Reduções de Problemas Difíceis
|
|
|
- Helena da Silva Lencastre
- 9 Há anos
- Visualizações:
Transcrição
1 Reduções de Problemas Difíceis André Vignatti DINF- UFPR
2 Reduções de Problemas Difíceis Na figura abaixo, esquema das reduções que vamos (tentar) ver. Todos problemas NP CIRCUIT SAT SAT 3SAT INDEPENDENT SET 3D MATCHING VERTEX COVER CLIQUE ZOE SUBSET SUM ILP RUDRATA CYCLE TSP Como conseqüência, tais problemas são NP-Completos.
3 3SAT INDEPENDENT SET Todos problemas NP CIRCUIT SAT SAT 3SAT INDEPENDENT SET 3D MATCHING VERTEX COVER CLIQUE ZOE SUBSET SUM ILP RUDRATA CYCLE TSP
4 3SAT INDEPENDENT SET 3SAT Entrada: cláusulas com 3 literais. Por exemplo: (x y z)(x y z)(x y z)(x y), Objetivo: encontrar uma atribuição verdadeira INDEPENDENT SET Entrada: grafo G e um número g Objetivo: encontrar g vértices não adjacentes Devemos relacionar lógica booleana com grafos!
5 3SAT INDEPENDENT SET Antes, fazer um pré-processamento para retirar cláusulas com somente um literal. (PODE? PORQUÊ?) Dada instância I do 3SAT, criamos instância (G, g) do INDEPENDENT SET como segue: G tem um triângulo para cada cláusula (ou uma aresta, se a cláusula tem dois literais), com vértices nomeados pelos literais da cláusula G tem arestas adicionais entre vértices que representam literais opostos O objetivo g é definido como o número de cláusulas. Claramente, esta construção leva tempo polinomial.
6 3SAT INDEPENDENT SET Exemplo de transformação da instância do 3SAT para o INDEPENDENT SET: (x y z)(x y z)(x y z)(x y),
7 3SAT INDEPENDENT SET Não podemos esquecer: Também precisamos reconstruir a solução da primeira instância numa solução para a segunda. (COMO FAZER?) A redução funciona? Como sempre, há duas coisas para mostrar:
8 1. Se há um INDEPENDENT SET S de g vértices em G: Vamos mostrar que existe (e é obtido em tempo polinomial) uma atribuição verdade a I. Para uma variável x, S não pode conter ambos vértices x e x, porque estão conectados por uma aresta. Se S contém x, atribuir TRUE a x, Se S contém x, atribuir FALSE a x. Como S tem g vértices, então deve ter um vértice para cada cláusula. Então a atribuição de TRUE e FALSE descrita acima satisfaz todas as cláusulas.
9 2. Se não há um INDEPENDENT SET S de g vértices em G: Devemos mostrar então que a fórmula booleana I é insatisfatível. Vamos provar a contrapositiva: Se I for satisfatível, então G tem um INDEPENDENT SET de tamanho g. Mas isso é fácil: em cada cláusula, escolha um literal cujo a atribuição seja TRUE (deve haver pelo menos um), e adicione o vértice correspondente a S. Você percebe por que S é um conjunto independente? (Exercício)
10 SAT 3SAT Todos problemas NP CIRCUIT SAT SAT 3SAT INDEPENDENT SET 3D MATCHING VERTEX COVER CLIQUE ZOE SUBSET SUM ILP RUDRATA CYCLE TSP
11 SAT 3SAT Este é um tipo interessante e comum de redução, de um problema a um caso especial de si mesmo. Queremos mostrar que o problema continua a ser difícil mesmo se suas entradas são restritas de alguma forma. Tais reduções modificam a instância de modo a livrar-se da característica proibida (cláusulas com 4 literais), mantendo a instância essencialmente a mesma.
12 SAT 3SAT Redução: Dada uma instância do SAT, analise cada cláusula: Se a cláusula tiver 3 literais, use a mesma cláusula para o 3SAT. Se a cláusula tiver > 3 literais, ou seja, (a 1 a 2... a k ) troque por isso: (a 1 a 2 y 1 )(y 1 a 3 y 2 )(y 2 a 4 y 3 )... (y k 3 a k 1 a k ) A conversão é claramente de tempo polinomial.
13 A redução funciona? Como sempre, 2 coisas para mostrar: 1. Se há uma atribuição verdadeira para o 3SAT: Então devemos mostrar que há uma atribuição verdadeira para o SAT. Vamos olhar somente as cláusulas transformadas (as outras não foram modificadas): Se (a 1 a 2 y 1 )(y 1 a 3 y 2 )(y 2 a 4 y 3 )... (y k 3 a k 1 a k ) estão todas satisfeitas, então pelo menos um dos literais a 1,..., a k deve ser TRUE: C.c. (se a 1,..., a k são todos FALSE) y 1 deve ser TRUE, obrigando y 2 ser TRUE, e assim por diante, até obrigar a última cláusula ser FALSE. Como pelo menos um dos literais a 1,..., a k é TRUE, então (a 1 a 2... a k ) também é TRUE.
14 2. Se não há uma atribuição verdadeira para o 3SAT: Então devemos mostrar que não há atribuição verdadeira para o SAT. Vamos provar a contrapositiva: Se há atribuição verdadeira para o SAT, então há atribuição verdadeira para o 3SAT. Se (a 1 a 2... a k ) é TRUE, então algum a i deve ser TRUE. Faça y 1,..., y i 2 ser TRUE, e os outros y s serem FALSE. Isso garante que a cláusula transformada seja TRUE.
15 3SAT mais restrito Na verdade, 3SAT permanece difícil mesmo sob a restrição de que nenhuma variável apareça em mais de três cláusulas. Redução: Suponhamos que na instância 3SAT, a variável x aparece em k > 3 cláusulas. Substitua a sua primeira aparição por x 1, sua segunda aparição por x 2 e assim por diante. Por último, acrescente as cláusulas: (x 1 x 2 )(x 2 x 3 )... (x k x 1 ) Faça o mesmo para cada variável que aparece mais de três vezes. Exercício: Mostrar que a redução acima funciona.
16 INDEPENDENT SET VERTEX-COVER Todos problemas NP CIRCUIT SAT SAT 3SAT INDEPENDENT SET 3D MATCHING VERTEX COVER CLIQUE ZOE SUBSET SUM ILP RUDRATA CYCLE TSP
17 INDEPENDENT SET VERTEX-COVER Algumas reduções dependem da criatividade ao relacionar dois problemas totalmente diferentes. Outras simplesmente se atentam ao fato de que um problema é um simples disfarce de outro. Teorema: Um conjunto de nós S é um VERTEX-COVER de G = (V, E) se e somente se V S é um INDEPENDENT SET de G.
18 INDEPENDENT SET VERTEX-COVER Redução: Dada uma instância (G, g) do INDEPENDENT SET, basta procurar um VERTEX COVER de G com V g nós. Se existe VERTEX-COVER S, então pegue os nós V S para o INDEPENDENT SET. A redução funciona? Como sempre, há duas coisas para mostrar:
19 1. Se existe VERTEX-COVER com V g nós: Devemos mostrar que existe um INDEPENDENT SET com g nós. Os nós que não são do VERTEX-COVER não estão conectados por arestas se estivessem conectados, algum dos vértices deveriam estar no VERTEX-COVER Há g nós que não são do VERTEX-COVER, portanto formando um INDEPENDENT SET de tamanho g.
20 2. Se não existe VERTEX-COVER com V g nós: Devemos mostrar então que não existe INDEPENDENT SET com g nós. Vamos provar a contrapositiva: (Exercício)
21 INDEPENDENT SET CLIQUE Todos problemas NP CIRCUIT SAT SAT 3SAT INDEPENDENT SET 3D MATCHING VERTEX COVER CLIQUE ZOE SUBSET SUM ILP RUDRATA CYCLE TSP
22 INDEPENDENT SET CLIQUE INDEPENDENT SET e CLIQUE também são fáceis de reduzir um ao outro. Defina o complemento de um grafo G = (V, E) como sendo G = (V, E), onde E contém precisamente as arestas que não estão em E. Teorema: Um conjunto de nós S é um INDEPENDENT SET de G se e somente se S é um CLIQUE de G.
23 INDEPENDENT SET CLIQUE Redução Transforme a instância (G, g) do INDEPENDENT SET na instância (G, g) de CLIQUE. (Exercício: mostre que a redução é válida (use os dois passos, como fizemos nas reduções anteriores))
Redução de Cook-Levin e Considerações Finais
Redução de Cook-Levin e Considerações Finais André Vignatti DINF- UFPR Fechando o Ciclo de Reduções Nós reduzimos o SAT para diversos problemas de busca, como mostra a figura: Todos problemas NP CIRCUIT
Problemas NP-completos
Problemas NP-completos Marina Andretta ICMC-USP 15 de setembro de 2015 Marina Andretta (ICMC-USP) sme0216 e 5826 15 de setembro de 2015 1 / 26 Sat é NP-completo Já vimos que o primeiro problema que se
P, NP e NP-Completo. André Vignatti DINF- UFPR
P, NP e NP-Completo André Vignatti DINF- UFPR Problemas Difíceis, Problemas Fáceis O mundo está cheio de problemas de busca. Alguns podem ser resolvidos eficientemente, outros parecem ser muito difíceis.
Análise e Projeto de Algoritmos
Análise e Projeto de Algoritmos 2018.2 Classes P e NP P São os problemas que podem ser resolvidos em tempo polinomial por uma Máquina de Turing Determinística. NP São os problemas que podem ser decididos
Redução polinomial. Permite comparar o grau de complexidade de problemas diferentes.
Redução polinomial Permite comparar o grau de complexidade de problemas diferentes. Uma redução de um problema Π a um problema Π é um algoritmo ALG que resolve Π usando uma subrotina hipotética ALG que
Análise de Algoritmos. Slides de Paulo Feofiloff
Análise de Algoritmos Slides de Paulo Feofiloff [com erros do coelho e agora também da cris] Algoritmos p. 1 Redução polinomial Permite comparar o grau de complexidade de problemas diferentes. Uma redução
Coloração. Carolina Moraes e Lucas Glir
Coloração Carolina Moraes e Lucas Glir Introdução Os primeiros questionamentos sobre o assunto surgiram por volta de 1800, com o problema das 4 cores. Os primeiros resultados sobre coloração de grafos
Como saber se um problema está em NP e não está em P?
? P = NP Uma das principais questões em aberto é se P = NP, isto é, se de fato tudo o que pode ser feito em tempo polinomial por uma MTND poderia ser feito por uma MTD em tempo polinomial, talvez com um
Paulo Guilherme Inça. 7 de dezembro de 2016
Coloração de grafos é NP-Difícil Paulo Guilherme Inça 7 de dezembro de 2016 Sumário 1 Introdução 1 2 O Problema da Coloração de Grafos 2 3 3-Coloração é NP-Completo 3 4 Generalizações e Restrições 6 5
Melhores momentos AULA 24. Algoritmos p.906/953
Melhores momentos AULA 24 Algoritmos p.906/953 Problemas polinomiais Analise de um algoritmo em um determinado modelo de computação estima o seu consumo de tempo e quantidade de espaço como uma função
Busca e Decisão. Problemas de Otimização. Kakuro. P e NP. Pode-se resolver o Kakuro somente resolvendo problemas de decisão?
Busca e Decisão Universidade Federal de Ouro Preto Departamento de Computação P e NP Decisão: Respostas SIM ou NÃO Eiste uma clique de tamanho k no grafo? Eiste um preenchimento da mochila com lucro z?
5COP096 TeoriadaComputação
Sylvio 1 Barbon Jr [email protected] 5COP096 TeoriadaComputação Aula 13 Prof. Dr. Sylvio Barbon Junior Sumário - Problemas NP-Completo Algoritmos Não-deterministas; Classes NP-Completo e NP-Dificil; Teorema
Projeto e Análise de Algoritmos NP Completude Parte 2. Prof. Humberto Brandão
Projeto e Análise de Algoritmos NP Completude Parte 2 Prof. Humberto Brandão [email protected] Universidade Federal de Alfenas Departamento de Ciências Exatas versão da aula: 0.2 Última aula
Lógica para Computação Segundo Semestre, Aula 10: SAT. Prof. Ricardo Dutra da Silva. ( p (q ( q r))) ( p r) ( p q) ( p q r) p r.
Lógica para Computação Segundo Semestre, 2014 Aula 10: SAT DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. SAT é o problema de decidir se existe uma valoração que satisfaça uma fórmula proposicional.
Teoria da Complexidade Computacional
Teoria da Complexidade Computacional 25 de novembro de 2011 Enquanto a teoria de análise de algoritmos estuda a análise de complexidade de algoritmos, a teoria da complexidade estuda a classificação de
2.6 O ALGORITMO DPLL. Preliminares
Preliminares 2.6 O ALGORITMO DPLL Newton José Vieira 05 de agosto de 2007 Base da grande maioria dos algoritmos para o problema da satisfabilidade. Leva esse nome graças a Davis, Putnam, Logemann e Loveland,
Agenda. Complexidade Não Determinista A classe NP. A classe Co-NP Reduções de tempo polinomial. Definida por. Exemplos em:
A Classe NP Agenda Complexidade Não Determinista A classe NP Definida por aceitação em tempo polinomial por NTM s instâncias positivas com provas de tamanho polinomial aceitação por verificadores em tempo
Projeto e Análise de Algoritmos NP Completude. Prof. Humberto Brandão
Projeto e Análise de Algoritmos NP Completude Prof. Humberto Brandão [email protected] Universidade Federal de Alfenas versão da aula: 0.4 Introdução Problemas intratáveis ou difíceis são comuns
Algoritmos de aproximação - Problema do caixeiro viajante
Algoritmos de aproximação - Problema do caixeiro viajante Marina Andretta ICMC-USP 30 de setembro de 2015 Baseado no livro Uma introdução sucinta a Algoritmos de Aproximação, de M. H. Carvalho, M. R. Cerioli,
O Problema da 3- Coloração de Grafos
Otimização Combinatória O Problema da - Coloração de Grafos Guilherme Zanardo Borduchi Hugo Armando Gualdron Colmenares Tiago Moreira Trocoli da Cunha Prof.ª Marina Andretta Introdução ao Problema Problema
A resposta para este problema envolve a partição do conjunto de arestas de tal forma que arestas adjacentes não pertençam a um mesmo conjunto.
7 - Coloração de Arestas e Emparelhamentos Considere o seguinte problema: Problema - Ao final do ano acadêmico, cada estudante deve fazer um exame oral com seus professores. Suponha que existam 4 estudantes
Algoritmos de aproximação - Problema de cobertura por conjuntos
Algoritmos de aproximação - Problema de cobertura por conjuntos Marina Andretta ICMC-USP 22 de setembro de 205 Baseado no livro Uma introdução sucinta a Algoritmos de Aproximação, de M. H. Carvalho, M.
Teoria da Computação. Exercícios. 1 Máquinas de Registos Ilimitados 2013/2014
Teoria da Computação 2013/2014 Exercícios 1 Máquinas de Registos Ilimitados 1. Construa programas URM sem módulos que calculem as seguintes funções (a) quatro(x) = 4 (b) sg(x) retorna 0 se x > 0, 1 no
André Vignatti DINF- UFPR
Notação Assintótica: O André Vignatti DINF- UFPR Notação Assintótica Vamos expressar complexidade através de funções em variáveis que descrevam o tamanho de instâncias do problema. Exemplos: Problemas
Fábio Protti - UFF Loana T. Nogueira - UFF Sulamita Klein UFRJ
Fábio Protti - UFF Loana T. Nogueira - UFF Sulamita Klein UFRJ Suponha que temos um grupo de pessoas (funcionário de uma empresa) que serão submetidos a um treinamento. Queremos identificar os grupos de
Teorema 1 - Todo corte de arestas de um grafo conexo G contém pelo menos uma aresta em comum com qualquer árvore geradora de G. Exemplo 2 - Seja T:
12 - Conjuntos de Corte o estudarmos árvores geradoras, nós estávamos interessados em um tipo especial de subgrafo de um grafo conexo: um subgrafo que mantivesse todos os vértices do grafo interligados.
Complexidade de Algoritmos. Edson Prestes
Edson Prestes A classe P consiste nos problemas que podem ser resolvidos em tempo Polinomial (Problemas tratáveis) A classe NP consiste nos problemas que podem ser verificados em tempo polinomial (Problemas
Grafo planar: Definição
Grafo planar Considere o problema de conectar três casas a cada uma de três infraestruturas (gás, água, energia) como mostrado na figura abaixo. É possível fazer essas ligações sem que elas se cruzem?
INTRATABILIDADE e NP-COMPLETUDE
INTRATABILIDADE e NP-COMPLETUDE Sandro Santos Andrade Doutorado Multiinstitucional em Ciência da Computação UFBA/UNIFACS/UEFS Junho/2008 Grafos e Análise de Algoritmos Introdução Para alguns problemas
Teoria dos Grafos. Conjuntos de Corte e Conectividade
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] Conjuntos de
PCC104 - Projeto e Análise de Algoritmos
PCC104 - Projeto e Análise de Algoritmos Marco Antonio M. Carvalho Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto 1 de novembro de 2018 Marco Antonio
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 5: Grafos Conexos. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 5: Grafos Conexos Preparado a partir do texto: Rangel, Socorro. Teoria do Grafos,
Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.1. Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.
Agenda Análise e Técnicas de Algoritmos Jorge Figueiredo Conceitos básicos Classes de de Complexidade P NP Redução Problemas NPC NP-Completude Introdução Existem alguns problemas computacionais que são
Jogos de Anti-Coordenação e Colorações Estáveis em Grafos. Renato Lui Geh NUSP:
Jogos de Anti-Coordenação e Colorações Estáveis em Grafos Renato Lui Geh NUSP:8536030 Introdução Jogos de coordenação: Classe de jogos em que jogadores jogam cooperativamente. Jogador i fazer a mesma ação
Grafos e Algoritmos Raimundo Macêdo. Teorema de Hall (Prova por Indução)
Grafos e Algoritmos Raimundo Macêdo Teorema de Hall (Prova por Indução) Teorema de Hall (teorema do casamento, 1935) Seja G uma grafo bipartide V = X U Y, então G contém um emparelhamento que satura todos
TEORIA DE COMPLEXIDADE
UFMG/ICEX/DCC PROJETO E ANÁLISE DE ALGORITMOS TEORIA DE COMPLEXIDADE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO 1 O SEMESTRE DE 2008 Antonio Alfredo Ferreira Loureiro [email protected] http://www.dcc.ufmg.br/~loureiro
Complexidade computacional
Complexidade computacional Marina Andretta ICMC-USP 15 de setembro de 2015 Baseado no livro Uma introdução sucinta a Algoritmos de Aproximação, de M. H. Carvalho, M. R. Cerioli, R. Dahab, P. Feofiloff,
Complexidade de Algoritmos. Edson Prestes
Edson Prestes O limite superior de complexidade de um problema refere-se ao melhor algoritmo que o resolve. nlog 2 n é um limite superior para o problema de classificação. O limite inferior de um problema
Complexidade de Algoritmos
Complexidade de Algoritmos Classes de Complexidades de Problemas Prof. Osvaldo Luiz de Oliveira Estas anotações devem ser complementadas por apontamentos em aula. Tempo polinomial Um algoritmo A, com entrada
Teoria dos Grafos. Cobertura, Coloração de Arestas, Emparelhamento
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] Cobertura, Coloração
Introdução à classe de problemas NP- Completos
Introdução à classe de problemas NP- Completos R. Rossetti, A.P. Rocha, A. Pereira, P.B. Silva, T. Fernandes FEUP, MIEIC, CAL, 2010/2011 1 Introdução Considerações Práticas Em alguns casos práticos, alguns
ANÁLISE DE ALGORITMOS (INF 1721)
PUC-Rio Departamento de Informática Prof. Marcus Vinicius S. Poggi de Aragão (3WA) Horário: 2as. e 4as. 9-11hs (3WA) 3 de dezembro de 2016 Período: 2016.2 ANÁLISE DE ALGORITMOS (INF 1721) 3 a Lista de
A resposta para este problema envolve a partição do conjunto de arestas de tal forma que arestas adjacentes não pertençam a um mesmo conjunto.
6 - oloração de restas e Emparelhamentos onsidere o seguinte problema: Problema - o final do ano acadêmico, cada estudante deve fazer um exame oral com seus professores. Suponha que existam 4 estudantes
Em vários problemas, é preciso particionar os vértices de um grafo em conjunto de vértices independentes.
Thiago Jabur Bittar Em vários problemas, é preciso particionar os vértices de um grafo em conjunto de vértices independentes. Problema: Queremos dividir um grupo em subgrupos que contêm somente elementos
Árvores Árvores Geradoras de Custo Mínimo 0/16
Conteúdo 1 Árvores 2 Árvores Geradoras de Custo Mínimo Árvores Árvores Geradoras de Custo Mínimo 0/16 Árvores Definição (Grafo Acíclico) Um grafo acíclico é um grafo que não contém ciclos. Árvores Árvores
Laços Fortes e Fracos
Laços Fortes e Fracos Redes Sociais e Econômicas Prof. André Vignatti Motivação Estudo nos anos 60: pessoas que mudaram recentemente de emprego Como elas encontraram o novo emprego? Resposta: através de
Lógica para Computação Primeiro Semestre, Aula 10: Resolução. Prof. Ricardo Dutra da Silva
Lógica para Computação Primeiro Semestre, 2015 DAINF-UTFPR Aula 10: Resolução Prof. Ricardo Dutra da Silva A resolução é um método de inferência em que: as fórmulas devem estar na Forma Clausal; deduções
Gabriel Coutinho DCC035 - Pesquisa Operacional Lista 6
Lista 6 Exercício. O objetivo deste exercício é modelar o problema de emparelhamento em um grafo bipartido como um problema de fluxo, e verificar que o Teorema de Konig é essencialmente o Teorema de Fluxo
Teoria dos Grafos. Coloração de Vértices
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] Coloração de
Teoria dos Grafos. Edson Prestes
Edson Prestes Complemento de Grafos Mostre que para qualquer Grafo G com 6 pontos, G ou possui um triângulo Considere um vértice v de V(G). Sem perda de generalidade, podemos assumir v é adjacente a outros
Redutibilidade. Mário S. Alvim Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02)
Redutibilidade Mário S. Alvim ([email protected]) Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Mário S. Alvim ([email protected]) Redutibilidade DCC-UFMG (2018/02) 1 / 46 Redutibilidade:
Ciclos hamiltonianos e o problema do caixeiro viajante
Ciclos hamiltonianos e o problema do caixeiro viajante Algoritmos em Grafos Marco A L Barbosa cba Este trabalho está licenciado com uma Licença Creative Commons - Atribuição-CompartilhaIgual 4.0 Internacional.
Introdução à Teoria da Computação Exercícios
Introdução à Teoria da Computação Exercícios Livro: Michel Sipser, Introdução à Teoria da Computação 2ª Ed. Capítulo 07 Obs: Exercícios 7.7 e 7.20 estão apresentados em versões simplificadas. NP Dicas
Lista de Exercícios 9 (Extra): Soluções Grafos
UFMG/ICEx/DCC DCC111 Matemática Discreta Lista de Exercícios 9 (Extra): Soluções Grafos Ciências Exatas & Engenharias 1 o Semestre de 018 Para cada uma das seguintes armações, diga se é verdadeira ou falsa
Teoria dos Grafos. Árvores
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] Preparado a partir
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 14: Conjuntos de Corte e Conectividade Preparado a partir do texto: Rangel,
Casamento em GB. Casamento em Grafos. Notas. Teoria dos Grafos - BCC204, Casamento em Grafos. Notas. Descrição
Teoria dos Grafos - BCC20 Casamento em Grafos Haroldo Gambini Santos Universidade Federal de Ouro Preto - UFOP 16 de maio de 2011 1 / 18 Descrição Casamento em Grafos Em grafos, um Casamento (Matching
Grafos: caminhos (matriz adjacência)
Grafos: caminhos (matriz adjacência) Algoritmos e Estruturas de Dados 2 Graça Nunes 1 O problema do menor caminho Um motorista deseja encontrar o caminho mais curto possível entre duas cidades do Brasil
TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS
TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS O conjunto dos números reais,, que possui as seguintes propriedades:, possui uma relação menor ou igual, denotada por O1: Propriedade Reflexiva:
x y Grafo Euleriano Figura 1
Grafo Euleriano Um caminho simples ou um circuito simples é dito euleriano se ele contém todas as arestas de um grafo. Um grafo que contém um circuito euleriano é um grafo euleriano. Um grafo que não contém
Introdução à Teoria dos Grafos. Isomorfismo
Isomorfismo Um isomorfismo entre dois grafos G e H é uma bijeção f : V (G) V (H) tal que dois vértices v e w são adjacentes em G, se e somente se, f (v) e f (w) são adjacentes em H. Os grafos G e H são
Combinando relações. Exemplo Seja A = {1, 2, 3} e B = {1, 2, 3, 4}. As relações
1 / 11 Combinando relações Combinando relações Exemplo Seja A = {1, 2, 3} e B = {1, 2, 3, 4}. As relações R 1 = {(1, 1), (2, 2), (3, 3)} e R 2 = {(1, 1), (1, 2), (1, 3), (1, 4)} podem ser combinadas para
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 16: Grafos Planares. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 16: Grafos Planares Preparado a partir do texto: Rangel, Socorro. Teoria do
15 - Coloração Considere cada um dos grafos abaixo:
15 - Coloração Considere cada um dos grafos abaixo: a) Quantas cores são necessárias para colorir os vértices de um grafo de maneira que dois vértices adjacentes não recebam a mesma cor? b) Qual é o número
Teoria dos Grafos. Grafos Planares
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] Grafos Planares
Trabalho final de Teoria dos Grafos: O problema de coloração de vértices de grafos. Alessander Botti Benevides.
Trabalho final de Teoria dos Grafos: O problema de coloração de vértices de grafos Alessander Botti Benevides [email protected] 4 de julho de 2011 Sumário 1 2 Coloração de mapas Problemas de agendamento
BCC204 - Teoria dos Grafos
BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal
Teoria dos Grafos. Edson Prestes
Edson Prestes Existem três companhias que devem abastecer com gás, eletricidade e água três prédios diferentes através de tubulações subterrâneas. Estas tubulações podem estar à mesma profundidade? Isto
Fundamentos de Matemática. Lista de Exercícios Humberto José Bortolossi Argumentos e Exercícios de Revisão
GMA DEPARTAMENTO DE MATEMÁTICA APLICADA Fundamentos de Matemática Lista de Exercícios Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 04 Argumentos e Exercícios de Revisão [01] (Exercício
