O TRANSISTOR COMO CHAVE ELETRÔNICA E FONTE DE CORRENTE
|
|
|
- Luciana Domingos Ramalho
- 9 Há anos
- Visualizações:
Transcrição
1 O TRANSISTOR COMO CHAVE ELETRÔNICA E FONTE DE CORRENTE OBJETIVOS: Analisar o comportamento de um transistor no corte e na saturação e sua utilização como chave eletrônica. I - Transistor como chave eletrônica: INTRODUÇÃO TEÓRICA Um transistor pode operar como chave eletrônica, bastando para tal polarizá-lo de forma conveniente: corte ou saturação. Quando um transistor está saturado opera como um curto (chave fechada) entre o coletor e o emissor de forma que V CE 0V e quando está no corte, opera como um circuito aberto (chave aberta) entre o coletor e o emissor, de forma que V CE V CC. No ponto de saturação (chave fechada) a corrente de base é alta (I B SAT ) e no ponto de corte (chave aberta) a corrente de base é zero. carga. Veja na figura a seguir um transistor operando como chave eletrônica e sua respectiva reta de Para obter o extremo superior da reta de carga (corrente I C ) devemos supor um curto entre coletor e emissor (V CE = 0), de forma que toda a tensão de alimentação se fixe no resistor de coletor. Teremos então: I C = V CC / R C Para obter o extremo inferior da reta de carga, devemos supor os terminais de coletor e emissor abertos. Teremos então: V CE = V CC Prof. Edgar Zuim Página 1
2 Fica então caracterizado que o transistor opera apenas em um dos extremos da reta de carga: corte ou saturação. Podemos então, tomando como exemplo o circuito mostrado anteriormente, calcular a corrente de base e a corrente de coletor. Aplicando LKT para calcular a corrente de base, temos: onde: I B R B +V BE - V BB = 0 OBS: V BE típica é da ordem de 0,7V Supondo V BB = 4V e R B = 680kΩ, a corrente de base (I B ) será: I B = (4V - 0,7V) / 680kΩ = 4,85µA Para calcular a corrente de coletor podemos aplicar LKT na malha V CC, V RC e V CE, onde teremos: V CC - V RC - V CE = 0 V RC = V CC - V CE I C = V RC / R C ou I C = (V CC - V RC ) / R C No chaveamento eletrônico com transistores, devemos levar em conta dois tipos de saturação: fraca e forte. Na saturação fraca, a corrente de base é suficiente para levar o transistor à saturação. Tal procedimento porém não é aconselhável visto que pode haver uma variação de β CC e na própria corrente de base de saturação (I B SAT ). Utiliza-se normalmente a saturação forte, que assegura a condição de saturação para todos os valores de β CC. Uma regra prática é considerar a corrente de base como 1/10 da corrente de saturação de coletor. Desta forma, supondo que I C SAT = 12mA, então será fixada uma corrente de base de 1,2mA (relação 10:1). Tomemos como exemplo o circuito abaixo, onde verificaremos se o mesmo está operando como chave eletrônica. Prof. Edgar Zuim Página 2
3 a) Considerando uma tensão de base igual a zero (chave no ponto B), a corrente de base será igual a zero (condição de corte) e a corrente de coletor será igual a zero. Nestas condições o transistor operará como uma chave aberta e a tensão no resistor de coletor será zero, pois V RC = R C I C ; logo, a tensão entre coletor e emissor será igual a 12V pois V CE = V CC - V RC. Quando a tensão de base for 6V, a corrente de base ficará: I B = (V BB - V BE ) / R B = ( 6-0,7) / = 0,964mA b) Imaginemos um curto entre o coletor e emissor (chave na posição A). Neste caso, a tensão entre coletor e emissor assume idealmente 0V e a corrente de saturação do coletor pode ser assim calculada: V RC = V CC - V CE = 12-0 = 12V I C SAT = V RC / R C = 12 / = 10mA Comparando a corrente de base com a corrente de coletor, verifica-se que esta última é cerca de 10 vezes maior do que a corrente de base, o que assegura a saturação para uma vasta gama de β CC. II - Transistor como fonte de corrente: Consideremos o circuito a seguir: Prof. Edgar Zuim Página 3
4 A diferença básica em relação ao circuito anterior (transistor operando como chave) é a inclusão de um resistor do emissor à terra. Nestas condições o transistor opera como fonte de corrente uma vez que, a corrente de coletor mantém-se constante para uma vasta gama de β CC e variações de V CC. Nestas condições, presume-se o circuito operando em qualquer ponto da reta de carga (ponto Q), dependendo da corrente necessária. A figura abaixo ilustra a reta de carga, onde a corrente I C é calculada da seguinte forma seguindo o procedimento anterior, porém, com a inclusão do resistor de emissor. I C = V CC / (R C + R E ) Podemos então calcular a corrente de emissor. Aplicando LKT, temos: V BB - V BE - I E R E = 0 I E = (V BB - V BE ) / R E I E = (2-0,7) / 270 = 4,81mA Assim, para uma vasta gama de β CC teremos I E I C. Prof. Edgar Zuim Página 4
5 PARTE PRÁTICA MATERIAIS NECESSÁRIOS 1 - Fonte de alimentação simétrica 0-20V 1 - Multímetro analógico ou digital 1 - Módulo de ensaios ELO-1 CHAVEAMENTO ELETRÔNICO 1 - Monte o circuito abaixo: 2 - Calcule os valores de I B, I C e V CE e anote na tabela 1; OBS: para efeito de cálculo da corrente I C, considere a queda de tensão nos extremos do led = 1,6V. 3 - Meça e anote os valores listados na tabela 1 para os três transistores (BC337, BC547 e BC548). TABELA 1 TRANSISTOR I B I C V CE I B I C V CE BC337 BC547 BC Analise os valores calculados e medidos na tabela 1 e apresente suas conclusões: Prof. Edgar Zuim Página 5
6 VERIFICAÇÃO DE DEFEITOS - TRANSISTOR COMO CHAVE: 5 - Suponha que o resistor de base esteja aberto. Calcule a anote na tabela 2 a tensão no coletor; 6 - Repita o procedimento do item 5 para cada defeito listado na tabela 2; 7 - Simule cada um dos defeitos, proceda as medidas e anote na tabela 2. OBS: para simular os defeitos utilize o transistor BC547 PROJETO: TABELA 2 : Verificação de defeitos DEFEITO V C calculada V C medida Resistor de 10kΩ aberto Resistor de 1kΩ aberto Coletor-emissor em curto Coletor-emissor aberto 8 - Determine o valor de um resistor de coletor (valor comercial), baseando-se no circuito desta experiência, para que a corrente no coletor seja próxima de 32mA. 9 - Monte o circuito com o resistor que você calculou (utilize o transistor BC547) e complete a tabela 3. TABELA 3: Projeto R C calculado: TRANSISTOR V E I C V E I C BC Monte o circuito abaixo: FONTE DE CORRENTE Prof. Edgar Zuim Página 6
7 11 - Calcule V E, I C e V CE e anote na tabela 4; OBS: considere a queda de tensão no led = 1,6V 12 - Meça e anote os valores listados na tabela 4 para os três transistores (BC337, BC547 e BC548); TABELA 4 TRANSISTOR V E I C V CE V E I C V CE BC337 BC547 BC Analise os valores calculados e medidos na tabela 4 e apresente suas conclusões: VERIFICAÇÃO DE DEFEITOS - FONTE DE CORRENTE: 14 - Suponha que o resistor de emissor esteja aberto. Calcule a anote os valores de tensão listados na tabela 5; 15 - Simule cada um dos defeitos, proceda as medidas e anote na tabela 5. OBS: para simular os defeitos utilize o transistor BC547 PROJETO: TABELA 5: Verificação de defeitos DEFEITO V C V E V C V E Resistor de 220Ω aberto Coletor-emissor em curto Coletor-emissor aberto 16 - Determine o valor de um resistor de emissor (valor comercial), baseando-se no circuito desta experiência, para que a corrente no coletor seja próxima de 32mA Monte o circuito com o resistor que você calculou (utilize o transistor BC547) e complete a tabela 6. Prof. Edgar Zuim Página 7
8 TABELA 6: Projeto R E calculado: TRANSISTOR V E I C V E I C BC547 QUESTÕES: 1 - Quando um transistor está em saturação forte, os terminais entre coletor e emissor parecem estar aproximadamente: a) abertos b) em curto c) na região ativa d) em corte 2 - Em um transistor usado como fonte de corrente, o emissor está amarrado a uma queda de tensão entre base e emissor (V BE ) abaixo da: a) tensão de base b) tensão de emissor c) tensão de coletor d) tensão entre base e coletor 3 - Podemos afirmar que um transistor operando como chave em saturação forte, a corrente I C varia muito em função de pequenas variações de β CC. a) certo b) errado 4 - Um transistor como fonte de corrente opera: a) exclusivamente na região de corte b) exclusivamente na região de saturação c) somente na região linear d) na região de corte, saturação ou linear 5 - Um transistor como chave eletrônica opera virtualmente na região de corte e na região de saturação. a) certo b) errado 6 - Projete e esquematize uma chave eletrônica com transistor PNP, para acionar uma carga de 60mA. Escolha através das especificações de fabricantes (Data Book) o transistor adequado para esta operação (apresente os cálculos). Prof. Edgar Zuim Página 8
9 Prof. Edgar Zuim Página 9
AMPLIFICADOR BASE COMUM
AMPLIFICADOR BASE COMUM OBJETIVOS: Analisar as características e o funcionamento de um amplificador na configuração base comum. INTRODUÇÃO TEÓRICA O amplificador base comum (B.C.) caracteriza-se por possuir
AMPLIFICADOR COLETOR COMUM OU SEGUIDOR DE EMISSOR
AMPLIFICADOR COLETOR COMUM OU SEGUIDOR DE EMISSOR OBJETIVOS: Estudar o funcionamento de um transistor na configuração coletor comum ou seguidor de emissor; analisar a defasagem entre os sinais de entrada
DIODO ZENER Conceitos de Regulação de Tensão, Análise da Curva do Diodo Zener
DIODO ZENER Conceitos de Regulação de Tensão, Análise da Curva do Diodo Zener OBJETIVOS: Analisar o funcionamento de um diodo zener; entender o conceito de regulação de tensão. INTRODUÇÃO TEÓRICA O diodo
OBJETIVOS: Entender como funciona um transistor, através de seus dois parâmetros: o Alfa (α) e o Beta (β). INTRODUÇÃO TEÓRICA
ALFA E BETA OBJETIVOS: Entender como funciona um transistor, através de seus dois parâmetros: o Alfa (α) e o Beta (β). INTRODUÇÃO TEÓRICA A maioria dos circuitos elétricos opera com sinais elétricos, que
TRANSISTOR DE UNIJUNÇÃO (UJT)
TRANSISTOR DE UNIJUNÇÃO (UJT) OBJETIVOS: Verificar experimentalmente o funcionamento de um transistor de unijunção, através de um oscilador de relaxação. INTRODUÇÃO TEÓRICA O transistor de unijunção (UJT
Introdução Teórica aula 9: Transistores
Introdução Teórica aula 9: Transistores Definição de Transistores de Junção Bipolar Os Transistores de Junção Bipolar (TJB) são dispositivos não- lineares de 3 terminais construídos com base em duas junções
REGULADOR A DIODO ZENER
NAESTA00-3SA FUNDAMENTOS DE ELETRÔNICA LABORATÓRIO Prof. Rodrigo Reina Muñoz REGULADOR A DIODO ZENER. OBJETIVOS Após completar estas atividades de laboratório, você deverá ser capaz de observar o funcionamento
CAPÍTULO 5 TRANSISTORES BIPOLARES
CAPÍTULO 5 TRANSSTORES BPOLARES O transistor é um dispositivo semicondutor de três terminais, formado por três camadas consistindo de duas camadas de material tipo "n", de negativo, e uma de tipo "p",
BIPOLOS NÃO ÔHMICOS INTRODUÇÃO TEÓRICA
BIPOLOS NÃO ÔHMICOS OBJETIVOS: a) verificar o comportamento de bipolos que não obedecem a lei de ohm; b) construir experimentalmente as características de bipolos não ôhmicos; c) distinguir a diferença
AMPLIFICADOR PUSH-PULL CLASSE B
AMPLIFICADOR PUSH-PULL CLASSE B OBJETIVOS: a) analisar o funcionamento básico de um amplificador push-pull; b) entender e explicar o significado de push-pull; c) entender o significado de distorção por
1. TRANSISTOR DE JUNÇÃO BIPOLAR
1. TRANSSTOR DE JUNÇÃO POLAR Criado em 1947 (ell Telephone). Mais leve, menor, sem perdas por aquecimento, mais robusto e eficiente que a válvula. 6.1 Construção - Dispositivo semicondutor formado por
DIVISOR DE TENSÃO COM CARGA
DIVISOR DE TENSÃO COM CARGA OBJETIVOS: a) observar os efeitos causados por uma carga em um circuito divisor de tensão; b) aprender a calcular a distribuição de tensão na rede de resistores em um divisor
Laboratório 10 - Transistor BJT
Laboratório 10 - Transistor BJT Prof. Dr. Marcelo de Oliveira Rosa Prof. MSc. José da Silva Maia 10 de agosto de 2011 Resumo Nesta experiência lidaremos com o transistor BJT, com ensaios de polarização,
3 e I x = 0,2I E (considere inicialmente = ). (b) Recalcule I E (somente) para o caso do transistor apresentar = 100.
1) (271099) Para o circuito mostrado na figura abaixo, encontre as tensões indicadas no circuito para (a) = + (b) = 100 (c) = 10. 2) (271099) (a) Projete R C e R B para o circuito mostrado na figura abaixo
P U C E N G E N H A R I A LABORATÓRIO DE DCE 2 EXPERIÊNCIA 1: CURVAS CARACTERÍSTICAS DO TBJ E RETA DE CARGA. Identificação dos alunos:
P U C E N G E N H A R I A LABORATÓRIO DE DCE 2 EXPERIÊNCIA 1: CURVAS CARACTERÍSTICAS DO TBJ E RETA DE CARGA Identificação dos alunos: Data: 1. Turma: 2. 3. Professor: 4. 5. Conceito: I. OBJETIVOS - Levantamento
AMPLIFICADOR EMISSOR COMUM
AMPLIFICADOR EMISSOR COMUM OBJETIVOS: a) analisar o funcionamento de um amplificador na configuração emissor comum; b) analisar a relação de fase entre a entrada e a saída de um sinal. INTRODUÇÃO TEÓRICA
Estruturas Analógicas
Instituto Federal de Santa Catarina Departamento Acadêmico de Eletrônica Curso Técnico em Eletrônica Prof. André Luís Dalcastagnê Estruturas Analógicas I Transistor Bipolar Instituto Federal de Santa Catarina
CURVAS CARACTERÍSTICAS DO
P U C LABORATÓRIO DE DCE2 E N G E N H A R I A EXPERIÊNCIA 1: CURVAS CARACTERÍSTICAS DO TRANSISTOR BIPOLAR Identificação dos alunos: Data: 1. Turma: 2. 3. Professor: 4. Conceito: I. Objetivos Traçar as
AMPLIFICADORES OPERACIONAIS
AMPLIFICADORES OPERACIONAIS OBJETIVOS: Analisar o funcionamento de um amplificador operacional e seus principais parâmetros. INTRODUÇÃO TEÓRICA O nome amplificador operacional (também denominado op-amp)
AMPLIFICADOR CLASSE A
AMPLIFICADOR CLASSE A OBJETIVOS: Verificar experimentalmente o comportamento de um amplificador classe A transistorizado e analisar as formas de onda obtidas na saída em função de um sinal aplicado na
LABORATÓRIO DE DCE 2 EXPERIÊNCIA 2: CIRCUITOS DE POLARIZAÇÃO CC DO TRANSISTOR BIPOLAR. Identificação dos alunos:
P U C E N G E N H A R I A LABORATÓRIO DE DCE 2 EXPERIÊNCIA 2: CIRCUITOS DE POLARIZAÇÃO CC DO TRANSISTOR BIPOLAR Identificação dos alunos: Data: 1. Turma: 2. 3. Professor: 4. Conceito: I. Objetivos Familiarização
Roteiro-Relatório da Experiência N o 6 O TRANSISTOR BIPOLAR COMO CHAVE
UNVERSDADE DO ESTADO DE SANTA CATARNA - UDESC Roteiro-Relatório da Experiência N o 6 O TRANSSTOR BPOLAR COMO CHAVE 1. COMPONENTES DA EQUPE: ALUNOS 1 2 3 NOTA 4 Prof.: Celso José Faria de Araújo 5 Data:
Introdução teórica Aula 10: Amplificador Operacional
Introdução Introdução teórica Aula 10: Amplificador Operacional O amplificador operacional é um componente ativo usado na realização de operações aritméticas envolvendo sinais analógicos. Algumas das operações
Transistor. Este dispositivo de controle de corrente recebeu o nome de transistor.
Transistor Em 1947, John Bardeen e Walter Brattain, sob a supervisão de William Shockley no AT&T Bell Labs, demonstraram que uma corrente fluindo no sentido de polaridade direta sobre uma junção semicondutora
TRANSISTOR BIPOLAR DE JUNÇÃO (Unidade 5)
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA TÉCNICO EM ELETROMECÂNICA DISCIPLINA: ELETRÔNICA GERAL TRANSISTOR
Lista de Exercícios n o.3 +V CC = 5 V I C I E
Universidade Federal da Bahia - DEE Dispositivos Semicondutores ENG C41 Lista de Exercícios n o.3 1) Dimensione o resistor para que a porta inversora da Fig.1 funcione satisfatoriamente: + V I - I B =
1 a AULA PRÁTICA - ESTUDO DE BJT (NPN)
a AULA PÁTICA - ESTUDO DE BJT (NPN) ) Objetio: * Obter características de CC de um transistor bipolar de junção NPN. * Fazer um projeto de polarização. ) Trabalho Preparatório: A) Descrea sucintamente
C. CIRCUITOS PARA O ACIONAMENTO DE CARGAS
C. CIRCUITOS PARA O ACIONAMENTO DE CARGAS A corrente de saída que os circuitos digitais podem fornecer para dispositivos externos, geralmente é insuficiente para a maioria das cargas, tais como: relés,
1 ELETRÔNICA BÁSICA - LISTA DE EXERCÍCIOS. Coordenadoria de Eletrotécnica Eletrônica Básica Lista de Exercícios Transistor
1. Quais são as relações entre as dopagens e as dimensões no emissor, base e coletor de um transistor bipolar? 2. Para o funcionamento de um transistor, como devem estar polarizadas suas junções? 3. Quais
CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA DEPARTAMENTO DE ELETRÔNICA Eletrônica Básica e Projetos Eletrônicos
CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA DEPARTAMENTO DE ELETRÔNICA Eletrônica Básica e Projetos Eletrônicos AULA LAB 04 DIODOS ZENER, LEDS E TRANSISTORES BIPOLARES 1 INTRODUÇÃO Os componentes
Capítulo. Meta deste capítulo Relembrar os principais circuitos de polarização de transistores bipolares.
2 Polarização Capítulo de Transistores Meta deste capítulo Relembrar os principais circuitos de polarização de transistores bipolares objetivos Apresentar a importância dos circuitos de polarização; Analisar
Aula 23. Transistor de Junção Bipolar I
Aula 23 Transistor de Junção Bipolar I Transistores Transistor é um dispositivo semicondutor de 3 regiões semicondutoras, duas do tipo P e uma do tipo N ou duas do tipo N e uma do tipo P. O termo transistor
Segunda Lista-Aula - Disciplina : Eletrônica - PSI 2306
Segunda Lista-Aula - Disciplina : Eletrônica - PSI 2306 Assunto : Transcondutância e modelos -híbrido e T aplicados ao cálculo do ganho de tensão em amplificadores simples com TBJ s. Exercício 1 Sabendo-se
Transistores Bipolares de Junção (BJT) TE214 Fundamentos da Eletrônica Engenharia Elétrica
Transistores Bipolares de Junção (BJT) TE214 Fundamentos da Eletrônica Engenharia Elétrica O nome transistor vem da frase transferring an electrical signal across a resistor Plano de Aula Contextualização
PORTAS OR - PORTAS AND
PORTAS OR - PORTAS AND OBJETIVOS: a) Verificar experimentalmente como funciona uma porta OR; b) Verificar experimentalmente como funciona uma porta AND; c) Aprender como interpretar as especificações das
ASSOCIAÇÃO EDUCACIONAL DOM BOSCO CAPÍTULO 2 TRANSISTORES BIPOLARES (BJT)
1 CAPÍTULO 2 INTRODUÇÃO TRANSISTORES IPOLARES (JT) O transistor é o componente mais importante do mundo da eletrônica, serviu de base para impulsionar a explosão tecnológica, na área da eletrônica e da
Transistores Bipolares de Junção (TBJ) Parte II
AULA 08 Transistores Bipolares de Junção (TBJ) Parte Prof. Rodrigo Reina Muñoz [email protected] T1 2018 Conteúdo Aplicações do Transistor Polarização Ponto de Operação Análise por Reta de Carga
TRANSISTOR DE JUNÇÃO BIPOLAR - I Prof. Edgar Zuim
TANSISTO DE JUNÇÃO BIPOLA - I Prof. Edgar Zuim POLAIZAÇÃO COM UMA ÚNICA BATEIA: Temos visto até agora a polarização de transistores utilizando duas baterias, sendo uma para polarização da junção base-emissor
6.1 Relatório 1 74 CAPÍTULO 6. PRÉ-RELATÓRIOS E RELATÓRIOS. Nome 1: Assinatura 1: Nome 2: Assinatura 2: Nome 3: Assinatura 3: Turma:
74 CAPÍTULO 6. PRÉ-RELATÓRIOS E RELATÓRIOS 6.1 Relatório 1 Nome 1: Assinatura 1: Nome 2: Assinatura 2: Nome 3: Assinatura 3: Turma: Procedimento I: Lei de Ohm Q1 (0,5 ponto) Monte o circuito indicado na
EXPERIMENTO N O 03 TRANSISTOR BIPOLAR
XPIMNTO N O 03 TANSISTO IPOLA F4D240 - Laboratório de letrônica I OJTIO: MATIAIS: Instrumentos Osciloscópio duplo traço Multímetro digital Multímetro analógico Fonte de alimentação D PAT A: - Medir as
Relatório: Experimento 1
Relatório: Experimento 1 Nome 1: Assinatura 1: Nome 2: Assinatura 2: Nome 3: Assinatura 3: Nome 4: Assinatura 4: Turma: Procedimento I: Lei de Ohm Q1 (0,5 ponto) Monte o circuito indicado na Figura 1.11
Introdução 5. Configurações do transistor 6. Curvas características 7. Parâmetros das curvas características 8
Sumário Introdução 5 Configurações do transistor 6 Curvas características 7 Parâmetros das curvas características 8 Curvas características na configuração emissor comum 9 Curvas características de saída
Décima Lista-Aula - Disciplina : Eletrônica I - PSI 3321
Décima Lista-Aula - Disciplina : Eletrônica I - PSI 3321 Assunto : Transcondutância e modelos π-híbrido e T aplicados ao cálculo do ganho de tensão em amplificadores simples com TBJ s Exercício 1 Sabendo-se
DIVISOR DE TENSÃO SEM CARGA
DIVISOR DE TENSÃO SEM CARGA OBJETIVOS: a) estudar o funcionamento de circuitos resistivos divisores de tensão; b) estudar o funcionamento de circuitos divisores de tensão variável. INTRODUÇÃO TEÓRICA A
DOBRADORES DE TENSÃO
DOBRADORES DE TENSÃO 1 DOBRADORES DE TENSÃO OBJETIVOS: Entender o funcionamento dos dobradores de tensão; calcular as tensões na saída dos dobradores de tensão. INTRODUÇÃO TEÓRICA Um dobrador de tensão
Transistor de Junção Bipolar (TJB)
Transistor de Junção Bipolar (TJB) 25-abr-11 1 DEFINIÇÃO : O termo TRANSISTOR vem da expressão em inglês TRANSfer resistor (resistor de transferência), como era conhecido pelos seus inventores. É um componente
O DECIBEL INTRODUÇÃO TEÓRICA
O DECIBEL OBJETIVOS: a) conhecer o decibel como unidade de relação entre potências ou tensões elétricas; b) conhecer níveis de referência de tensão e potência elétricas através da unidade de medida decibel;
Análise CA de Amplificadores
I Anexo Análise CA de Amplificadores Meta deste capítulo Entender como realizar a análise de pequenos sinais (CA) de amplificadores. objetivos Entender o princípio de funcionamento de um amplificador Analisar
ELETRÔNICA II CAPÍTULO 2
ELETRÔNCA CAPÍTULO CRCUTOS DE POLARZAÇÃO DO TRANSSTOR O objetivo deste capítulo é fazer uma (breve) revisão sobre conceitos envolvendo a reta de carga (c.c.) do transistor e algumas das polarizações nas
AMPLIFICADOR DE PEQUENOS
P U C E N G E N H A R I A LABORATÓRIO DE DCE 2 EXPERIÊNCIA 6: AMPLIFICADOR DE PEQUENOS SINAIS COM TBJ Identificação dos alunos: Data: 1. Turma: 2. 3. Professor: 4. Conceito: I. Objetivos Familiarização
REVISÃO TRANSISTORES BIPOLARES. Prof. LOBATO
REVISÃO TRANSISTORES BIPOLARES Prof. LOBATO Evolução O transistor é um dispositivo semicondutor que tem como função principal amplificar um sinal elétrico, principalmente pequenos sinais, tais como: Sinal
Eletrônica Aula 06 CIN-UPPE
Eletrônica Aula 06 CIN-UPPE Amplificador básico (classe A)! Amplificador básico É um circuito eletrônico, baseado em um componente ativo, como o transistor ou a válvula, que tem como função amplificar
PONTE DE WHEATSTONE Teoria e laboratório
PONTE DE WHEATSTONE Teoria e laboratório OBJETIVOS: a) analisar o funcionamento de uma ponte de Wheatstone em equilíbrio; b) analisar o funcionamento de uma ponte de Wheatstone em desequilíbrio. INTRODUÇÃO
LABORATÓRIO DE ELETRÔNICA DIGITAL CONVERSOR DIGITAL-ANALÓGICO - MANUAL
LABORATÓRIO DE ELETRÔNICA DIGITAL CONVERSOR DIGITAL-ANALÓGICO - MANUAL Objetivos: 1. Analisar o funcionamento de Conversores DA tipo rede R-2R e de Resistores Ponderados. 2. Analisar a funcionalidade dos
GUIA DE LABORATÓRIO PARA AS AULAS PRÁTICAS DE ELETRÔNICA II
GUIA DE LABORATÓRIO PARA AS AULAS PRÁTICAS DE ELETRÔNICA II DEPARTAMENTO DE ENGENHARIA ELETRÔNICA E DE COMPUTAÇÃO ESCOLA POLITÉCNICA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Guia de Laboratório - Eletrônica
PORTAS NAND (NE) INTRODUÇÃO TEÓRICA
PORTAS NAND (NE) PORTAS NAND (NE) OBJETIVOS: a) Verificar experimentalmente o funcionamento de uma porta NAND; b) Utilizar uma porta NAND como inversor; c) Demonstrar que uma porta NAND é universal; d)
Universidade Federal de São João del-rei. Material Teórico de Suporte para as Práticas
Universidade Federal de São João del-rei Material Teórico de Suporte para as Práticas 1 Amplificador Operacional Um Amplificador Operacional, ou Amp Op, é um amplificador diferencial de ganho muito alto,
Eletrônica Aula 04 - transistor CIN-UPPE
Eletrônica Aula 04 - transistor CIN-UPPE Transistor O transistor é um dispositivo semicondutor que tem como função principal amplificar um sinal elétrico, principalmente pequenos sinais, tais como: Sinal
EXERCÍCIOS DE PREPARAÇÃO B1i EXERCÍCIO REFERENTE À AULA DE AMPLIFICADORES DIFERENCIAIS.
EXERCÍCIOS DE PREPARAÇÃO B1i Exercícios Preparação B1i EXERCÍCIO REFERENTE À AULA DE AMPLIFICADORES DIFERENCIAIS. Exercício Resolvido : Projetar a polarização de um amplificador diferencial, segundo os
29/10/2010. Vcc Vce ic Rc. Vcc Rc. ic Vce. Ganho DC dotransistor. Vcc Vce ic Rc. VBB Rb. ib Vbe. ic ib ib. Vcc Vce ic Rc. VBB Vbe.
b - base c coletor E - emissor 57 58 Vcc Rc. ic Vce 0 Vcc Rc. ic Vce Vcc Vce ic Rc Malha Base - Emissor Rb. ib Vbe 0 Rb. ib Vbe Vbe ib Rb H ic. ib Vbe 0,7 V p / transistor NPN Ganho DC dotransistor 59
LISTA DE EXERCÍCIOS TRANSISTORES BIPOLARES DE JUNÇÃO Parte 1
Campus Serra COORDENADORIA DE AUTOMAÇÂO INDUSTRIAL Disciplina: ELETRÔNICA BÁSICA Professores: Bene Régis Figueiredo Turma AN1 Vinícius Secchin de Melo Turma AM1 LISTA DE EXERCÍCIOS TRANSISTORES BIPOLARES
Aulas Revisão/Aplicações Diodos e Transistores 2
Aulas 24-25 Revisão/Aplicações Diodos e Transistores 2 Revisão - Junção PN Ao acoplar semicondutores extrínsecos do tipo P e do tipo N, criamos a junção PN, atribuída aos diodos. Imediatamente a esta "união"
2 Objetivos Verificação e análise das diversas características de amplificadores operacionais reais.
Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 6 1 Título Prática 6 Características dos Amplificadores Operacionais 2 Objetivos Verificação e análise das diversas características
Guias de Telecomunicações
Guias de Telecomunicações Wander Rodrigues CEFET MG 2005 Sumário Apresentação do Laboratório de Telecomunicações... 04 Circuitos ressonantes... 28 Circuitos osciladores de onda senoidal oscilador Hartley...
CEIFADORES E GRAMPEADORES
CEIFADORES E GRAMPEADORES Ceifadores e grampeadores são circuitos compostos por diodos para a obtenção de formas de ondas especiais, cada um deles, desempenhando uma função específica como sugere o nome.
Capítulo 2 Aplicações do Diodo
Capítulo 2 Aplicações do Diodo Prof. Eng. Leandro Aureliano da Silva Agenda Resistor Limitador de Corrente Análise por Reta de Carga Aproximações para o Diodo Configurações Série de Diodos com Entradas
V in (+) V in (-) V O
CAPÍTULO III INTRODUÇÃO AOS AMPLIFICADORES OPERACIONAIS Introdução aos OPAMPS I - Introdução : Os amplificadores operacionais são dispositivos aplicados à eletrônica analógica. É o dispositivo de maior
1. Introdução. Nesta experiência será estudado o funcionamento de um amplificador diferencial. Figura 1: Circuito do Amplificador Diferencial
1. Introdução Nesta experiência será estudado o funcionamento de um amplificador diferencial. 2. Projeto (a ser realizado ANTES da aula experimental) Características básicas dos semicondutores: Figura
UTILIZAÇÃO DO VOLTÍMETRO E DO AMPERÍMETRO
UTILIZAÇÃO DO VOLTÍMETRO E DO AMPERÍMETRO OBJETIVOS: Aprender a utilizar um voltímetro e um amperímetro para medida de tensão e corrente contínua. MEDIDA DE TENSÕES: INTRODUÇÃO TEÓRICA A medida de tensões
Capítulo 2 Transistores Bipolares
Capítulo 2 Transistores Bipolares Breve Histórico De 1904 a 1947: uso predominante de válvulas; Diodo à válvula inventado em 1904 por J. A. Fleming; 1906: Lee de Forest acrescenta terceiro elemento, a
Folha 5 Transístores bipolares.
Folha 5 Transístores bipolares. 1. Considere um transístor npn que possui uma queda de potencial base emissor de 0.76 V quando a corrente de colector é de 10 ma. Que corrente conduzirá com v BE = 0.70
Capítulo. Meta deste capítulo Entender o princípio de funcionamento de osciladores de deslocamento de fase.
5 Oscilador Capítulo de Deslocamento de Fase RC Meta deste capítulo Entender o princípio de funcionamento de osciladores de deslocamento de fase. objetivos Entender o princípio de funcionamento de um oscilador
Introdução 5. Polarização de base por corrente constante 6. Análise da malha da base 7 Determinação do resistor de base 8. Estabilidade térmica 10
Sumário ntrodução 5 Polarização de base por corrente constante 6 Análise da malha da base 7 Determinação do resistor de base 8 Estabilidade térmica 10 Fator de estabilidade 11 Estabilidade térmica com
Prof. Antonio Carlos Santos. Aula 7: Polarização de Transistores
IF-UFRJ Elementos de Eletrônica Analógica Prof. Antonio Carlos Santos Mestrado Profissional em Ensino de Física Aula 7: Polarização de Transistores Este material foi baseado em livros e manuais existentes
Escola Politécnica - USP
Escola Politécnica - USP Equipe: - Turma: PSI 2325 Laboratório de Eletrônica I Exp 7: Amplificadores Diferenciais - - Profs: - - Data de Realização do Experimento: Nota: Bancada: 2002 B 102 Laboratório
Curso: Ortoprotesia Disciplina: Electrotecnologia Ano lectivo: 2016/17 Guia de laboratório nº 2
Curso: Ortoprotesia Disciplina: Electrotecnologia Ano lectivo: 2016/17 Guia de laboratório nº 2 Construção de um circuito comparador com amplificadores operacionais Objectivo: Este guia laboratorial tem
TRANSISTORES. Regrinha simples - Quanto mais ou menos corrente colocar na base, mais ou menos corrente vai passar entre emissor-coletor.
TRANSISTOR Numa torneira, a quantidade de água que sai é controlada abrindo ou fechando o registro. Sendo assim com registro fechado, não passa corrente de água, e com registro aberto, passa o máximo possível
Análise de TJB para pequenos sinais Prof. Getulio Teruo Tateoki
Prof. Getulio Teruo Tateoki Constituição: -Um transístor bipolar (com polaridade NPN ou PNP) é constituído por duas junções PN (junção base-emissor e junção base-colector) de material semicondutor (silício
Experiência 04: Transistor Bipolar como chave e circuitos
Experiência 04: Transistor Bipolar como chave e circuitos de temporização Prof. Marcos Augusto Stemmer 17 de março de 2017 1 Diodo emissor de luz: LED O LED é um tipo especial de diodo que emite luz quando
Experimento: controle de velocidade de um motor DC
Experimento: controle de velocidade de um motor DC 0.1 Introdução Controle I Paulo Roberto Brero de Campos Neste experimento será realizado o controle de um sistema real que é composto de um motor CC e
DISCIPLINA CIRCUITOS ELETRÔNICOS. Módulo dois: Estudo dos reguladores de tensões de potência média. I C V CE I E
DISCIPLINA CIRCUITOS ELETRÔNICOS Módulo dois: Estudo dos reguladores de tensões de potência média. 1. Introdução: O regulador de tensão a transistor permite manipular uma maior potência de saída na carga.
ELETRÔNICA I. Apostila de Laboratório. Prof. Francisco Rubens M. Ribeiro
ELETRÔNICA I Apostila de Laboratório Prof. Francisco Rubens M. Ribeiro L E E UERJ 1996 Prática 01 - Diodo de Silício 1 - Objetivo: Levantamento da característica estática VxI do diodo de Si, com o auxílio
HD disco rígido CD drive de compact disc Cache memória cache RAM - memória principal UCP unidade central de processamento
CONHECMENTOS ESPECÍFCOS CONSDERE AS CONVENÇÕES UTLZADAS NA ELABORAÇÃO DAS QUESTÕES HD disco rígido CD drive de compact disc Cache memória cache RAM - memória principal UCP unidade central de processamento
2 Objetivos Verificação e análise das diversas características de amplificadores operacionais reais.
Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 6 1 Título Prática 11 Características dos Amplificadores Operacionais 2 Objetivos Verificação e análise das diversas características
3) Cite 2 exemplos de fontes de Alimentação em Corrente Continua e 2 exemplos em Corrente Alternada.
Lista de exercícios Disciplina: Eletricidade Aplicada Curso: Engenharia da Computação Turma: N30 1 -) Assinale a alternativa correta. Descreva o que é tensão elétrica. a - A diferença de potencial elétrico
Transistores Bipolares de Junção (BJT) Plano de Aula. Contextualização. Contextualização
Transistores Bipolares de Junção (BJT) O nome transistor vem da frase transferring an electrical signal across a resistor TE214 Fundamentos da Eletrônica Engenharia Elétrica Plano de Aula ontextualização
Curso Técnico em Eletroeletrônica Eletrônica Analógica II
Curso Técnico em Eletroeletrônica Eletrônica Analógica II Aula 05 Transistores BJT: Polarização Prof. Dra. Giovana Tripoloni Tangerino 2016 BJT POLARIZAÇÃO CC Transistor saturado: chave fechada (curto)
Polarização universal
Polarização universal Polarizar um circuito significa fixar o ponto de operação em corrente continua (ponto quiescente) na região onde desejamos que o amplificador opere. A fixação do ponto quiescente
Eletrônica Aula 06 CIN-UPPE
Eletrônica Aula 06 CIN-UPPE Amplificador básico Amplificador com transistor Exemplo: Análise Modelo CC Modelo CA V CC C 2 R L R G C 1 C E Análise CA Para se fazer a análise CA é necessário: Eliminar as
13. Electrónica transístores bipolares
13. Electrónica transístores 13.1. bipolares omponente activo saída com maior potência do que entrada O excesso de potência vem da fonte de alimentação ipolar = com duas polaridades 13.1 É constituído
Amplificador de áudio 50 watts
Amplificador de áudio 50 watts Projeto de um amplificador de áudio de 50 watts de baixo custo e ótimo desempenho. O presente projeto inclui o módulo de potência, módulo de fonte de alimentação e módulo
R1 R4 R1 I SA. V sa. V en -10V
ES238 Eletrônica Geral I 1ř semestre de 2006 18/set/2006 SEGUNDO EXERCÍCIO ESCOLAR Para todos os transistores bipolares presentes, considere que I sat = 1 10 12 A, V T = 25mV e β = 100. Para um coletor
Plano de Aula. 1 Diodos. 2 Transistores Bipolares de Junção - TBJ. 3 Transistores de Efeito de campo - FETs. 4 Resposta em Frequência
Plano de Aula 1 Diodos 2 Transistores Bipolares de Junção - TBJ 3 Transistores de Efeito de campo - FETs 4 Resposta em Frequência 5 Projeto - Fonte automática de tensão regulável Prof. Dr. Baldo Luque
INVERSOR LÓGICO INTRODUÇÃO TEÓRICA. Para a tecnologia TTL esses valores são bem definidos: Nível lógico 1 = + 5V Nível lógico 0 = 0v
Invasor Lógico INVERSOR LÓGICO OBJETIVOS: a) Entender o significado de compatível com TTL ; b) Aprender como interpretar especificações das folhas de dados (Data Book); c) Identificar a representação eletrônica
AULA LAB 07 DIODOS ZENER, LEDS E TRANSISTORES BIPOLARES
Aula LA 07 Diodos zener, leds e transistores bipolares INSTITUTO FEDEAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATAINA DEPATAMENTO ACADÊMICO DE ELETÔNICA CUSO TÉCNICO DE ELETÔNICA Eletrônica ásica
III. Análise de Pequenos Sinais do BJT. Anexo
III Anexo Análise de Pequenos Sinais do BJT Meta deste capítulo Relembrar os principais conceitos e técnicas envolvidos na análise de pequenos sinais de transistores bipolares objetivos Apresentar a importância
Roteiro de Aulas Práticas: Lei de Ohm (medições de tensão, corrente e resistência); validação das Leis de Kirchhoff
Roteiro de Práticas Roteiro de Aulas Práticas: Lei de Ohm (medições de tensão, corrente e resistência); validação das Leis de Kirchhoff RP1 1. OBJETIVO Aprender a utilizar o voltímetro e o amperímetro
