Nacionais de Astronomia 7 as Olimpíadas Nacionais de Astronomia Prova da Eliminatória Regional 13 de Abril de 2012 15:00 (Portugal Continental e Madeira) 14:00 (Açores) Duração máxima 120 minutos Nota: Ler atentamente todas as

Leia mais

Unidades de Distância, Tempo e Massa

Unidades de Distância, Tempo e Massa Unidades de Distância, Tempo e Massa Para podermos comparar medidas em astrofísica precisamos estabelecer unidades que sirvam como padrão. Precisamos definir unidades de distância, de tempo e de massa

Leia mais

As Vidas dos Estrelas

As Vidas dos Estrelas As Vidas dos Estrelas Alexandre Costa, Beatriz García, Ricardo Moreno, Rosa M Ros International Astronomical Union Escola Secundária de Loulé, Portugal Universidad Tecnológica Nacional, Argentina Colegio

Leia mais

Radiação eletromagnética (II)

Radiação eletromagnética (II) Modelo atômico Átomo de Bohr Formação de linhas espectrais Linhas espectrais e composição química Alargamento de linhas Intensidade da radiação: brilho e luminosidade Magnitudes e fluxo Distância e paralaxe

Leia mais