Introdução à Física Estelar
|
|
|
- Maria Júlia Botelho de Vieira
- 9 Há anos
- Visualizações:
Transcrição
1 Introdução à Física Estelar 2. Classificação de Espectros Prof. Pieter Westera
2 Classificação Espectral de Estrelas As propriedades de estrelas variam por muitas ordens de magnitudes: - Massas de M a ~150 M - Raios de ~0.12 R (um pouco maior que Júpiter) a ~1700 R ( km ou quase 8 AU) - Temperaturas na superfície de 2000 K a 50'000 K - Luminosidades de ~10-5 L a ~106 L => Seria bom botar ordem para entendé-las.
3 Nos anos 1890 em Harvard, Pickering e Fleming classificaram os espectros de estrelas de A a Q de acordo com as intensidades e larguras das linhas de absorção de hidrogênio (a série de Balmer). Em 1901, Annie Jump Cannon colocou estas classes em uma ordem mais lógica, eliminou muitas, e subdividiu as que sobraram em subclasses decimais (i.e. A0 a A9): O B A F G K M virou uma sequência em temperatura. As estrelas no começo da sequência (O e B, as mais quentes) são, às vezes, chamadas early-type, "precoces", e as no final, late-type, "tardias", devido a uma teoria hoje desacreditada de que a sequência seria uma sequência evolutiva.
4 A sequência pode ser memorizada pela frase inglesa (e um pouco politicamente incorreta) Oh, Be A Fine Girl / Kiss Me. (Para quem prefere, o Girl pode ser substituido por Guy). Mais recentemente, adicionaram as classes L e T para estrelas muito "frias" (< 2500 K) e Anãs Marrons, além da M (pouco usadas). A frase mnemônica pode ser acrescentada por Less Talk. O Sol é tipo G2 neste esquema.
5
6 As limites em temperatura, massa, etc. podem variar, dependendo da fonte. *O Sol é tipo G2 neste esquema.
7 Por que as linhas de absorção de Balmer são as mais fortes para estrelas com temperatura ~9500 K (tipo A0)? Será que estas estrelas contêm mais hidrogênio nas suas atmosferas? Improvável. Todas as estrelas da amostra original, da vizinha solar, foram formadas de material similar, o montante de hidrogênio variando muito pouco entre as estrelas, e não há motivos, por que as estrelas de 9000 K teriam perdido menos hidrogênio que as de temperatura maior e as de temperatura menor.
8 O motivo é outro: As linhas de Balmer aparecem (em absorção), quando um elétron é excitado do nível n = 2 para um nível mais alto. => As linhas são fortes para estrelas que têm muitos átomos de hidrogênio no primeiro estado excitado nas suas atmosferas.
9 Lembrando (FeTerm) que as velocidades das partículas na atmosfera da estrela seguem a distribuição de Boltzmann., onde m = massa das pártículas k = constante de Boltzmann = J/K => velocidade mais provável (pico da distribuição): vmp = 2kT/m velocidade média quadrática (corresponde à energia cinética média): vrms = 3kT/m
10 Em consequência, quanto maior a temperatura, tanto maior a energia cinética das partículas, tanto mais partículas estarão em estados excitados devido a choques entre as partículas. Pra razão entre os números de átomos em estados a e b vale a Equação de Boltzmann: Nb/Na = e -Eb/kT / e -Ea/kT = e(ea-eb)/kt ou, se os níveis a e b são degenerados ga vezes resp. gb vezes:
11 No nosso exemplo do hidrogênio: Quanto maior T, tanto mais átomos se encontram no estado excitado n = 2 em relação ao número de átomos no estado fundamental (n = 1). Numericamente (=> física quântica): g1 = 2, g2 = 8, E1 = E0 = ev, E2 = E1/22 = ev Razão no. de átomos no estado n = 2 : no. de átomos nos dois estados, N2/(N1+N2) => A intensidade das linhas de Balmer deve aumentar com a temperatura. Por que ela aumenta só até T 9500 K?
12 Por que, para temperaturas muito altas (> K), a maior parte do hidrogênio é ionizado. Para estimar a fração dos átomos em estado ionizado, precisamos calcular as funções de partição Z para os estados inicial e final da ionização (no nosso caso, H neutro = H I e H+ = H II): A função de partição é basicamente a soma ponderada do número de estados possíveis do átomo ou íon.
13 Usando as funções de partição antes e depois da ionização, Zi e Zi+1, a razão dos números de átomos nos estados i+1 e i é (χi = energia de ionização a partir do estado fundamental) chamada equação de Saha. A parte Zi+1/Zi e-χi/kt é análogo à equação de Boltzmann, e ne é a densidade de elétrons livres. O fator 2 no numerador também tem a ver com os elétrons livres (com seus dois estados de spin), assim como o fator (2πmekT/h2)3/2.
14 De certa forma, é lógico, a densidade de elétrons livres aparecer na equação (no denominador), já que elétrons livres dificultam a ionização, resp. facilitam a re-combinação. Às vezes se usa a pressão Pe dos elétrons livres em lugar da densidade destes (Já que, pela lei dos gases perfeitos, Pe = nekt):
15 No nosso exemplo do hidrogênio (H I e H II) temos: - χi = 13.6 ev - Existe apenas um estado de H II, o próton isolado => ZII = 1 - Para H neutro, nas temperaturas aqui tratadas os estados excitados entram com peso e-(ej-e1)/kt praticamente nulo, o estado fundamental com peso e-(ej-e1)/kt = 1 (já que Ej = E1), e tem dois estados fundamentais, correspondendo às duas orientações do spin do elétron => ZI 2 1 = 2
16 Supondo para simplificar Pe = 20 N m-2 (na verdade deveríamos usar ne = nh II, mas o valor é razoável), a equação de Saha revela que, a partir de ~9600 K, a maioria dos átomos de H são ionizados. O gráfico também mostra que a faixa de transição entre H neutro e H ionizado é bastante estreita, implicando em zonas de ionização parcial bastante finas nas atmosferas das estrelas.
17 Combinando as equações de Boltzmann e Saha Pico em ~9900 K, próximo ao valor observado. Discrepâncias com esta teoria simples vêm dos fatos - que a atmosfera não é H puro (há um átomo de He para cada 10 átomos de H, e elementos mais pesados), elevando ne => A temperatura de ionização aumenta - que as distribuição de Boltzmann e equações de Boltzmann e Saha são válidas apenas para atmosferas em equilíbrio termodinâmico (=> mais pra frente), o que pode não ser o caso.
18 Em resumo: Para temperaturas muito baixas, os átomos de hidrogênio não estão com n = 2, ou seja, aptos para causarem linhas de Balmer, por estarem no estado fundamental, e para temperaturas muito altas, eles não estão com n = 2 por estarem ionizados. Entre os dois, em T = 9900 K há um máximo de átomos de H com n = 2.
19 Para o Sol, com T = 5777 K, achamos que dos átomos de H estão no estado n = 2, podendo, portanto, causar linhas de Balmer em absorção. Fazendo o mesmo cálculo para a linha do cálcio ionizado Ca II K, linha a partir do estado fundamental deste íon (E2-E1 = 3.12 ev, χi = 6.11 ev, ZI = 1.32, ZII = 2.30) mostra, que 1 em cada 919 átomos de cálcio não está ionizado, que 1 em cada 265 íons não está no estado fundamental e, portanto, que dos átomos de Ca estão disponíveis para causar a linha. Há ( * )-1 = 395 mais íons de Ca II com n = 1 que átomos de H com n = 2. Isto explica, por que esta linha é mais forte que as de Balmer no espectro do Sol, apesar de que cálcio é ~ vezes menos abundante na atmosfera do Sol.
20 =>!! As intensidades das linhas espectrais não refletem simplesmente as abundâncias dos elementos. Estas influenciam também, mas outros fatores como seção de choque pra absorção de fótons e temperatura têm uma influencia muito maior!! Intensidades de algumas linhas espectrais em função da temperatura / tipo espectral
21 O Diagrama de Hertzsprung-Russell O Diagrama HertzsprungRussell (HR) é uma ferramenta muito usada na área da evolução estelar. Conhecendo as temperatura de superfície e luminosidade de uma estrela, podemos posicioná-la no diagrama. => cada ponto representa uma estrela. Às vezes, se usa as classes Diagrama HR das estrelas na vizinhança solar espectrais O B A F G K M para rotular o eixo x, já que estas são correlacionadas com a temperatura.
22 O Diagrama de Hertzsprung-Russell Porém, temperatura e luminosidade de uma estrela não são diretamente observáveis. Como conseguir o diagrama Hertzsprung-Russell de um determinada conjunto de estrelas (a vizinhança solar, um aglomerado estelar,...), então? - A magnitude absoluta em alguma banda, p. e. MV, é uma medida para a luminosidade (se teria que aplicar a correção bolométrica, mas esta normalmente é pequena). - Uma cor, p. e. B V é uma medida da temperatura. => Medir as magnitudes das estrelas em duas bandas, p. e. mb e mv, e determinar o módulo de distância, m M, por exemplo por paralaxe (a triangulação usando a órbita da Terra como base, funciona apenas para estrelas na vizinhança solar) => MV = mv (m M), B V = mb mv
23 O Diagrama de Hertzsprung-Russell Assim se cria o Diagrama Cor-Magnitude (CMD), também chamado Diagrama HertzsprungRussell Observacional, que, então, é uma tradução do diagrama HR para grandezas observacionais, e pode ser traduzido de volta calibrando as relações MV => L e B V => T usando estrelas de luminosidades e Diagrama cor-magnitude das estrelas na vizinhança solar temperaturas conhecidas.
24 O Diagrama de Hertzsprung-Russell => CMD da vizinhança solar Diagrama HR da vizinhança solar
25 O Diagrama de Hertzsprung-Russell Na prática, é comum trabalhar diretamente no diagrama cormagnitude para comparar dados empíricos com modelos. Em lugar de tentar traduzir magnitudes e cores em luminosidades e temperaturas, pode-se transformar as luminosidades e temperaturas dos modelos em magnitudes e cores teóricas, combinando os modelos estelares com modelos que prevêem os espectros de estrelas com dada luminosidade e temperatura. => Modelos espectrais Modelos evolutivos de estrelas magnitudes e cores previstas pelos modelos
26 O Diagrama de Hertzsprung-Russell Voltando ao diagrama HR teórico: A posição de uma estrela no diagrama HR também nos dá o seu tamanho/raio, já que pela Lei de Stefan-Boltzmann L/A = σt 4 (σ = W/m2K4) e A = 4πR2 => R = L/4πσ T -2 No canto superior-direito, as estrelas têm o maior tamanho. => R = const. para L prop. T 4
27 O Diagrama de Hertzsprung-Russell Classes de luminosidade de Morgan-Keenan Morgan e Keenan se deram conta que podem existir estrelas com tipos espectrais iguais, mas luminosidades respectivamente tamanhos diferentes. => Eles definiram as classes de luminosidades de I (supergigantes) a V (anãs) como adições aos tipos espectrais. O B A F G K M
28 O Diagrama de Hertzsprung-Russell Classes de luminosidade de Morgan-Keenan Mais tarde a classe I foi subdividida em Ia e Ib e foram adicionadas as classes Ia-O, VI (ou sd) e D (ou VII). Exemplos: o Sol é uma estrela anã e pode ser designada uma estrela G2 V, a gigante Betelgeuse é uma M2 Ia O B A F G K M
29 O Diagrama de Hertzsprung-Russell Classes de luminosidade de Morgan-Keenan Ia-O: supergigantes extremamente luminosos ou hipergigantes Ia: supergigantes luminosas Ib: supergigantes menos luminosas II: gigantes brilhantes III: gigantes normais IV: subgigantes V: anãs (sequência principal) VI ou sd: sub-anãs D (ou VII): Anãs Brancas
30 O Diagrama de Hertzsprung-Russell Montando o diagrama para as estrelas da vizinhança solar, vemos que elas se agrupam em ramos. E como interpretar isto? Os ramos poderiam ser sequências evolutivas, ou corresponder a estrelas no mesmo estágio, mas com alguma outra propriedade variando ao longo do ramo.
31 Introdução à Física Estelar FIM PRA HOJE
CLASSIFICAÇÃO ESTELAR:
CLASSIFICAÇÃO ESTELAR: TÓPICO 2 AS ESTRELAS NÃO SÃO IGUAIS Jane C. Gregório Hetem 2.1 Espectros Estelares 2.2 A ordem dos tipos espectrais 2.3 Comparando as diversas categorias de estrelas 2.4 O tamanho
Estrelas (I) Gastão B. Lima Neto Vera Jatenco-Pereiro IAG/USP
Estrelas mais próximas e mais brilhantes Movimento das estrelas Tamanho das estrelas Temperatura Cores e espectros: classificação espectral Abundância química Diagrama H-R Estrelas (I) Gastão B. Lima Neto
As propriedades físicas das estrelas: Distância Luminosidade Tamanho Massa. Estrelas são classificadas segundo sua:
As propriedades físicas das estrelas: Distância Luminosidade Tamanho Massa Estrelas são classificadas segundo sua: Cor Temperatura superficial Características espectrais Distâncias dentro do sistema solar
A espectroscopia e as estrelas
Elementos de Astronomia A espectroscopia e as estrelas Rogemar A. Riffel Radiação de Corpo Negro Corpo negro: corpo que absorve toda a radiação que incide sobre ele, sem refletir nada; -Toda a radiação
As propriedades físicas das estrelas: Distâncias Luminosidades Tamanhos Massas. Classificação de estrelas segundo sua:
As propriedades físicas das estrelas: Distâncias Luminosidades Tamanhos Massas Classificação de estrelas segundo sua: Cor Temperatura Características espectrais ESTIMATIVAS DE DISTÂNCIA Método simples
Estrelas: espectros, luminosidades e massas
Estrelas: espectros, luminosidades e massas J. L. G. Sobrinho [email protected] Grupo de Astronomia da Universidade da Madeira http://www3.uma.pt/investigacao/astro/grupo/index.htm Janeiro de 2013 Resumo
Fundamentos de Astronomia e Astrofísica. Estrelas. Rogério Riffel.
Fundamentos de Astronomia e Astrofísica Estrelas Rogério Riffel http://astro.if.ufrgs.br Propriedades Estrelas são esferas autogravitantes de gás ionizado, cuja fonte de energia é a transmutação de elementos
Introdução à Astrofísica. Espectroscopia. Rogemar A. Riffel
Introdução à Astrofísica Espectroscopia Rogemar A. Riffel Radiação de Corpo Negro Corpo negro: corpo que absorve toda a radiação que incide sobre ele, sem refletir nada; - Toda a radiação emitida pelo
Espectros estelares. Roberto Ortiz EACH/USP
Espectros estelares Roberto Ortiz EACH/USP O tamanho das estrelas Vimos que a luminosidade de uma estrela relaciona se com o seu raio e sua temperatura: L * /L s = (R * /R s ) 2 (T * /5780) 4 onde a temperatura
Capítulo 10 ESTRELAS: CLASSIFICAÇÃO ESPECTRAL
112 Capítulo 10 ESTRELAS: CLASSIFICAÇÃO ESPECTRAL Características Observacionais Cor e Temperatura Classificação Espectral Seqüência de tipos espectrais O Diagrama H-R A Seqüência Principal Populações
Capítulo 10 ESTRELAS: CLASSIFICAÇÃO ESPECTRAL
Capítulo 10 ESTRELAS: CLASSIFICAÇÃO ESPECTRAL Cor e Temperatura Tipos Espectrais O Diagrama H-R Classes de Luminosidade Aglomerados estelares Bibliografia: Zeilik & Smith, 1987 Introductory Astronomy &
Universidade da Madeira. Estrelas. Grupo de Astronomia. Laurindo Sobrinho. 05 janeiro 2015 NASA
Estrelas Laurindo Sobrinho 05 janeiro 2015 NASA 1 Luminosidade e brilho aparente Luminosidade (L) - energia emitida por uma estrela por unidade de tempo. Brilho aparente (b) fluxo de energia por unidade
Astrofísica Geral. Tema 10: As estrelas
ma 10: As estrelas Outline 1 Medidas diretas fundamentais 2 Medidas indiretas fundamentais 3 Classificação espectral 4 Bibliografia 2 / 30 Outline 1 Medidas diretas fundamentais 2 Medidas indiretas fundamentais
Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Astronomia. Fundamentos de Astronomia e Astrofísica: FIS2001
Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Astronomia Fundamentos de Astronomia e Astrofísica: FIS2001 Prof. Rogério Riffel 1 Extinção Atmosférica A atmosfera é praticamente
Astrofísica Geral. Tema 10: As estrelas. Alexandre Zabot
Astrofísica Geral Tema 10: As estrelas Alexandre Zabot Índice Medidas diretas fundamentais Medidas indiretas fundamentais Classificação espectral Bibliografia 1 31 Índice Medidas diretas fundamentais Medidas
Aula 8 - Classes de Luminosidade e Diagrama HR.
Aula 8 - Classes de Luminosidade e Diagrama HR. Área 2, Aula 8 Alexei Machado Müller, Maria de Fátima Oliveira Saraiva & Kepler de Oliveira Filho Diagrama HR comparando a luminosidade das estrelas com
Lista Deduza a relação m = M 2.5 log 10 F 10, ), onde M é a magnitude absoluta do Sol, e F 10, o fluxo da radiação solar em 10 pc de distância.
Introdução à Física Estelar - 2016.3 Lista 1 1. Sirius se encontra a 2.64 parsecs da Terra. (a) Determine o módulo de distância de Sirius. (b) Na verdade, Sirius é uma estrela dupla, cuja componente mais
FSC1057: Introdução à Astrofísica. Estrelas. Rogemar A. Riffel
FSC1057: Introdução à Astrofísica Estrelas Rogemar A. Riffel Propriedades Estrelas são esferas autogravitantes de gás ionizado, cuja fonte de energia é a transformação de elementos através de reações nucleares,
Aula 18 - Classes de luminosidade e Diagrama HR.
Aula 18 - Classes de luminosidade e Diagrama HR. Maria de Fátima Oliveira Saraiva, Kepler de Oliveira Filho & Alexei Machado Müller O diagrama HR é uma das ferramentas mais importantes da Astrofísica Estelar;
Noções de Astronomia e Cosmologia
Noções de Astronomia e Cosmologia 8., Estrelas Variáveis, Aglomerados Estelares Prof. Pieter Westera [email protected] http://professor.ufabc.edu.br/~pieter.westera/astro.html Estrelas Lembrete
Astronomia Galáctica Semestre:
Astronomia Galáctica Semestre: 2016.1 Sergio Scarano Jr 26/07/2016 A Estrutura e Composição da Estrela Sol Temperatura Superficial 5.770 K Região de convecção Coroa Regiões Claras Subida de gás quente
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 3 MODELOS ATÔMICOS E A VELHA TEORIA QUÂNTICA Edição de junho de 2014 CAPÍTULO 3 MODELOS ATÔMICOS E A VELHA TEORIA QUÂNTICA ÍNDICE 3.1-
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 4 MODELOS ATÔMICOS Primeira Edição junho de 2005 CAPÍTULO 4 MODELOS ATÔMICOS ÍNDICE 4.1- Modelo de Thomson 4.2- Modelo de Rutherford 4.2.1-
AGA 210 Introdução à Astronomia Lista de Exercícios 06 Estrelas
AGA 210 Introdução à Astronomia Lista de Exercícios 06 Estrelas Questão 01: Qual(is) informação(ões) podemos extrair das observações astrométricas? Qual a relevância em se estimar a posição das estrelas
Para perceber porque é que os corpos quentes radiam energia é necessário perceber o que é o calor.
A informação do BI dos Corpos Celestes Para perceber porque é que os corpos quentes radiam energia é necessário perceber o que é o calor. Para perceber o espectro estelar (que é mais complicado que o do
Departamento de Astronomia - Instituto de Física Universidade Federal do Rio Grande do Sul
Departamento de Astronomia - Instituto de Física Universidade Federal do Rio Grande do Sul FIS2010 - FUNDAMENTOS DE ASTRONOMIA E ASTROFÍSICA A 2.a PROVA 2012/1 - TURMA C - Profa. Maria de Fátima Saraiva
Energia certa significa: quando a energia do fóton corresponde à diferença nos níveis de energia entre as duas órbitas permitidas do átomo de H.
ESPECTROSCOPIA II A relação da luz com as linhas espectrais O que acontece se átomos de H forem bombardeados por fótons? R. Existem três possibilidades: 1) a maioria dos fótons passa sem nenhuma interação
EVOLUÇÃO ESTELAR I. Estrelas de baixa massa 0,25 M M 2,5 M. Estrelas de massa intermediária 2,5 M < M 12 M
EVOLUÇÃO ESTELAR I Estrelas de baixa massa 0,25 M M 2,5 M Estrelas de massa intermediária 2,5 M < M 12 M Maior parte da vida das estrelas sequência principal (SP) Característica da fase de sequência principal
Estrelas: Distâncias, Magnitudes e Classificaçao Espectral (Caps. 8 e 10)
Estrelas: Distâncias, Magnitudes e Classificaçao Espectral (Caps. 8 e 10) AGA215 Elisabete M. de Gouveia Dal Pino Astronomy: A Beginner s Guide to the Universe, E. Chaisson & S. McMillan (Caps. 11, 13
Curso de Introdução à Astronomia e Astrofísica ESTRELAS AULA 1. Flavio D Amico estas aulas são de autoria de Hugo Vicente Capelato
Curso de Introdução à Astronomia e Astrofísica ESTRELAS AULA 1 Flavio D Amico [email protected] estas aulas são de autoria de Hugo Vicente Capelato A Constelação de Orion e as 3 Marias super Betelgeuse:
Tópicos Especiais em Física. Vídeo-aula 5: astrofísica estelar 09/07/2011
Tópicos Especiais em Física Vídeo-aula 5: astrofísica estelar 09/07/2011 Propriedades fundamentais das estrelas Formação estelar Evolução estelar Estágios finais das estrelas Estrelas: o que são? Enormes
Capítulo 5 Distribuição de Energia e Linhas Espectrais
Capítulo 5 Distribuição de Energia e Linhas Espectrais As transições atômicas individuais (das quais falaremos mais adiante) são responsáveis pela produção de linhas espectrais. O alargamento das linhas
EVOLUÇÃO ESTELAR I. Estrelas de baixa massa 0,25 M M 2,5 M
EVOLUÇÃO ESTELAR I Estrelas de baixa massa 0,25 M M 2,5 M Maior parte da vida das estrelas sequência principal (SP) Característica da fase de sequência principal : 1) Fusão do H transformando-se em He
INTRODUÇÃO À ASTROFÍSICA
Introdução à Astrofísica INTRODUÇÃO À ASTROFÍSICA LIÇÃO 21 O EQUILÍBRIO HIDROSTÁTICO Lição 20 O Equilíbrio Hidrostático As estrelas se formam a partir de regiões densas e frias, chamadas de nebulosas.
INFORMAÇÃO. Distribuição da radiação* ESPECTRO
ESPECTROSCOPIA INFORMAÇÃO Distribuição da radiação* ESPECTRO Através do espectro de um objeto astronômico pode-se conhecer informações sobre temperatura, pressão, densidade, composição química, estrutura,
Capítulo 5 Astrofísica estelar: o diagrama HR
UFABC NHZ3043 NOÇÕES DE ASTRONOMIA E COSMOLOGIA Curso 2016.2 Prof. Germán Lugones Capítulo 5 Astrofísica estelar: o diagrama HR Classificação espectral Espectros estelares foram obtidos para muitas estrelas
Alex C. Carciofi. Aula 8. A Escada Cósmica: escalas de distância em astronomia
Alex C. Carciofi Aula 8 A Escada Cósmica: escalas de distância em astronomia Revisão Propriedades Fundamentais de uma Estrela: determinação Temperatura: - cores ou tipo espectral Composição química - Análise
Fundamentos de Física Capítulo 39 Mais Ondas de Matéria Questões Múltipla escolha cap. 39 Fundamentos de Física Halliday Resnick Walker 1) Qual das
Fundamentos de Física Capítulo 39 Mais Ondas de Matéria Questões Múltipla escolha cap. 39 Fundamentos de Física Halliday Resnick Walker 1) Qual das frases abaixo descreve corretamente a menor energia possível
Introdução à Astronomia AGA 210 Prova 4 03/11/2016
Introdução à Astronomia AGA 210 Prova 4 03/11/2016 Nome: Identificação USP: I- Meio Interestelar (MIS) 1- O tipo mais complexo de molécula encontrado no MIS e o mais comum, são: (0,5) a) Aminoácido, H
Escola Básica e Secundária Gonçalves Zarco Física e Química A, 10º ano Ano lectivo 2007 / 2008
Escola Básica e Secundária Gonçalves Zarco Física e Química A, 0º ano Ano lectivo 2007 / 2008 Teste de Avaliação Sumativo Nome: N.º aluno: Turma: Classificação : Professor: GRUPO I. Texto I Uma explosão
Cap 9. Atmosferas Estelares. 9.5 O perfil das linhas espectrais. Aga0293 Jorge Melendez
Cap 9. Atmosferas Estelares 9.5 O perfil das linhas espectrais Aga0293 Jorge Melendez Fluxo Espectros estelares B9 III Linha Linhas de absorção da serie de Balmer do hidrogênio em estrela B9 III (ou seja,
Evidências de formação estelar recente nebulosas de emissão excitadas pela radiação de estrelas jovens e quentes
Evidências de formação estelar recente nebulosas de emissão excitadas pela radiação de estrelas jovens e quentes Formação de estrelas na nossa Galáxia ainda continua existindo Sítios de formação estelar
Cap. 10. Interiores Estelares. Fontes de energia. Transporte de energia: radiação. AGA 0293, Astro?sica Estelar Jorge Meléndez
Cap. 10. Interiores Estelares. Fontes de energia. Transporte de energia: radiação AGA 0293, Astro?sica Estelar Jorge Meléndez Equação de Conservação de Massa dm r = ρ dv dr Equilíbrio hidrostálco P+dP
Estrelas Parte II. Victoria Rodrigues 24/05/14
Estrelas Parte II Victoria Rodrigues [email protected] 24/05/14 Sumário Parte I O que são? Nascimento estelar; Evolução Parte II Evolução: Estrelas maiores que o Sol; Supernovas; Estrelas
O Sol e as demais Estrelas
Fundamentos de Astronomia e Astrofísica O Sol e as demais Estrelas Rogério Riffel http://astro.if.ufrgs.br/esol/esol.htm Dados gerais Maior objeto do sistema solar Diâmetro (da fotosfera): 1 391 980 km
O espaço interestelar é o local onde estrelas nascem e onde partes delas retornam quando morrem.
O espaço interestelar é o local onde estrelas nascem e onde partes delas retornam quando morrem. Meio interestelar: gás e poeira, distribuído de modo extremamente tênue através das regiões escuras entre
Exame Unificado das Pós-graduações em Física EUF
Exame Unificado das Pós-graduações em Física EUF º Semestre/01 Parte 1 4/04/01 Instruções: NÃO ESCREVA O SEU NOME NA PROVA. Ela deverá ser identificada apenas através do código (EUFxxx). Esta prova constitui
ESTRUTURA ELETRÔNICA DOS ÁTOMOS
ESTRUTURA ELETRÔNICA DOS ÁTOMOS 2 Natureza ondulatória da luz 3 Natureza ondulatória da luz 4 Natureza ondulatória da luz 5 Natureza ondulatória da luz 6 Energia quantizada e fótons Planck quantum h é
Luz & Radiação. Roberto Ortiz EACH USP
Luz & Radiação Roberto Ortiz EACH USP A luz é uma onda eletromagnética A figura acima ilustra os campos elétrico (E) e magnético (B) que compõem a luz Eles são perpendiculares entre si e perpendiculares
SUGESTÕES DE EXERCÍCIOS PARA A SEGUNDA AVALIAÇÃO
FÍSICA IV PROF. DR. DURVAL RODRIGUES JUNIOR SUGESTÕES DE EXERCÍCIOS PARA A SEGUNDA AVALIAÇÃO Como na Biblioteca do Campus I e do Campus II temos bom número de cópias do Halliday e poucas do Serway, os
Introdução à Cosmologia
Introdução à Cosmologia 14. Evidências: A Radiação Cósmica de Fundo Prof. Pieter Westera [email protected] http://professor.ufabc.edu.br/~pieter.westera/cosmo.html Evidências Uma das Evidências
Estrelas norm ais e suas propriedades
Notas de aula Introdução à A stronom ia (AGA210) Estrelas norm ais e suas propriedades Ejnar H ertzprung H enry N. Russel Enos Picazzio Eles criaram uma das mais poderosas ferramentas da astronomia moderna:
INTRODUÇÃO À ASTROFÍSICA
Introdução à Astrofísica Lição 9 O Espectro da Luz INTRODUÇÃO À ASTROFÍSICA LIÇÃO 10 O ESPECTRO CONTÍNUO DA LUZ A medição do brilho das estrelas está diretamente ligada à medida de distância. A medida
MEIO INTERESTELAR. O espaço interestelar é o local onde estrelas nascem e onde elas retornam quando morrem.
MEIO INTERESTELAR O espaço interestelar é o local onde estrelas nascem e onde elas retornam quando morrem. Rica em gás e poeira e distribuída de modo tênue através das regiões escuras entre as estrelas,
6 as Olimpíadas Nacionais de Astronomia
6 as Olimpíadas Nacionais de Astronomia Prova da eliminatória regional 30 de Março de 2011 15:00 Duração máxima 120 minutos Nota: Ler atentamente todas as questões. Existe uma tabela com dados no final
Introdução. Carlos Alexandre Wuensche Processos Radiativos I
Introdução Carlos Alexandre Wuensche Processos Radiativos I 1 1 GERAÇÃO E EMISSÃO DE ENERGIA NAS ESTRELAS CONSIDERAÇÕES DE CARÁTER GERAL: ENERGIA E COMPOSIÇÃO ESPECTRAL determinadas a partir do estudo
Evolução Estelar I. Prof. Jorge Meléndez Departamento de Astronomia, IAG/USP. AGA 0205 Elementos de Astronomia 2013-B
Evolução Estelar I Prof. Jorge Meléndez Departamento de Astronomia, IAG/USP AGA 0205 Elementos de Astronomia 2013-B O que é uma estrela? É um corpo gasoso no interior do qual ocorrem reações de fusão nuclear
A Via LácteaMassa da Galáxia
Fundamentos de Astronomia e Astrofísica A Via LácteaMassa da Galáxia Tibério B. Vale http://astro.if.ufrgs.br Meio Interestelar O meio entre as estrelas não é completamente vazio. Tem gás: principalmente
Prof. Eslley Scatena Blumenau, 10 de Outubro de
Grupo de Astronomia e Laboratório de Investigações Ligadas ao Estudo do Universo Prof. Eslley Scatena Blumenau, 10 de Outubro de 2017. [email protected] http://galileu.blumenau.ufsc.br Determinação de
Física IV Escola Politécnica GABARITO DA P2 16 de outubro de 2012
Física IV - 4320402 Escola Politécnica - 2012 GABARITO DA P2 16 de outubro de 2012 Questão 1 Ondas longas de rádio, com comprimento de onda λ, de uma estação radioemissora E podem chegar a um receptor
Física Quântica. Aula 5: Princípio de Incerteza, Função de Onda. Pieter Westera
Física Quântica Aula 5: Princípio de Incerteza, Função de Onda Pieter Westera [email protected] http://professor.ufabc.edu.br/~pieter.westera/quantica.html Supondo que uma partícula/onda pode
