MOTORES CC 2 ADRIELLE C. SANTANA
|
|
|
- Baltazar Coradelli Batista
- 9 Há anos
- Visualizações:
Transcrição
1 MOTORES CC 2 ADRIELLE C. SANTANA
2 Conjugado Eletromagnético
3 Conjugado Eletromagnético
4 Conjugado motor e Conjugado resistente Na figura a seguir temos duas máquinas idênticas. Uma funciona como gerador e outra como motor. No gerador uma força externa o faz girar no sentido anti-horário. Ele gera uma FEM e se acoplado a um circuito externo ele alimentará esse circuito surgindo então no seu enrolamento uma corrente. Condutores percorridos por corrente imersos num campo magnético tendem a ser submetidos a forças que se opõem ao movimento do gerador. Essas forças produzem um conjugado resistente (T) que se opõe ao conjugado mecânico (Tm) que externamente é aplicado ao gerador. T é dado pela equação anterior. Tm deve ser maior que T e ainda ser grande para vencer o atrito nos mancais e escovas, ventilação, correntes parasitas do induzido (que criam seu próprio conjugado resistente).
5 Conjugado motor e Conjugado resistente
6 Conjugado motor e Conjugado resistente No motor uma fonte externa faz circular corrente pelo induzido. No sentido em que se encontra a corrente e pela interação de cada condutor com o campo em que está imerso, surgem forças que fazem o motor girar no sentido anti-horário. Agora estamos na mesma situação do gerador só que sem uma força mecânica externa girando o eixo. É aqui que é gerada uma outra força nos condutores do induzido por eles estarem cortando linhas de indução e girando dentro de um campo magnético. Assim como no gerador essa força se opõe a circulação da corrente e, portanto, à fonte externa que alimenta o motor. Esta é a força contra-eletromotriz (FCEM). A resultante entre estas forças produz o conjugado motor (T).
7 Conjugado motor e Conjugado resistente Sendo assim, seja Tav o conjugado (torque) gasto com atrito nos mancais e escovas e correntes parasitas, dentre outras perdas. Seja T m o conjugado mecânico recebido ou fornecido ao eixo do motor e T o conjugado resistente ou motor (gerador ou motor). Tem-se: Tm= T Tav (Nm) para motores Tm= T + Tav (Nm) para geradores
8 Conjugado motor e Conjugado resistente
9 Conjugado motor e Conjugado resistente
10 Partida de Motores shunt de menos de 1 CV
11 Partida de Motores shunt de menos de 1 CV Como a equação do conjugado é então T cresce muito também, acelerando rapidamente o motor. Com o motor girando gera-se a Eg que se opõe à corrente Ia e é proporcional à velocidade. Assim Ia diminui na medida em que a velocidade vai aumentando e esta variação cessa quando a velocidade tornase constante. Obs.: Se por algum motivo o rotor estivesse bloqueado, a alta corrente de partida nunca iria cair e o enrolamento se queimaria. Normalmente utilizam-se fusíveis ou outra forma de proteção contra sobrecorrente.
12 Partida de Motores shunt em Geral Para motores shunt de médio e grande porte, a corrente de partida alta e a demora para se atingir uma boa velocidade (que levaria ao aumento de Eg e queda de Ia) por conta do elevado momento de inércia das partes em rotação, fariam a máquina se queimar antes de girar. A solução é incluir uma resistência adicional (Rs=Rp) no circuito do induzido aumentando o Ra baixo. Esta resistência deve ser reduzida na medida em que o motor vai acelerando até ser zerada. O ideal é que seu controle não seja feito manualmente.
13 Partida de Motores shunt em Geral Forma da Ia com o uso de Rs.
14 Controle de Velocidade em Motores shunt em Geral Os motores shunt podem vir com reostatos (resistências variáveis) de campo os quais podem ser utilizados para enfraquecer o campo a fim de controlar a velocidade. Mas este reostato NÃO pode estar ligado na hora da partida (deve ser curto-circuitado) pois, a alta corrente de partida demorará a ser oposta pela FEM induzida Eg uma vez que a geração da Eg fica comprometida com um fluxo de campo mais baixo. Assim, o motor pode se queimar!
15 Partida de Motores shunt em Geral Calcular potência absorvida da rede = 8352 W -> Com ela calcular a corrente absorvida da linha = 75,9 A -> Com ela calcular a corrente Ia nominal= 73,9 A -> Calcular pela lei de Ohm a resistência total necessária no induzido = 1,49 Ω -> Subtrair da resistência já existente no induzido (Ra) = 1,49 0,08 = 1,41 Ω= Rs Lei de Ohm normal utilizando apenas Ra = 1375 A
16 Características de Carga
17 Características de Carga
18 Características de Carga Pela figura anterior, a velocidade diminui com o aumento da carga (T -> Ia) pelo fato de Eg diminuir de modo a permitir uma maior circulação de corrente (se n cai Eg cai). As curvas foram obtidas aplicando-se diferentes conjugados resistentes e medindo para cada um a velocidade e corrente. A velocidade é inversamente proporcional ao T.
19 Controle de velocidade pelo campo A velocidade dos motores Shunt é quase constante variando pouco com a carga de acordo com a figura anterior. Um reostato de campo pode ser utilizado para o controle de velocidade como já comentado. Sem o reostato o motor gira a uma velocidade de pleno campo. Para aumentar essa velocidade basta intercalar o reostato em série com a bobina de campo. Para reduzir essa velocidade pode-se inserir um reostato em série com o induzido (se I a cai o E cai e n cai).
20 Exemplo Um motor shunt de 10 CV, 110V, gira com 900 rpm quando absorve uma corrente Ia de 75A a plena carga. Ra=0,08 ohms. Calcular: A) A FCEM; (usar fórmula do motor = 104 V) B) O conjugado motor a plena carga. (usar fórmula do conjugado = 82,76 Nm) C) Se utilizar resistor de campo que reduza este a 80% qual a nova FCEM, I a e o T? FCEM = 0,8 * 104 = 83,2 V Usar fórmula do motor para Ia = 335 A Usar fórmula do conjugado novamente = 295,73 Nm
21 Sistema Ward-Leonard de regulação de velocidade Nesse esquema se utilizam unidades independentes de gerador e motor para fazer a regulação de velocidade do motor de interesse. Tem-se um motor M 1 o qual se quer controlar a velocidade, um gerador G com excitação independente o qual alimenta M1, um pequeno gerador CC chamado aqui de E (auto-excitado) fornecedor de corrente de excitação para G e para M 1 e M aciona G e E.
22 Sistema Ward-Leonard de regulação de velocidade Ia = (Et - Eg)/ Ra M pode ser um motor diesel ou CA de velocidade constante. Sendo assim a tensão gerada em E, as correntes de excitação de G e M 1, a tensão Et e a velocidade de M1 ficam constantes também. A velocidade e sentido de rotação de M1 são alterados variando-se respectivamente, o reostato R e o interruptor inversor S. Com reostato totalmente à direita: M1 gira a plena velocidade; Para inverter o giro basta deslizar R até o extremo da esquerda (diminui campo que diminui Et que diminui Ia) e inverter S e voltar com R (inverte-se aqui o sentido da corrente no campo de G ); Com R mais a direita: aumenta campo de G que aumenta E t que aumenta Ia que acelera o motor (chave S conecta embaixo); Com R mais à esquerda: Ia se inverte (Et menor que Eg na fórmula) criando conjugado negativo, a velocidade cai até estabilizar (quando E g se torna menor que Et novamente).
Departamento de Engenharia Elétrica Conversão de Energia I Lista de Exercícios: Máquinas Elétricas de Corrente Contínua Prof. Clodomiro Vila.
Departamento de Engenharia Elétrica Conversão de Energia I Lista de Exercícios: Máquinas Elétricas de Corrente Contínua Prof. Clodomiro Vila. Ex. 0) Resolver todos os exercícios do Capítulo 7 (Máquinas
Máquinas elétricas. Máquinas Síncronas
Máquinas síncronas Máquinas Síncronas A máquina síncrona é mais utilizada nos sistemas de geração de energia elétrica, onde funciona como gerador ou como compensador de potência reativa. Atualmente, o
Introdução às máquinas CA
Introdução às máquinas CA Assim como as máquinas CC, o princípio de funcionamento de máquinas CA é advindo, principalmente, do eletromagnetismo: Um fio condutor de corrente, na presença de um campo magnético,
Classificação de Máquinas quanto ao tipo de Excitação
Classificação de Máquinas quanto ao tipo de Excitação Máquinas de cc podem ser classificadas conforme as interconexões entre os enrolamentos do campo e da armadura. Ela pode ser basicamente de quatro formas:
Máquinas Elétricas. Máquinas CC Parte IV
Máquinas Elétricas Máquinas CC Parte IV Máquina CC eficiência Máquina CC perdas elétricas (perdas por efeito Joule) Máquina CC perdas nas escovas Máquina CC outras perdas a considerar Máquina CC considerações
Ensaio 6: Característica de Tensão-Carga de Geradores CC: Excitação Independente, Shunt Auto- Excitado e Série
Ensaio 6: Característica de Tensão-Carga de Geradores CC: Excitação Independente, Shunt uto- Excitado e Série 1. Objetivos Os objetivos desse ensaio são: a) Construir a curva característica de tensão-carga
Máquina de Indução - Lista Comentada
Máquina de Indução - Lista Comentada 1) Os motores trifásicos a indução, geralmente, operam em rotações próximas do sincronismo, ou seja, com baixos valores de escorregamento. Considere o caso de alimentação
MOTOR DE INDUÇÃO TRIFÁSICO (continuação)
MOTOR DE INDUÇÃO TRIFÁSICO (continuação) Joaquim Eloir Rocha 1 A produção de torque em um motor de indução ocorre devido a busca de alinhamento entre o fluxo do estator e o fluxo do rotor. Joaquim Eloir
Máquinas Elétricas. Máquinas CA Parte I
Máquinas Elétricas Máquinas CA Parte I Introdução A conversão eletromagnética de energia ocorre quando surgem alterações no fluxo concatenado (λ) decorrentes de movimento mecânico. Nas máquinas rotativas,
lectra Material Didático COMANDOS ELÉTRICOS Centro de Formação Profissional
lectra Centro de Formação Profissional Material Didático COMANDOS ELÉTRICOS WWW.ESCOLAELECTRA.COM.BR COMANDOS ELÉTRICOS ÍNDICE INTRODUÇÃO 1. MOTORES ELÉTRICOS 1.1. Classificação de motores 1.1.1. Motores
Máquinas Elétricas. Máquinas CA Parte I
Máquinas Elétricas Máquinas CA Parte I Introdução A conversão eletromagnética de energia ocorre quando surgem alterações no fluxo concatenado (λ) decorrentes de movimento mecânico. Nas máquinas rotativas,
Princípios de máquinas elétricas força induzida Um campo magnético induz uma força em um fio que esteja conduzindo corrente dentro do campo
Princípios de máquinas elétricas Uma máquina elétrica é qualquer equipamento capaz de converter energia elétrica em energia mecânica, e vice-versa Principais tipos de máquinas elétricas são os geradores
Mecânica de Locomotivas II. Aula 9 Motores Elétricos de Tração
Aula 9 Motores Elétricos de Tração 1 A utilização de motores de corrente contínua apresenta inúmeras desvantagens oriundas de suas características construtivas, que elevam seu custo de fabricação e de
Motor de Corrente Contínua e Motor Universal
Capítulo 14 Motor de Corrente Contínua e Motor Universal Objetivos: Entender o princípio de funcionamento Analisar as características operacionais destes motores ONDE EXISTE ESTE TIPO DE ROTOR? ESPIRA
Ensaio 8: Motor CC Característica Velocidade-Carga
Ensaio 8: Motor CC Característica Velocidade-Carga 1. Objetivo O objetivo desse ensaio é: a) Obter a característica velocidade carga dos motores CC, para os diferentes tipos de excitação: independente,
MÁQUINAS ELÉTRICAS. MÁQUINAS ELÉTRICAS Motores Síncronos Professor: Carlos Alberto Ottoboni Pinho MÁQUINAS ELÉTRICAS
Motores Síncronos Ementa: Máquinas de corrente contínua: características operacionais; acionamento do motor CC; aplicações específicas. Máquinas síncronas trifásicas: características operacionais; partida
Universidade Paulista Unip
As máquinas de corrente contínua podem ser utilizadas tanto como motor quanto como gerador. 1 Uma vez que as fontes retificadoras de potência podem gerar tensão contínua de maneira controlada a partir
Acionamento de motores de indução
Acionamento de motores de indução Acionamento de motores de indução Vantagens dos motores de indução Baixo custo Robustez construtiva 1 Controle da velocidade de motores de indução Através de conversores
Característica de Regulação do Gerador de Corrente Contínua com Excitação Independente
Experiência V Característica de Regulação do Gerador de Corrente Contínua com Excitação Independente 1. Introdução A mesma máquina de corrente contínua de fabricação ANEL utilizada no ensaio precedente
LABORATÓRIO INTEGRADO II
FACULDADE DE TECNOLOGIA E CIÊNCIAS EXATAS CURSO DE ENGENHARIA ELÉTRICA LABORATÓRIO INTEGRADO II Experiência 05: MOTOR TRIFÁSICO DE INDUÇÃO ENSAIOS: VAZIO E ROTOR BLOQUEADO Prof. Norberto Augusto Júnior
Motores de Indução 2 Adrielle de Carvalho Santana
Motores de Indução 2 Adrielle de Carvalho Santana Da aula passada... Da aula passada... PARA MOTORES DE INDUÇÃO TRIFÁSICOS Potência Mecânica em Motor Monofásico =... Note que agora não é necessário utilizar
EXP 05 Motores Trifásicos de Indução - MTI
EXP 05 Motores Trifásicos de Indução - MTI Funcionamento e Ligações Objetivos: Compreender o funcionamento e as ligações do motor de indução; Analisar os diferentes tipos de construção e as principais
Lista de Exercícios 2 (Fonte: Fitzgerald, 6ª. Edição)
Universidade Federal de Minas Gerais Escola de Engenharia Curso de Graduação em Engenharia Elétrica Disciplina: Conversão da Energia Lista de Exercícios 2 (Fonte: Fitzgerald, 6ª. Edição) 5.3) Cálculos
Determinação dos Parâmetros do Motor de Corrente Contínua
Laboratório de Máquinas Elétricas: Alunos: Professor: Leonardo Salas Maldonado Determinação dos Parâmetros do Motor de Corrente Contínua Objetivo: Ensaiar o motor de corrente contínua em vazio; Determinar
Características Básicas das Máquinas de Corrente Contínua
Características Básicas das Máquinas de Corrente Contínua (Roteiro No. 6) Universidade Federal de Juiz de Fora Departamento de Energia Elétrica Juiz de Fora, MG 36036-900 Brasil 2018 (UFJF) Lab. Maq. I
O MOTOR DE INDUÇÃO - 1
PEA 2211 Introdução à Eletromecânica e à Automação 1 O MOTOR DE INDUÇÃO - 1 PARTE EXPERIMENTAL Conteúdo: 1. Introdução. 2. Observando a formação do campo magnético rotativo. 3. Verificação da tensão e
3.- PRINCÍPIO DE FUNCIONAMENTO DO MOTOR DE CORRENTE CONTÍNUA
3.- PRICÍPIO DE FUCIOETO DO OTOR DE CORRETE COTÍU 3.1 - FORÇÃO DO COJUGDO OTOR Conforme já foi visto na introdução desta apostila, quando a máquina de corrente contínua opera como motor, o fluxo de potência
Máquinas Elétricas. Máquinas Síncronas Parte I. Geradores
Máquinas Elétricas Máquinas Síncronas Parte I Geradores Introdução Em um gerador síncrono, um campo magnético é produzido no rotor. través de um ímã permanente ou de um eletroímã (viabilizado por uma corrente
Questionário Escolhas Múltiplas CORRECÇÃO MÁQUINAS DE COLECTOR MECÂNICO (CORRENTE CONTÍNUA)
Temática Máquinas Eléctricas Capítulo Teste os seus conhecimentos Questionário Escolhas Múltiplas CORRECÇÃO MÁQUINAS DE COLECTOR MECÂNICO (CORRENTE CONTÍNUA) INTRODUÇÃO Esta correcção é relativa ao questionário
Máquinas Elétricas. Introdução Parte III
Máquinas Elétricas Introdução Parte III Conversão eletromecânica de energia A energia é convertida para a forma elétrica por ser fácil a transmissão e o processamento. Raramente a energia será utilizada
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA MOTOR UNIVERSAL. Joaquim Eloir Rocha 1
MOTOR UNIVERSAL Joaquim Eloir Rocha 1 Os motores tipo universal são aqueles capazes de operar tanto em corrente contínua como em corrente alternada. No entanto, eles costumam operar em corrente alternada.
Capítulo 1 Introdução aos princípios de máquinas 1. Capítulo 2 Transformadores 65. Capítulo 3 Fundamentos de máquinas CA 152
resumido Capítulo 1 Introdução aos princípios de máquinas 1 Capítulo 2 Transformadores 65 Capítulo 3 Fundamentos de máquinas CA 152 Capítulo 4 Geradores síncronos 191 Capítulo 5 Motores síncronos 271 Capítulo
CIRCUITO EQUIVALENTE MAQUINA
CIRCUITO EQUIVALENTE MAQUINA Se o circuito do induzido for fechado sobre uma carga, vai circular por ele uma corrente que será responsável por perdas por efeito de Joule na resistência do próprio enrolamento,
MÁQUINA DE INDUÇÃO FUNDAMENTOS DE MÁQUINAS DE CORRENTE ALTERNADA
FUNDAMENTOS DE MÁQUINAS DE CORRENTE ALTERNADA As máquinas de corrente alternada são geradores que convertem energia mecânica em energia elétrica e motores que executam o processo inverso. As duas maiores
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA MOTOR SÍNCRONO. Joaquim Eloir Rocha 1
MOTOR SÍNCRONO Joaquim Eloir Rocha 1 Os motores síncronos são usados para a conversão da energia elétrica em mecânica. A rotação do seu eixo está em sincronismo com a frequência da rede. n = 120 p f f
campo em 2 A e a velocidade em 1500 rpm. Nesta condição qual o valor do torque
Um alternador síncrono de pólos lisos possui quatro pólos, está ligado em estrela e apresenta potência nominal igual a 20kVA. Em vazio a tensão entre os terminais é igual a 440 V, quando o rotor da máquina
MOTOR DE INDUÇÃO TRIFÁSICO
MOTOR DE INDUÇÃO TRIFÁSICO Joaquim Eloir Rocha 1 As máquinas de corrente alternada podem ser síncronas ou assíncronas. São síncronas quando a velocidade no eixo estiver em sincronismo com a frequência.
MOTOR DE CORRENTE CONTÍNUA
PEA DEPARTAMENTO DE ENGENHARIA DE ENERGIA E AUTOMAÇÃO ELÉTRICAS PEA-3311 Laboratório de Conversão Eletromecânica de Energia MOTOR DE CORRENTE CONTÍNUA RELATÓRIO 2016 Tensão (V) PEA3311 Laboratório de Conversão
Questão 1. Gabarito. Considere P a potência ativa da carga e Q a potência reativa.
Questão 1 Uma indústria tem uma carga de 1000 kva com fator de potência indutivo de 95% alimentada em 13800 V de acordo com medições efetuadas. A maneira mais fácil de representar a carga da indústria
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 17
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA Aula 17 Aula de Hoje Máquinas CC de Ímã Permanente Estrutura Visão geral: Comutador Ímã Estrutura Detalhe da seção transversal de um motor típico de ímã permanente:
Máquinas CA são ditas: 1. Síncronas: quando a velocidade do eixo estiver em sincronismo com a freqüência da tensão elétrica de alimentação;
AULA 10 MÁQUINAS DE INDUÇÃO (ou assíncronas) Descrição e construção da máquina Formação do campo magnético rotativo Tensões, frequências e correntes induzidas Produção de conjugado no eixo Máquinas Elétricas
APÊNDICE C. Ensaio da Performance do Protótipo. MATRBGC-HGW560-75kW
APÊNDICE C Ensaio da Performance do Protótipo MATRBGC-HGW560-75kW 298 LABORATÓRIO DE ENSAIOS ELÉTRICOS - BAIXA TENSÃO WEG MÁQUINAS RELATÓRIO DE ENSAIO DE PROTÓTIPO MATRBGC 560 POTÊNCIA: 75KW / 25KW TENSÃO
MODELOS DE MOTORES DA MODELIX
MODELOS DE MOTORES DA MODELIX O MOTOR DE CC REVISÃO TÉCNICA. Aspectos Construtivos O motor de corrente contínua é composto de duas estruturas magnéticas: 1 / 5 Estator (enrolamento de campo ou ímã permanente);
MOTOR A RELUTÂNCIA CHAVEADO
MOTOR A RELUTÂNCIA CHAVEADO Joaquim Eloir Rocha 1 Introdução O Motor a Relutância Chaveado (MRC) ou SRM (Switched Reluctance Motor) é conhecido desde meados de 1940 quando seu primeiro protótipo foi desenvolvido
QUESTÕES PARA A PROVA 2: FORÇAS MAGNÉTICAS E MOTORES CC
QUESTÕES PARA A PROVA 2: FORÇAS MAGNÉTICAS E MOTORES CC SEL0329 CONVERSÃO ELETROMECÂNICA DE ENERGIA Prof. Dr. Elmer Pablo Tito Cari Departamento de Engenharia Elétrica e de Computação Universidade de São
Máquinas Elétricas. Máquinas Indução Parte I. Motores
Máquinas Elétricas Máquinas Indução Parte I Motores Motor indução Motor indução conjugado induzido Motor indução conjugado induzido Motor indução conjugado induzido Motor indução conjugado induzido Motor
Motores Elétricos. Conteúdo. 1. Motor Síncrono 2. Motor Assíncrono 3. Motor CC
Motores Elétricos Conteúdo 1. Motor Síncrono 2. Motor Assíncrono 3. Motor CC Motores Elétricos 2 1.0 MOTOR SÍNCRONO Os motores síncronos são motores de velocidade constante e proporcional com a frequência
Conversão de Energia I
Departamento de Engenharia Elétrica Aula 3.4 Máquinas de Corrente Contínua Prof. Clodomiro Unsihuay Vila Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução
12 FUNCIONAMENTO DO MOTOR DE CORRENTE CONTÍNUA
80 1 FUNCIONMENTO DO MOTOR DE CORRENTE CONTÍNU COM EXCITÇÃO EM DERIVÇÃO E EXCITÇÃO INDEPENDENTE COM CRG VRIÁVEL 1.1 INTRODUÇÃO Historicamente os motores de corrente contínua foram muito usados na indústria
Conversão de Energia II
Departamento de Engenharia Elétrica Aula 4.1 Motores Monofásicos Prof. João Américo Vilela Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica
O campo girante no entreferro e o rotor giram na mesma velocidade (síncrona); Usado em situações que demandem velocidade constante com carga variável;
Gerador Síncrono 2. MÁQUINAS SÍNCRONAS Tensão induzida Forma de onda senoidal Número de pólos Controle da tensão induzida Fases de um gerador síncrono Fasores das tensões Circuito elétrico equivalente
Principais Tipos de Máquinas Elétricas
Principais Tipos de Máquinas Elétricas Máquina de Corrente Contínua Possibilita grande variação de velocidade, com comando muito simples. Também requer fonte de corrente contínua para alimentação do circuito
Professor: Cleyton Ap. dos Santos. E mail:
Professor: Cleyton Ap. dos Santos E mail: [email protected] Tipos de alimentação A energia elétrica para chegar ao consumidor final passa por 3 etapas: geração, transmissão e distribuição. Fig.
Conversão de Energia II
Departamento de Engenharia Elétrica Aula 3.4 Motor de Indução Trifásico Prof. João Américo Vilela Torque x velocidade Rotores de Barras Profundas e Dupla Gaiola de Esquilo Com o rotor parado a frequência
Capitulo 7 Geradores Elétricos CA e CC
Capitulo 7 Geradores Elétricos CA e CC 7 Geradores Elétricos CA e CC Figura 7-1 Gerador Elétrico CA A energia elétrica é obtida através da conversão de energia mecânica (movimento) em energia elétrica
Partida de Motores Elétricos de Indução
Partida de Motores Elétricos de Indução 1 Alta corrente de partida, podendo atingir de 6 a 10 vezes o valor da corrente nominal. NBR 5410/04: a queda de tensão durante a partida de um motor não deve ultrapassar
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Corrente Contínua
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA Introdução a Máquinas de Corrente Contínua Aula de Hoje Introdução à máquina de corrente contínua Produção de conjugado na máquina CC Ação do comutador Tensão
Máquinas Elétricas. Máquinas CC Parte III
Máquinas Elétricas Máquinas CC Parte III Máquina CC Máquina CC Máquina CC Comutação Operação como gerador Máquina CC considerações fem induzida Conforme já mencionado, a tensão em um único condutor debaixo
CONTROLE TRADICIONAL
CONTROLE TRADICIONAL Variação da tensão do estator Os acionamentos de frequência e tensão variáveis são os mais eficientes Existem também acionamentos com tensão variável e frequência fixa Para um acionamento
CAPÍTULO 1 CONTROLE DE MÁQUINAS ELÉTRICAS (CME) Prof. Ademir Nied
Universidade do Estado de Santa Catarina Programa de Pós-Graduação em Engenharia Elétrica Doutorado em Engenharia Elétrica CAPÍTULO 1 MÁQUINAS DE CORRENTE CONTÍNUA CONTROLE DE MÁQUINAS ELÉTRICAS (CME)
Eng. Everton Moraes. Método LIDE - Máquinas Elétricas
Eng. Everton Moraes Eng. Everton Moraes Método LIDE - Máquinas Elétricas 1 Método LIDE - Máquinas Elétricas Sumário 1. Ligação dos motores de indução trifásico (MIT)... 3 1.1. Ligação de Motores de Indução
ACIONAMENTO DE MÁQUINAS
Universidade do Estado de Mato Grosso Campus Sinop Faculdade de Ciências Exatas e Tecnológicas ACIONAMENTO DE MÁQUINAS ROGÉRIO LÚCIO LIMA Sinop Outubro de 2016 Em instalações onde não for possível a energização
Conversão de Energia II
Departamento de Engenharia Elétrica Aula 5.2 Acionamento e Controle dos Motores de Indução Trifásico Prof. João Américo Vilela Exercício 1 Para o motor de indução trifásico que tem as curva de torque,
Lista de Exercícios 4
Lista de Exercícios 4 Leis da Indução Exercícios Sugeridos A numeração corresponde ao Livros Textos A e B. A23.1 Uma espira plana com 8,00 cm 2 de área consistindo de uma única volta de fio é perpendicular
Laboratório de Conversão Eletromecânica de Energia B
Laboratório de Conversão Eletromecânica de Energia B Prof a. Katia C. de Almeida 1 Característica de Magnetização da Máquina de Corrente Contínua 1.1 Introdução Máquinas de corrente contínua (MCC) devem
Conversão de Energia I. Capitulo 4 Princípios da conversão eletromecânica da energia;
Conversão de Energia I Capitulo 4 Princípios da conversão eletromecânica da energia; 1. Introdução De uma forma bastante simplificada podemos tratar os motores com os conceitos de repulsão/atração entre
Sistemas de Geração, Transmissão e Distribuição de Energia Elétrica.
Sistemas de Geração, Transmissão e Distribuição de Energia Elétrica. Ímã: Princípios de Eletromecânica Ímã é um objeto formado por material ferromagnético que apresenta um campo magnético à sua volta.
Determinação da Reatância Síncrona Campos Girantes Máquina Síncrona ligada ao Sistema de Potência Gerador e Motor Síncrono
Máquinas Síncronas Determinação da Reatância Síncrona Campos Girantes Máquina Síncrona ligada ao Sistema de Potência Gerador e Motor Síncrono Aula Anterior Circuito Equivalente por fase O Alternador gerava
Geradores CC Parte 2 Adrielle C. Santana
Geradores CC Parte 2 Adrielle C. Santana Aplicações dos Geradores CC Atualmente com o uso de inversores de frequência e transformadores, tornou-se fácil a manipulação da Corrente Alternada. Como os geradores
ROTEIRO DE LABORATÓRIO DE MÁQUINAS ELÉTRICAS
Fundação Universidade Federal de Rondônia UNIR Núcleo de Tecnologia NT Departamento de Engenharia Elétrica DEE Bacharelado em Engenharia Elétrica ROTEIRO DE LABORATÓRIO DE MÁQUINAS ELÉTRICAS Docente: M.Sc.
LISTA DE EXERCÍCIOS 1 (L1)
Acionamentos Eletrônicos de Motores Professor: Marcio Luiz Magri Kimpara LISTA DE EXERCÍCIOS 1 (L1) 1) A velocidade de motor de corrente contínua com excitação separada de 125 hp, 600V, 1800rpm é controlada
Conversão de Energia II
Departamento de Engenharia Elétrica Aula 6.3 Máquinas Síncronas Prof. João Américo Vilela Máquina Síncrona Representação Fasorial Motor síncrono operando sobre-excitado E af > V t (elevada corrente de
PROCEDIMENTOS EXPERIMENTAIS
SEL0423 - LABORATÓRIO DE MÁQUINAS ELÉTRICAS Conexão da máquina de indução como gerador João Victor Barbosa Fernandes NºUSP: 8659329 Josias Blos NºUSP: 8006477 Rafael Taranto Polizel NºUSP: 8551393 Rodolfo
SOLUÇÃO PRATIQUE EM CASA
SOLUÇÃO PC1. A) Verdadeira. O enrolamento primário do transformador, tendo menor número de espiras, terá a menor tensão e a maior corrente em relação ao secundário, pois a potência se conserva. B) Falsa.
ACIONAMENTOS INDUSTRIAIS
ACIONAMENTOS INDUSTRIAIS Conteúdo a ser Ministrado Introdução Relação entre o motor e a carga Relação entre o motor e o conversor eletrônico Relação entre o motor e a rede de alimentação 1 Conteúdo a ser
Conversão de Energia II
Departamento de Engenharia Elétrica Aula 5.1 Acionamento e Controle dos Motores de Indução Trifásico Prof. João Américo Vilela Porque em muitos casos é necessário utilizar um método para partir um motor
SOLUÇÃO COMECE DO BÁSICO
SOLUÇÃO CB1. 01 + 04 + 16 + 64 = 85. [01] Verdadeira. O enrolamento primário do transformador, tendo menor número de espiras, terá a menor tensão e a maior corrente em relação ao secundário, pois a potência
A) 15,9 A; B) 25,8 A; C) 27,9 A; D) 30,2 A; E) 35,6 A.
53.(ALERJ/FGV/2017) Um motor CC do tipo shunt que possui uma potência mecânica de 6 HP é alimentado por uma fonte de 200 V. Sabendo-se que o seu rendimento é de 80 % e que a corrente de excitação é de
Departamento de Engenharia Elétrica Conversão de Energia I Lista de Exercícios: Máquinas Elétricas de Corrente Contínua Prof. Clodomiro Vila.
Departamento de Engenharia Elétrica Conversão de Energia I Lista de Exercícios: Máquinas Elétricas de Corrente Contínua Prof. Clodomiro Vila. Ex. 0) Resolver todos os exercícios do Capítulo 7 (Máquinas
PRINCÍPIO DE FUNCIONAMENTO DE MOTORES DE INDUÇÃO TRIFÁSICOS
ESTADO DO MATO GROSSO SECRETÁRIA DE ESTADO DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS: CURSO DE ENGENHARIA ELÉTRICA
Note os contatos auxiliares NF que fazem com que jamais as contactoras C1 e C2 possam ser energizadas simultaneamente.
Note os contatos auxiliares NF que fazem com que jamais as contactoras C1 e C2 possam ser energizadas simultaneamente. 4.4. Chave de Partida Série-Paralelo As chaves de partida série-paralelo são utilizadas
Máquinas Elétricas I PRINCÍPIO DE FUNCIONAMENTO
Máquinas Elétricas I PRINCÍPIO DE FUNCIONAMENTO 1. PARTES PRINCIPAIS As Máquinas elétricas tem duas partes principais (Figuras 1): Estator Parte estática da máquina. Rotor Parte livre para girar Figura
O MOTOR DE INDUÇÃO - 2 PARTE EXPERIMENTAL
EA 22 Introdução à Eletromecânica e à Automação Conteúdo: O MOTOR DE INDUÇÃO - 2 ARTE EXERIMENTAL. Verificação do escorregamento do motor de indução Comportamento em carga. 2. Verificação do conjugado
Sistemas de partidas de motores
Sistemas de partidas de motores Q uando você precisa empurrar um carro, no início, quando o carro ainda está parado é necessário que se imprima muita força para que ele inicie um movimento. Porém, depois
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA GERADOR SÍNCRONO. Joaquim Eloir Rocha 1
GERADOR SÍNCRONO Joaquim Eloir Rocha 1 Os geradores síncronos são usados para gerar a energia que é utilizada pela sociedade moderna para a produção e o lazer. Joaquim Eloir Rocha 2 Geradores síncronos
PEA 2404 MÁQUINAS ELÉTRICAS E ACIONAMENTOS
PEA 2404 MÁQUINAS ELÉTRICAS E ACIONAMENTOS Resumo das notas de aula 1 A1 PROGRAMA: 1 MÁQUINAS ASSÍNCRONAS: Caracterização e classificação das máquinas assíncronas - Aspectos construtivos Princípio de funcionamento
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 20
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA Aula 20 Aula de Hoje Introdução à máquina síncrona trifásica Características Básicas de uma Máquina Síncrona O enrolamento de campo é posicionado no rotor; O
Em um circuito DC, seja ele resistivo ou não, a corrente varia somente no instante em que o circuito é aberto ou fechado.
Em um circuito DC, seja ele resistivo ou não, a corrente varia somente no instante em que o circuito é aberto ou fechado. Quando o circuito é puramente resistivo essas variações são instantâneas, porém
Conversão de Energia I
Departamento de Engenharia Elétrica Conversão de Energia Aula 4.6 Máquinas de Corrente Contínua Pro. Clodomiro Unsihuay-Vila Bibliograia FTZGERALD, A. E., KNGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas:
Projeto Elétrico Industrial drb-m.org 30
8 - MOTOR ELÉTRICO 8.1 - Placa de identificação do motor Motor Elétrico É uma máquina que transforma energia elétrica em energia mecânica. Há vários tipos, mas devido a simplicidade de construção, custo
MOTOR DE CORRENTE CONTÍNUA
PEA DEPARTAMENTO DE ENGENHARIA DE ENERGIA E AUTOMAÇÃO ELÉTRICAS PEA-3311 Laboratório de Conversão Eletromecânica de Energia MOTOR DE CORRENTE CONTÍNUA ROTEIRO EXPERIMENTAL 2016 Motor de Corrente Contínua
4 Bancada Experimental e Aquisição de Dados
4 Bancada Experimental e Aquisição de Dados Com o objetivo de avaliar e complementar a análise das equações matemáticas desenvolvidas no capítulo 2, faz-se necessário realizar práticas experimentais. Com
CONSTRUÇÃO E FUNCIONAMENTO
Temática Máquinas Eléctricas Capítulo Máquina Assíncrona CONSTRUÇÃO E FUNCIONAMENTO INTRODUÇÃO Relativamente à construção, apresentam-se os aspectos fundamentais da construção de máquinas assíncronas.
f = B. A. cos a Weber
FLUXO MAGNÉTICO (f) Tesla T f = B. A. cos a Weber Wb metros quadrados m onde a ângulo formado entre n e B UEPG 1 PERGUNTA gera Se vimos que i B, será que o contrário é gera verdadeiro? Isto é, B i? EXPERIÊNCIAS
1. Introdução No motor de indução trifásico com o rotor bobinado é possível utilizar, ou controlar, a energia disponível no circuito rotórico.
ÁQUINS ELÉCRICS II ++ 1999 / 000 ++ SEE FEUP LEEC LE-.3 otor de Indução rifásico energia de deslizamento 1. Introdução No motor de indução trifásico com o rotor bobinado é possível utilizar, ou controlar,
Aula 5 Conversão de energia mecânica, hidráulica, eólica, elétrica, solar e nuclear
BIJ-0207 Bases conceituais da energia Aula 5 Conversão de energia mecânica, hidráulica, eólica, elétrica, solar e nuclear Prof. João Moreira CECS - Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas
Departamento de Engenharia Elétrica Conversão de Energia II Lista 3
Departamento de Engenharia Elétrica Conversão de Energia II Lista 3 Exercícios extraídos do livro: FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica De Potência.
Exercícios Exercício 1) Como são chamados os pequenos volumes magnéticos formados em materiais ferromagnéticos?
Exercícios Exercício 1) Como são chamados os pequenos volumes magnéticos formados em materiais ferromagnéticos? Exercício 2) Em um átomo, quais são as três fontes de campo magnético existentes? Exercício
