Critérios de Resistência

Tamanho: px
Começar a partir da página:

Download "Critérios de Resistência"

Transcrição

1 Critérios de Resistência Coeficiente de segurança ensão uivalente Seja um ponto qualquer, pertencente a um corpo em uilíbrio, submetido a um estado de tensões cujas tensões principais estão representadas na figura. figura ensões principais para um estado de tensões. Chama-se de coeficiente de segurança (s) ao número, maior que a unidade, que ao multiplicar o estado de tensões provoca a ruína do material. figura ensão uivalente multiplicada pelo coeficiente de segurança. Note-se, aqui, que o conceito de ruína está associado à falência do funcionamento do uipamento no qual o corpo se insere. Por exemplo, para um material dúctil, normalmente a falência ocorre quando a tensão simples de tração atinge o valor da tensão de escoamento ( e ). para os materiais frágeis, que não apresentam deformação plástica representativa, a falência ocorre quando a tensão de tração atinge o valor da tensão limite de ruptura ( R ). Assim, para executar o dimensionamento: s r ou r s figura ensões principais multiplicadas pelo coeficiente de segurança, para um estado de tensões. Chama-se de ensão uivalente ( ) uma tensão de tração simples que multiplicada pelo mesmo coeficiente de segurança do estado de tensão leva o material à ruína por tração onde r é a tensão de ruína do material. Com este conceito de tensão uivalente se torna razoavelmente simples executar o dimensionamento dos elementos já que as tensões de escoamento e ruptura, bem como outras, são de fácil determinação e conhecimento generalizados. Deve-se, entretanto, estabelecer uma forma de Prof. José Carlos Morilla Critérios de Resistência II

2 determinação da tensão uivalente para que ela possa representar com eficácia o estado de tensões existente no ponto em estudo. Critérios de Dimensionamento. Vários critérios diferentes, a respeito da ruína dos materiais, foram propostos ao longo do tempo:. eoria da máxima tensão normal proposta por Rankine;. eoria da máxima deformação normal, proposta por Saint-Venant;. eoria da máxima tensão de cisalhamento, proposta por Coulomb em 77 e por resca em 868;. eoria do atrito interno, desenvolvida por Mohr e por Coulomb; 5. eoria da máxima energia de deformação, proposta por Beltrami em 885; 6. eoria da máxima energia de distorção, desenvolvida por Huber em 90; Von Mises em 9 e Hencky em 95; 7. eoria da tensão octaédrica de cisalhamento de Von Mises e Hencky. Cada uma destas teorias propõe um critério para a causa da ruína do material. As experiências feitas em tempos recentes mostram que, entre as teorias apresentadas, algumas são uivalentes e outras são apenas de interesse histórico, já que não apresentam resultados compatíveis com os obtidos. Neste texto apresentar-se-á os critérios baseados em algumas destas teorias. Critério da máxima tensão de cisalhamento ou Critério de resca. Este critério se baseia no fato que para os materiais dúcteis o principal mecanismo de deformação plástica é o de escorregamento nos planos de maior densidade atômica. Assim, a tensão uivalente ( ) é igualmente perigosa a um estado de tensão quando ela apresentar a mesma tensão de cisalhamento máxima que o estado da tensão. figura Círculos de Mohr para um estado de tensão e para uma tensão uivalente. Sabendo-se que as tensões de cisalhamento máxima nos dois círculos de Mohr podem ser determinadas por: τ máx () A igualdade das duas expressões fornece: () Critério da máxima energia de distorção ou Critério de Von Mises Este critério propõe que a ruína por escoamento seja associada a valores críticos de certa Prof. José Carlos Morilla Critérios de Resistência II

3 porção da energia de deformação do ponto material em estudo. Quando as tensões principais possuem valores diferentes, o cubo que representa o ponto se transforma em paralelepípedo. A energia (U) para esta distorção é dada por: + ν U 6 E [( ) ( ) ( ) ] + + () onde E é o módulo de elasticidade do material e ν é o coeficiente de Poison. mesmo fato acontece com a tensão uivalente já que nesta situação e 0. Para a tensão uivalente, a energia de distorção fica: hidrostática ( ), as tensões uivalentes para os dois critérios possuem valor igual a zero. Assim, não é possível dimensionar nesta situação por um destes critérios. Critério de Coulomb-Mohr. Este critério é particularmente interessante para materiais que apresentam resistências diferentes quando solicitados à tração e à compressão. Este tipo de comportamento, em geral, é apresentado pelos materiais frágeis. A figura 5 mostra os dois círculos de Mohr para a tensão de ruptura à tração e à compressão de um material frágil qualquer. + ν U () 6 E Compressão ração Igualando-se as expressões e tem-se: C ( ) + ( ) + ( ) ou seja: ( ) + ( ) + ( ) figura 5 Círculos de Mohr para um material que resiste à tração e à compressão. A proposição deste critério e que os estados são igualmente perigosos quando forem tangentes à reta apresentada na figura. (5) BS: - Note-se que os dois critérios apresentados levam em conta a ductilidade do material e possuem como tensão de ruína a tensão de escoamento ou seja, valem apenas para materiais com características dúcteis. Note-se, também, que no caso da solicitação chamada A tensão uivalente para este critério é: onde (6) k (7) Prof. José Carlos Morilla Critérios de Resistência II k Limite de resistência à tração C Limite de resistência à Compressão C

4 A figura 6 é um gráfico comparativo entre os critérios de resistência apresentados. No ponto A, indicado na seção, atuam a máxima tensão normal ( máx ) e a máxima tensão de cisalhamento (máxτ) que valem: M máx τ (8) máx t Ao se isolar o ponto A, para estudo, representando as tensões que atuam no plano da seção, se obtém: Note-se aqui, que o critério de Von Mises é aquele que mais se aproxima dos resultados experimentais. Aplicação em eixos e vasos de pressão. Aplicação em Eixos Uma aplicação muito importante do que foi apresentado, até agora, está no dimensionamento de eixos. Um eixo, nada mais é do que uma barra circular submetida a um esforço de flexão e um esforço de torção. A figura 7 mostra uma barra com seção transversal circular de diâmetro d, solicitada por um momento fletor M e um momento de torção. figura 8 Ponto A com as tensões em seus planos. bservando-se a figura 8, nota-se que o plano Q é um dos planos principais. Isto é fato já que a tensão de cisalhamento resultante no plano é igual a zero. No plano *, existe uma tensão de cisalhamento que igual, mas com sinal contrário, à tensão de cisalhamento que atua no plano da seção (). Assim, as tensões em cada plano ficam: Plano da seção (): M τ (9) t figura 7 - barra circular solicitada por um momento fletor e um momento de torção. Plano (*): * 0 * τ τ (0) t Prof. José Carlos Morilla Critérios de Resistência II

5 Plano (Q): 0 Q τ 0 Q () Com estes dados, é possível construir o Círculo de Mohr para o plano da seção () e o plano *. Isto pode ser observado na figura 9. 0 Raio () o + τ o το Plano Quando se dimensiona o eixo pelo critério de resca, é possível escrever: τ το ο + Raio RAI figura 9 círculo de Mohr para o estado de tensões. A figura 0 mostra alguns detalhes da figura 8. το Plano Raio () Quando se substitui o valor do RAI na expressão se encontra: o + τo o/ ο Raio figura 0 detalhes do círculo de Mohr para o estado de tensões. A figura 9 mostra que o raio do círculo de Mohr entre e é: 0 + τo (5) Quando se substitui as expressões 9 na expressão 5, se obtém: M + (6) t RAI o + τo () Assim, as tensões principais ficam: Lembrando que para uma seção circular: e t t 6 (7) + Raio + o + τ o é possível escrever: Prof. José Carlos Morilla 5 Critérios de Resistência II

6 M + M + M + M + M + (8) dimensionamento é feito limitando-se a tensão uivalente ao valor da tensão admissível à tração; assim, se obtém: d M + M + π (9) Quando o dimensionamento é feito pelo critério de Von Mises, a tensão uivalente fica: ( ) + ( ) + ( ) Ao se substituir o conteúdo das expressões, se obtém: expressão 0, a tensão uivalente fica: + 6( RAI) ( ) + RAI () Quando se substitui, na expressão a expressão, se encontra: + + τ + τ () Quando se substitui as expressões 9 na expressão, se obtém: M + () t Lembrando que para uma seção circular: e é possível escrever: t t 6 (7) M + + RAI + ( RAI) (0) + RAI M + Quando são efetuados os produtos apresentados na M + Prof. José Carlos Morilla 6 Critérios de Resistência II

7 M + M + () Lembrando, mais uma vez, que o dimensionamento é feito limitando-se a tensão uivalente ao valor da tensão admissível à tração; assim, se obtém: M + M + d (5) π BS:- Devemos observar que as expressões (5) e () fornecem a tensão uivalente, de acordo com resca e Von Mises, respectivamente, para um ponto qualquer onde atuam uma tensão normal e uma tensão de cisalhamento em um único plano. Aplicação em vasos de pressão de parede fina s vasos de pressão são considerados de parede fina quando a espessura da parede for tão puena em relação ao seu diâmetro que a distribuição de tensões normais num plano perpendicular à superfície lateral deste vaso é uniforme ao longo da espessura da parede. Um bom exemplo deste tipo de uipamento são os vasos de pressão para gases industriais. utros exemplos, mais comuns em nosso dia a dia são os extintores de incêndio, os balões, etc. Vasos Cilíndricos ome-se um vaso cilíndrico de parede fina que possui comprimento l e diâmetro d, com uma espessura de parede (e) muito puena em relação a este diâmetro. Suponha que neste tubo exista uma pressão interna p. Esta pressão irá atuar no interior do tubo de maneira a fazer com que exista um crescimento em seu diâmetro e um crescimento em seu comprimento. Para que estas variações ocorram, é necessário que apareçam tensões na parede do vaso cujas direções são a do comprimento ( ) e a da tangente ao perímetro médio da seção ( ). figura tensões em um ponto da parede de um vaso de pressão cilíndrico. A figura mostra um diagrama de corpo livre para um tubo de parede fina que possui uma pressão interna p. figura tensões na parede de um vaso de pressão cilíndrico. Prof. José Carlos Morilla 7 Critérios de Resistência II

8 Para determinar as tensões que atuam na parede, se deve lembrar que o conjunto das tensões deve uilibrar o esforço produzido pela pressão interna. Assim, tem-se: ( ) p d l e l e (6) Da mesma maneira, é possível escrever: π d π d p e (7) Note-se aqui que estas tensões são duas das tensões principais que atuam nos pontos da parede do tubo. Note-se, também, que a tensão é igual ao dobro de. A terceira tensão principal ( ) é igual a zero. Assim, as tensões que atuam nos pontos da parede do tubo podem ser representadas por: figura Círculo de Mohr para um ponto da parede do tubo. Com estas tensões, a tensão uivalente, de acordo com o critério de resca fica: (8) e De acordo com o critério de Von Mises, se encontra: ( ) + ( ) + ( ) ( ) + ( ) + ( ) (9) Lembrando que a tensão é igual ao dobro de a expressão 9 fica: ( ) + ( ) + ( ) (0) e figura tensões principais para um ponto da parede do tubo. círculo de Mohr para estas tensões fica: Vasos Esféricos ome-se um vaso esférico, de parede fina, que possui diâmetro d e espessura e. Prof. José Carlos Morilla 8 Critérios de Resistência II

9 círculo de Mohr para estas tensões fica: figura 5 tensões na parede de um vaso de pressão esférico. As tensões nos pontos da parede de um vaso de pressão esférico, possuem o mesmo valor, em qualquer que seja a direção tomada. u seja: π d π d p () e Note-se aqui que estas tensões são duas das tensões principais que atuam nos pontos da parede da esfera. Note-se, também, que a tensão é igual a. A terceira tensão principal ( ) é igual a zero. Assim, as tensões que atuam nos pontos da parede do tubo podem ser representadas por: figura 7 Círculo de Mohr para um ponto da parede da esfera. Com estas tensões, a tensão uivalente, de acordo com o critério de resca fica: () e De acordo com o critério de Von Mises, se encontra: ( ) + ( ) + ( ) ( ) + ( ) () Lembrando que a tensão é igual a a expressão fica: ( ) () e figura 6 tensões principais para um ponto da parede da esfera. Importante observar que, para este tipo de vaso de pressão, a tensão uivalente é a mesma pelos dois critérios de dimensionamento. Prof. José Carlos Morilla 9 Critérios de Resistência II

Capítulo 6 Transformação de tensões e critérios de falhas

Capítulo 6 Transformação de tensões e critérios de falhas Capítulo 6 Transformação de tensões e critérios de falhas 6.1 Tensões principais no plano- O estado geral de tensão em um ponto é caracterizado por seis componentes independentes da tensão normal e de

Leia mais

APOSTILA RESISTÊNCIA DOS MATERIAIS XI

APOSTILA RESISTÊNCIA DOS MATERIAIS XI FACUDADE DE TECNOLOGIA APOSTILA RESISTÊNCIA DOS MATERIAIS XI Elaborado: Alvaro Henrique Pereira DME Data: 7/05/007 Revisão: 0 Contato: tel: 4-3354094 - e-mail: [email protected] - TENSÕES COMBINADAS

Leia mais

TECNOLOGIA MECÂNICA. Aula 04. Carregamento Axial Tensão Normal

TECNOLOGIA MECÂNICA. Aula 04. Carregamento Axial Tensão Normal FACULDADE DE TECNOLOGIA SHUNJI NISHIMURA POMPÉIA TECNOLOGIA MECÂNICA Aula 04 Carregamento Axial Tensão Normal Prof. Me. Dario de Almeida Jané Mecânica dos Sólidos - Revisão do conceito de Tensão - Carregamento

Leia mais

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Carga Elétrica e Lei de Coulomb 1. Consideremos o ponto P no centro de um quadrado

Leia mais

Introdução A tensão plana existe praticamente em todas as estruturas comuns, incluindo prédios máquinas, veículos e aeronaves.

Introdução A tensão plana existe praticamente em todas as estruturas comuns, incluindo prédios máquinas, veículos e aeronaves. - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Vasos de Pressão Introdução

Leia mais

Propriedades Mecânicas. Prof. Hamilton M. Viana

Propriedades Mecânicas. Prof. Hamilton M. Viana Propriedades Mecânicas Prof. Hamilton M. Viana Propriedades Mecânicas Propriedades Mecânicas Definem a resposta do material à aplicação de forças (solicitação mecânica). Força (tensão) Deformação Principais

Leia mais

Critérios de falha. - determinam a segurança do componente; - coeficientes de segurança arbitrários não garantem um projeto seguro;

Critérios de falha. - determinam a segurança do componente; - coeficientes de segurança arbitrários não garantem um projeto seguro; Critérios de falha - determinam a segurança do componente; - coeficientes de segurança arbitrários não garantem um projeto seguro; - compreensão clara do(s) mecanismo(s) de falha (modos de falha); -aspectos

Leia mais

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20.

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20. 11 FÍSICA Um bloco de granito com formato de um paralelepípedo retângulo, com altura de 30 cm e base de 20 cm de largura por 50 cm de comprimento, encontra-se em repouso sobre uma superfície plana horizontal.

Leia mais

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica.

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Texto 07 - Sistemas de Partículas Um ponto especial A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Porém objetos que apresentam uma geometria, diferenciada,

Leia mais

Evocar os conceitos do MRUV (movimento retilíneo uniformemente variado), do MRU (movimento retilíneo uniforme) e a decomposição de forças.

Evocar os conceitos do MRUV (movimento retilíneo uniformemente variado), do MRU (movimento retilíneo uniforme) e a decomposição de forças. 14 Curso Básico de Mecânica dos Fluidos Objetivos da segunda aula da unidade 1: Evocar os conceitos do MRUV (movimento retilíneo uniformemente variado), do MRU (movimento retilíneo uniforme) e a decomposição

Leia mais

A Equação de Bernoulli

A Equação de Bernoulli Aula 4 A equação de Bernoulli Objetivos O aluno deverá ser capaz de: Descrever a dinâmica de escoamento de um fluido. Deduzir a Equação de Bernoulli. Aplicar a Equação de Bernoulli e a Equação da Continuidade

Leia mais

Resistência dos Materiais

Resistência dos Materiais Aula 6 Estudo de Torção, Transmissão de Potência e Torque Aula 6 Definição de Torque Torque é o momento que tende a torcer a peça em torno de seu eixo longitudinal. Seu efeito é de interesse principal

Leia mais

Flambagem de Colunas Introdução

Flambagem de Colunas Introdução - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Flambagem de Colunas Introdução Os sistemas

Leia mais

Eventos independentes

Eventos independentes Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos

Leia mais

APOSTILA TECNOLOGIA MECANICA

APOSTILA TECNOLOGIA MECANICA FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de

Leia mais

Terceira Lista de Exercícios

Terceira Lista de Exercícios Universidade Católica de Petrópolis Disciplina: Resitência dos Materiais I Prof.: Paulo César Ferreira Terceira Lista de Exercícios 1. Calcular o diâmetro de uma barra de aço sujeita a ação de uma carga

Leia mais

CAPÍTULO IX CISALHAMENTO CONVENCIONAL

CAPÍTULO IX CISALHAMENTO CONVENCIONAL I. ASECTOS GERAIS CAÍTULO IX CISALHAMENTO CONVENCIONAL O cisalhamento convencional é adotado em casos especiais, que é a ligação de peças de espessura pequena. Considera-se inicialmente um sistema formado

Leia mais

Conceito de Tensão. Índice

Conceito de Tensão. Índice Conceito de Tensão Índice Breve Revisão dos Métodos da Estática 1 Tensões em Elementos Estruturais 2 nálise e Dimensionamento 3 Esforço xial; Tensão Normal 4 rincípio de Saint-Venant 5 Tensão Tangencial

Leia mais

Além do Modelo de Bohr

Além do Modelo de Bohr Além do Modelo de Bor Como conseqüência do princípio de incerteza de Heisenberg, o conceito de órbita não pode ser mantido numa descrição quântica do átomo. O que podemos calcular é apenas a probabilidade

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Vibrações Mecânicas. Vibração Livre Sistemas com 1 GL. Ramiro Brito Willmersdorf [email protected]

Vibrações Mecânicas. Vibração Livre Sistemas com 1 GL. Ramiro Brito Willmersdorf ramiro@willmersdorf.net Vibrações Mecânicas Vibração Livre Sistemas com 1 GL Ramiro Brito Willmersdorf [email protected] Departamento de Engenharia Mecânica Universidade Federal de Pernambuco 2015.1 Introdução Modelo 1

Leia mais

PROCESSO SELETIVO DO PRIMEIRO SEMESTRE DE 2015 PROVA DE PROCESSOS DE TRANSFORMAÇÃO METAL-MECÂNICA

PROCESSO SELETIVO DO PRIMEIRO SEMESTRE DE 2015 PROVA DE PROCESSOS DE TRANSFORMAÇÃO METAL-MECÂNICA PROVA DE PROCESSOS DE TRANSFORMAÇÃO METAL-MECÂNICA Um metal deforma-se plasticamente segundo a curva Y = 400 + 700 e 0,4. Deseja-se trefilar um fio circular deste metal do diâmetro inicial 8 mm, promovendo

Leia mais

Teoria das dobras. 1. Não há estabilidade de pé, portanto resistência nula. Sem dobra.

Teoria das dobras. 1. Não há estabilidade de pé, portanto resistência nula. Sem dobra. Teoria das dobras Eng Josemairon Prado Pereira I. INTRODUÇÃO A teoria das dobras é baseada no princípio de enrijecimento das chapas lisas através de dobras. No caso do aço é a proteção da chapa lisa através

Leia mais

140 Nm 140 Nm 25. Linha Neutra

140 Nm 140 Nm 25. Linha Neutra Engenharia ecânica LISTA 2 1)Uma barra de aço tem seção retangular de x60 mm e fica submetida à ação de dois conjugados iguais e de sentido contrário que agem em um plano vertical de simetria da barra,

Leia mais

Nome:...N o...turma:... Data: / / ESTUDO DOS GASES E TERMODINÂMICA

Nome:...N o...turma:... Data: / / ESTUDO DOS GASES E TERMODINÂMICA Ensino Médio Nome:...N o...turma:... Data: / / Disciplina: Física Dependência Prof. Marcelo Vettori ESTUDO DOS GASES E TERMODINÂMICA I- ESTUDO DOS GASES 1- Teoria Cinética dos Gases: as moléculas constituintes

Leia mais

2 Sistema de Lajes com Forma de Aço Incorporado

2 Sistema de Lajes com Forma de Aço Incorporado 2 Sistema de Lajes com Forma de Aço Incorporado 2.1. Generalidades As vantagens de utilização de sistemas construtivos em aço são associadas à: redução do tempo de construção, racionalização no uso de

Leia mais

FÍSICA CADERNO DE QUESTÕES

FÍSICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 2015 1 a QUESTÃO Valor: 1,00 Uma mola comprimida por uma deformação x está em contato com um corpo de massa m, que se encontra

Leia mais

UNIVERSIDADE SALGADO DE OLIVEIRA Campus RECIFE. Curso: Engenharia de Produção Disciplina: Materiais para Produção Industrial

UNIVERSIDADE SALGADO DE OLIVEIRA Campus RECIFE. Curso: Engenharia de Produção Disciplina: Materiais para Produção Industrial UNIVERSIDADE SALGADO DE OLIVEIRA Campus RECIFE Curso: Disciplina: Aula 1 PROPRIEDADES MECÂNICAS DOS METAIS POR QUÊ ESTUDAR? A determinação e/ou conhecimento das propriedades mecânicas é muito importante

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

7 Considerações finais

7 Considerações finais 243 7 Considerações finais A utilização de outros tipos de materiais, como o aço inoxidável, na construção civil vem despertando interesse devido aos benefícios desse aço, e a tendência decrescente de

Leia mais

Universidade Federal do Paraná

Universidade Federal do Paraná Universidade Federal do Paraná Programa de pós-graduação em engenharia de recursos hídricos e ambiental TH705 Mecânica dos fluidos ambiental II Prof. Fernando Oliveira de Andrade Problema do fechamento

Leia mais

Fortaleza Ceará TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014

Fortaleza Ceará TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014 TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014 1. Uma ave marinha costuma mergulhar de uma altura de 20 m para buscar alimento no mar. Suponha que um desses mergulhos tenha sido feito em sentido

Leia mais

www.enemdescomplicado.com.br

www.enemdescomplicado.com.br Exercícios de Física Gravitação Universal 1-A lei da gravitação universal de Newton diz que: a) os corpos se atraem na razão inversa de suas massas e na razão direta do quadrado de suas distâncias. b)

Leia mais

Faculdade Sagrada Família

Faculdade Sagrada Família AULA 12 - AJUSTAMENTO DE CURVAS E O MÉTODO DOS MÍNIMOS QUADRADOS Ajustamento de Curvas Sempre que desejamos estudar determinada variável em função de outra, fazemos uma análise de regressão. Podemos dizer

Leia mais

1 ELEMENTOS DA CIRCUNFERÊNCIA

1 ELEMENTOS DA CIRCUNFERÊNCIA Matemática 2 Pedro Paulo GEOMETRIA PLANA II 1 ELEMENTOS DA CIRCUNFERÊNCIA Circunferência é o conjunto de pontos que está a uma mesma distância (chamaremos essa distância de raio) de um ponto fixo (chamaremos

Leia mais

1 a QUESTÃO Valor 1,0

1 a QUESTÃO Valor 1,0 1 a QUESTÃO Valor 1,0 Um esquimó aguarda a passagem de um peixe sob um platô de gelo, como mostra a figura abaixo. Ao avistá-lo, ele dispara sua lança, que viaja com uma velocidade constante de 50 m/s,

Leia mais

Projeto: Torquímetro Didático

Projeto: Torquímetro Didático Universidade Estadual de Campinas Instituto de Física Gleb Wataghin 1º semestre de 2010 Projeto: Torquímetro Didático Disciplina: F-609 Instrumentação para Ensino Aluno: Diego Leonardo Silva Scoca diegoscocaxhotmail.com

Leia mais

Material para Produção Industrial. Ensaio de Compressão. Prof.: Sidney Melo 8 Período

Material para Produção Industrial. Ensaio de Compressão. Prof.: Sidney Melo 8 Período Material para Produção Industrial Ensaio de Compressão Prof.: Sidney Melo 8 Período 1 Embora em alguns textos se trate o comportamento na compressão pelos parâmetros do ensaio de tração (e.g. na aplicação

Leia mais

FONTES DE CAMPO MAGNÉTICO. Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante.

FONTES DE CAMPO MAGNÉTICO. Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante. FONTES DE CAMPO MAGNÉTICO META Aula 8 Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante. Mostrar a lei da circulação de Ampère-Laplace e a lei de Biot-Savart. Estudar

Leia mais

Notas de Cálculo Numérico

Notas de Cálculo Numérico Notas de Cálculo Numérico Túlio Carvalho 6 de novembro de 2002 2 Cálculo Numérico Capítulo 1 Elementos sobre erros numéricos Neste primeiro capítulo, vamos falar de uma limitação importante do cálculo

Leia mais

Exercícios Tensão e Corrente

Exercícios Tensão e Corrente Exercícios Tensão e Corrente TEXTO PARA A PRÓXIMA QUESTÃO: Atualmente há um número cada vez maior de equipamentos elétricos portáteis e isto tem levado a grandes esforços no desenvolvimento de baterias

Leia mais

DEFIJI Semestre2014-1 10:07:19 1 INTRODUÇÃO

DEFIJI Semestre2014-1 10:07:19 1 INTRODUÇÃO 1 DEFIJI Semestre2014-1 Ótica Lentes Esféricos Prof. Robinson 10:07:19 1 O ÍNDICE DE REFRAÇÃO INTRODUÇÃO Quando a luz passa de um meio para outro, sua velocidade aumenta ou diminui devido as diferenças

Leia mais

Resolvendo problemas com logaritmos

Resolvendo problemas com logaritmos A UA UL LA Resolvendo problemas com logaritmos Introdução Na aula anterior descobrimos as propriedades dos logaritmos e tivemos um primeiro contato com a tábua de logarítmos. Agora você deverá aplicar

Leia mais

Fichas de sistemas de partículas

Fichas de sistemas de partículas Capítulo 3 Fichas de sistemas de partículas 1. (Alonso, pg 247) Um tubo de secção transversal a lança um fluxo de gás contra uma parede com uma velocidade v muito maior que a agitação térmica das moléculas.

Leia mais

Resistência dos Materiais

Resistência dos Materiais Aula 5 Carga Axial e Princípio de Saint-Venant Carga Axial A tubulação de perfuração de petróleo suspensa no guindaste da perfuratriz está submetida a cargas e deformações axiais extremamente grandes,

Leia mais

NORMA TÉCNICA MEDIÇÃO DE VAZÃO DE EFLUENTES LÍQUIDOS ESCOAMENTO LIVRE CPRH N 2.004

NORMA TÉCNICA MEDIÇÃO DE VAZÃO DE EFLUENTES LÍQUIDOS ESCOAMENTO LIVRE CPRH N 2.004 NORMA TÉCNICA MEDIÇÃO DE VAZÃO DE EFLUENTES LÍQUIDOS ESCOAMENTO LIVRE CPRH N 2.004 MEDIÇÃO DE VAZÃO DE EFLUENTES LÍQUIDOS ESCOAMENTO LIVRE 1 OBJETIVO Esta Norma fixa as condições exigíveis para a indicação

Leia mais

Lista de exercícios sobre barras submetidas a força normal

Lista de exercícios sobre barras submetidas a força normal RESISTÊNCIA DOS MATERIAIS I Lista de exercícios sobre barras submetidas a força normal 1) O cabo e a barra formam a estrutura ABC (ver a figura), que suporta uma carga vertical P= 12 kn. O cabo tem a área

Leia mais

5 Discussão dos Resultados

5 Discussão dos Resultados 87 5 Discussão dos Resultados No procedimento de análises das imagens gráficas obtidas nas simulações pelo método de elementos finitos, comparou-se a distribuição das tensões nas restaurações com material

Leia mais

TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10.

TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10. TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10. Caro aluno (a): No livro texto (Halliday) cap.01 - Medidas alguns conceitos muito importantes são apresentados. Por exemplo, é muito importante

Leia mais

Problemas de Mecânica e Ondas

Problemas de Mecânica e Ondas Problemas de Mecânica e Ondas (LEMat, LQ, MEiol, MEmbi, MEQ) Tópicos: olisões: onservação do momento linear total, conservação de energia cinética nas colisões elásticas. onservação do momento angular

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3 Linhas de Força Mencionamos na aula passada que o físico inglês Michael Faraday (79-867) introduziu o conceito de linha de força para visualizar a interação elétrica entre duas cargas. Para Faraday, as

Leia mais

Projeções: leitura recomendada. Aulas 3, 4 e 10 da apostila Telecurso 2000

Projeções: leitura recomendada. Aulas 3, 4 e 10 da apostila Telecurso 2000 Projeções Projeções: leitura recomendada Aulas 3, 4 e 10 da apostila Telecurso 2000 Projeções: conceitos A projeção transforma pontos 3D (X, Y, Z) em 2D (xi,yi) Projeções: conceitos Raios de projeção emanam

Leia mais

Engenharia Mecânica Resistência dos materiais I LISTA 1 1. Determinar a tensão normal desenvolvida nos pontos A; B, C e D da seção S da barra.

Engenharia Mecânica Resistência dos materiais I LISTA 1 1. Determinar a tensão normal desenvolvida nos pontos A; B, C e D da seção S da barra. LISTA 1 1. Determinar a tensão normal desenvolvida nos pontos A; B, C e D da seção S da barra. Ι = 13640 4 A 18 B tf/m 4m 9,8 C 0 6 S 3tf 6 6 D A = 431,1 B = 431,1 C 0 = = 71,6 D. Repetir o problema anterior

Leia mais

Resolução de Curso Básico de Física de H. Moysés Nussenzveig Capítulo 08 - Vol. 2

Resolução de Curso Básico de Física de H. Moysés Nussenzveig Capítulo 08 - Vol. 2 HTTP://COMSIZO.BLOGSPOT.COM/ Resolução de Curso Básico de Física de H. Moysés Nussenzveig Capítulo 08 - Vol. 2 Engenharia Física 09 Universidade Federal de São Carlos 10/31/2009 *Conseguimos algumas resoluções

Leia mais

"SISTEMAS DE COTAGEM"

SISTEMAS DE COTAGEM AULA 6T "SISTEMAS DE COTAGEM" Embora não existam regras fixas de cotagem, a escolha da maneira de dispor as cotas no desenho técnico depende de alguns critérios. A cotagem do desenho técnico deve tornar

Leia mais

Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto

Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto Maria Angélica Araújo Universidade Federal de Uberlândia - Faculdade de Matemática Graduanda em Matemática - Programa de Educação

Leia mais

PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA

PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA Marcelo da S. VIEIRA 1, Elder Eldervitch C. de OLIVEIRA 2, Pedro Carlos de Assis JÚNIOR 3,Christianne Vitor da SILVA 4, Félix Miguel de Oliveira

Leia mais

3 Dimensionamento Clássico de Cordões de Solda

3 Dimensionamento Clássico de Cordões de Solda 3 Dimensionamento Clássico de Cordões de Solda A união de placas em uma estrutura é conhecida como junta. Uma junta pode ser obtida utilizando-se os mais variados elementos de fixação: parafusos, rebites,

Leia mais

Realizando cálculos para o aparelho divisor (I)

Realizando cálculos para o aparelho divisor (I) Realizando cálculos para o aparelho divisor (I) A UU L AL A Você já estudou como fazer os cálculos para encontrar as principais medidas para a confecção de uma engrenagem cilíndrica de dentes retos. Vamos

Leia mais

UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Física Questão 01 Durante um voo, um avião lança uma caixa presa a um paraquedas. Após esse lançamento, o paraquedas abre-se e uma força F,

Leia mais

CISALHAMENTO EM VIGAS CAPÍTULO 13 CISALHAMENTO EM VIGAS

CISALHAMENTO EM VIGAS CAPÍTULO 13 CISALHAMENTO EM VIGAS CISALHAMENTO EM VIGAS CAPÍTULO 13 Libânio M. Pinheiro, Cassiane D. Muzardo, Sandro P. Santos 25 ago 2010 CISALHAMENTO EM VIGAS Nas vigas, em geral, as solicitações predominantes são o momento fletor e

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

SP 04/92 NT 141/92. Velocidade Média: Considerações sobre seu Cálculo. Engº Luiz Henrique Piovesan. 1. Introdução

SP 04/92 NT 141/92. Velocidade Média: Considerações sobre seu Cálculo. Engº Luiz Henrique Piovesan. 1. Introdução SP 04/92 NT 141/92 Velocidade Média: Considerações sobre seu Cálculo Engº Luiz Henrique Piovesan 1. Introdução Apesar de velocidade ser um conceito claro para os profissionais de tráfego, há uma certa

Leia mais

Detonando a Teoria do Big Bang Sumário

Detonando a Teoria do Big Bang Sumário Sumário 1 Introdução...3 2 A Teoria do Big Bang...4 3 O Grande Equívoco...5 4 A Teoria da Big Pump...6 5 Considerações Finais...7 2 1 Introdução A finalidade desta obra é derrubar a Teoria do Big Bang,

Leia mais

n 1 L 1 n 2 L 2 Supondo que as ondas emergentes podem interferir, é correto afirmar que

n 1 L 1 n 2 L 2 Supondo que as ondas emergentes podem interferir, é correto afirmar que QUESTÃO 29 QUESTÃO 27 Uma escada de massa m está em equilíbrio, encostada em uma parede vertical, como mostra a figura abaixo. Considere nulo o atrito entre a parede e a escada. Sejam µ e o coeficiente

Leia mais

ESPAÇOS MUNIDOS DE PRODUTO INTERNO

ESPAÇOS MUNIDOS DE PRODUTO INTERNO ESPAÇOS MUNIDOS DE PRODUTO INTERNO Angelo Fernando Fiori 1 Bruna Larissa Cecco 2 Grazielli Vassoler 3 Resumo: O presente trabalho apresenta um estudo sobre os espaços vetoriais munidos de produto interno.

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Nome 3ª série Nº Conceito

Nome 3ª série Nº Conceito Prova Recuperação do 2º Semestre (Novembro) Física Prof. Reinaldo Nome 3ª série Nº Conceito Nº de questões 14 Tempo 100 min Data 13/11/15 Não é permitido o uso de calculadora. 0 = 4..10 7 T.m/A B = 0.i

Leia mais

Aspectos da Reometria

Aspectos da Reometria Aspectos da Reometria Aula 2 Prof. Hamilton Viana A lei básica A medida de viscosidade dos líquidos requer: definição dos parâmetros envolvidos no fluxo. Devem-se encontrar condições adequadas de teste

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Medeiros EXERCÍCIOS NOTA DE AULA IV Goiânia - 2014 EXERCÍCIOS 1. Uma partícula eletrizada positivamente é

Leia mais

Desenhando perspectiva isométrica

Desenhando perspectiva isométrica Desenhando perspectiva isométrica A UU L AL A Quando olhamos para um objeto, temos a sensação de profundidade e relevo. As partes que estão mais próximas de nós parecem maiores e as partes mais distantes

Leia mais

Eletrônica Analógica

Eletrônica Analógica UNIVERSIDADE FEDERAL DO PARÁ FACULDADE DE ENGENHARIA DE COMPUTAÇÃO E TELECOMUNICAÇÕES Eletrônica Analógica Transistores de Efeito de Campo Professor Dr. Lamartine Vilar de Souza [email protected] www.lvsouza.ufpa.br

Leia mais

FÍSICA. Figura 5.1 Ventilador

FÍSICA. Figura 5.1 Ventilador FÍSICA 1 MECÂNICA MECÂNICA I II Mecânica Gráfica para alunos do ensino 3. médio Pêndulo utilizando simples o PUCK 5. Movimento circular NOME ESCOLA EQUIPE SÉRIE PERÍODO DATA QUESTÃO PRÉVIA No ventilador

Leia mais

3.0 Resistência ao Cisalhamento dos Solos

3.0 Resistência ao Cisalhamento dos Solos 3.0 Resistência ao Cisalhamento dos Solos 3.1 INTRODUÇÃO Vários materiais sólidos empregados em construção normalmente resistem bem as tensões de compressão, porém têm uma capacidade bastante limitada

Leia mais

Figura 1: Exemplo de arredondamento com arestas retas.

Figura 1: Exemplo de arredondamento com arestas retas. 1 Arredondamentos Um dos detalhes de peças mais simples é o arredondamento. Este detalhe é necessário, numa maneira geral para quebrar cantos vivos. Cantos vivos podem ser perigosos em peças que vão ser

Leia mais

LISTA 3 - LEI DE COULOMB

LISTA 3 - LEI DE COULOMB LISTA 3 - LEI DE COULOMB 1. Duas cargas puntiformes eletrizadas estão fixadas a 3,0 mm uma da outra. Suas cargas elétricas são idênticas e iguais a 2,0 nc, positivas. Determine a intensidade da força eletrostática

Leia mais

POTENCIAL ELÉTRICO. por unidade de carga

POTENCIAL ELÉTRICO. por unidade de carga POTENCIAL ELÉTRICO A lei de Newton da Gravitação e a lei de Coulomb da eletrostática são matematicamente idênticas, então os aspectos gerais discutidos para a força gravitacional podem ser aplicadas para

Leia mais

É usual dizer que as forças relacionadas pela terceira lei de Newton formam um par ação-reação.

É usual dizer que as forças relacionadas pela terceira lei de Newton formam um par ação-reação. Terceira Lei de Newton A terceira lei de Newton afirma que a interação entre dois corpos quaisquer A e B é representada por forças mútuas: uma força que o corpo A exerce sobre o corpo B e uma força que

Leia mais

DESENVOLVIMENTO DE UM DINAMÔMETRO PARA MOTORES ELÉTRICOS EMPREGADOS EM VEÍCULOS EM ESCALA, COM MEDIDA DE DIRETA DE TORQUE E CARGA VARIÁVEL

DESENVOLVIMENTO DE UM DINAMÔMETRO PARA MOTORES ELÉTRICOS EMPREGADOS EM VEÍCULOS EM ESCALA, COM MEDIDA DE DIRETA DE TORQUE E CARGA VARIÁVEL DESENVOLVIMENTO DE UM DINAMÔMETRO PARA MOTORES ELÉTRICOS EMPREGADOS EM VEÍCULOS EM ESCALA, COM MEDIDA DE DIRETA DE TORQUE E CARGA VARIÁVEL Aluno: Vivian Suzano Orientador: Mauro Speranza Neto 1. Introdução

Leia mais

Coordenadas Polares Mauri C. Nascimento Dep. De Matemática FC Unesp/Bauru

Coordenadas Polares Mauri C. Nascimento Dep. De Matemática FC Unesp/Bauru Coordenadas Polares Mauri C. Nascimento Dep. De Matemática FC Unesp/Bauru Dado um ponto P do plano, utilizando coordenadas cartesianas (retangulares), descrevemos sua localização no plano escrevendo P

Leia mais

Aluno (a): Nº. Professor: Fabrízio Gentil Série: 3 o ano. Disciplina: Física Corrente elétrica e Leis de Ohm. Pré Universitário Uni-Anhanguera

Aluno (a): Nº. Professor: Fabrízio Gentil Série: 3 o ano. Disciplina: Física Corrente elétrica e Leis de Ohm. Pré Universitário Uni-Anhanguera Lista de Exercícios Aluno (a): Nº. Pré Universitário Uni-Anhanguera Professor: Fabrízio Gentil Série: 3 o ano. Disciplina: Física Corrente elétrica e Leis de Ohm 01 - (UEL PR) As baterias de íon-lítio

Leia mais

INSTRUMENTOS USADOS Lápis e lapiseiras Os lápis médios são os recomendados para uso em desenho técnico, a seleção depende sobretudo de cada usuário.

INSTRUMENTOS USADOS Lápis e lapiseiras Os lápis médios são os recomendados para uso em desenho técnico, a seleção depende sobretudo de cada usuário. INSTRUMENTOS USADOS Lápis e lapiseiras Os lápis médios são os recomendados para uso em desenho técnico, a seleção depende sobretudo de cada usuário. INSTRUMENTOS USADOS Esquadros São usados em pares: um

Leia mais

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Professor: Armando Sá Ribeiro Jr. Disciplina: ENG285 - Resistência dos Materiais I-A www.resmat.ufba.br 5ª LISTA

Leia mais

Técnicas adotas para seu estudo: soluções numéricas (CFD); experimentação (análise dimensional); teoria da camada-limite.

Técnicas adotas para seu estudo: soluções numéricas (CFD); experimentação (análise dimensional); teoria da camada-limite. Escoamento externo Técnicas adotas para seu estudo: soluções numéricas (CFD); experimentação (análise dimensional); teoria da camada-limite. Soluções numéricas, hoje um campo interessante de pesquisa e

Leia mais

Lista de Eletromagnetismo. 1 Analise as afirmativas seguintes e marque a opção correta.

Lista de Eletromagnetismo. 1 Analise as afirmativas seguintes e marque a opção correta. Lista de Eletromagnetismo 1 Analise as afirmativas seguintes e marque a opção correta. I. Se duas barras de ferro sempre se atraem, podemos concluir que uma das duas não está magnetizada. II. Para conseguirmos

Leia mais

Introdução ao Estudo da Corrente Eléctrica

Introdução ao Estudo da Corrente Eléctrica Introdução ao Estudo da Corrente Eléctrica Num metal os electrões de condução estão dissociados dos seus átomos de origem passando a ser partilhados por todos os iões positivos do sólido, e constituem

Leia mais

Departamento de Ciências da Natureza Física Prof. Rafael

Departamento de Ciências da Natureza Física Prof. Rafael 1. (FCC-Londrina-PR) Uma carga elétrica pontual de +1, x 1-6 C situa-se num dos vértices de um triângulo equilátero de,3m de lado. Com centro no segundo vértice, se localiza uma esfera isolante com diâmetro

Leia mais

Ensaio de tração: procedimentos normalizados

Ensaio de tração: procedimentos normalizados A U A UL LA Ensaio de tração: procedimentos normalizados Introdução Hoje em dia é comum encontrar uma grande variedade de artigos importados em qualquer supermercado e até mesmo em pequenas lojas de bairro:

Leia mais

27 Tolerância geométrica

27 Tolerância geométrica A U A UL LA Tolerância geométrica de posição Um problema Como se determina a tolerância de posição de peças conjugadas para que a montagem possa ser feita sem a necessidade de ajustes? Essa questão é abordada

Leia mais

Trabalho prático: O contador de Geiger-Muller. Descrição geral

Trabalho prático: O contador de Geiger-Muller. Descrição geral Trabalho prático: O contador de Geiger-Muller Descrição geral Um dos primeiros tipos de detector desenvolvidos foi o chamado contador (ou tubo) de Geiger-Muller. Este contador permite detectar a presença

Leia mais

O que é um sólido particulado? Importância

O que é um sólido particulado? Importância O que é um sólido particulado? Um material composto de materiais sólidos de tamanho reduzido(partículas). O tamanho pequeno das partículas pode ser uma característica natural ou pode ser devido a um processo

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) III Resolução de sistemas lineares por métodos numéricos. Objetivos: Veremos

Leia mais

Aula 3 CONSTRUÇÃO DE GRÁFICOS EM PAPEL DILOG. Menilton Menezes. META Expandir o estudo da utilização de gráficos em escala logarítmica.

Aula 3 CONSTRUÇÃO DE GRÁFICOS EM PAPEL DILOG. Menilton Menezes. META Expandir o estudo da utilização de gráficos em escala logarítmica. Aula 3 CONSTRUÇÃO DE GRÁFICOS EM PAPEL DILOG META Expandir o estudo da utilização de gráficos em escala logarítmica. OBJETIVOS Ao final desta aula, o aluno deverá: Construir gráficos em escala di-logarítmica.

Leia mais

Consolos Curtos Notas de aula Parte 1

Consolos Curtos Notas de aula Parte 1 Prof. Eduardo C. S. Thomaz 1 / 13 CONSOLOS CURTOS 1-SUMÁRIO Um consolo curto geralmente é definido geometricamente como sendo uma viga em balanço na qual a relação entre o comprimento ( a ) e a altura

Leia mais

(a) a aceleração do sistema. (b) as tensões T 1 e T 2 nos fios ligados a m 1 e m 2. Dado: momento de inércia da polia I = MR / 2

(a) a aceleração do sistema. (b) as tensões T 1 e T 2 nos fios ligados a m 1 e m 2. Dado: momento de inércia da polia I = MR / 2 F128-Lista 11 1) Como parte de uma inspeção de manutenção, a turbina de um motor a jato é posta a girar de acordo com o gráfico mostrado na Fig. 15. Quantas revoluções esta turbina realizou durante o teste?

Leia mais

Condução Unidimensional em Regime Estacionário 5ª parte (Geração de Energia Térmica e Superfícies Estendidas)

Condução Unidimensional em Regime Estacionário 5ª parte (Geração de Energia Térmica e Superfícies Estendidas) FENÔMENOS DE TRANSPORTE II TRANSFERÊNCIA DE CALOR DEQ303 Condução Unidimensional em Regime Estacionário 5ª parte (Geração de Energia Térmica e Superfícies Estendidas) Professor Osvaldo Chiavone Filho Soluções

Leia mais

x d z θ i Figura 2.1: Geometria das placas paralelas (Vista Superior).

x d z θ i Figura 2.1: Geometria das placas paralelas (Vista Superior). 2 Lentes Metálicas Este capítulo destina-se a apresentar os princípios básicos de funcionamento e dimensionamento de lentes metálicas. Apresenta, ainda, comparações com as lentes dielétricas, cujas técnicas

Leia mais

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Classificação dos movimentos Introdução Velocidade Média

Leia mais

Sistema de Memórias de Computadores

Sistema de Memórias de Computadores Sistema de Memórias de Computadores Uma memória é um dispositivo que permite um computador armazenar dados temporariamente ou permanentemente. Sabemos que todos os computadores possuem memória. Mas quando

Leia mais

Coordenadas Polares. Prof. Márcio Nascimento. [email protected]

Coordenadas Polares. Prof. Márcio Nascimento. marcio@matematicauva.org Coordenadas Polares Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Matemática

Leia mais