Camada de Rede. Agenda. Tópicos. Objetivos. Comutação Store-and-Forward INTRODUÇÃO

Tamanho: px
Começar a partir da página:

Download "Camada de Rede. Agenda. Tópicos. Objetivos. Comutação Store-and-Forward INTRODUÇÃO"

Transcrição

1 BCC361 Redes de Computadores Universidade Federal de Ouro Preto Departamento de Ciência da Computação Prof. Reinaldo Silva Fortes /02 Camada Nome 5 Aplicação 4 Transporte 3 Rede 2 Enlace 1 Física Agenda ; ; ; ; Interligação de redes;. Camada de Rede 1 2 Tópicos Objetivos; Comutação de pacotes Store-and-Forward; Serviços oferecidos à camada de transporte; Serviço não orientado a conexões; Serviço orientado a conexões; Datagramas v.s. Circuitos Virtuais. ; ; ; ; Interligação de redes;. INTRODUÇÃO 3 4 Objetivos Comutação Store-and-Forward Camada de Enlace: move quadros de duas máquinas; Camada de Rede: Transferência de pacotes de uma origem a um destino; Pode envolver vários hops(saltos) em roteadores intermediários ao longo do percurso; Para atingir seus objetivos, tem a necessidade de conhecer a topologia da rede para escolher os caminhos mais apropriados. Define o contexto de operação dos protocolos da camada de rede; Um host envia o pacote para o roteador mais próximo; O pacote é armazenado até chegar completamente e o checksum é verificado; Em seguida o roteador encaminha o pacote para o próximo roteador ao longo do caminho até que ele encontre o host de destino

2 Serviços oferecidos Serviços oferecidos A camada de rede oferece serviços à camada de transporte através de suas interfaces; Objetivos: 1. Os serviços devem ser independentes da tecnologia dos roteadores; 2. A camada de transporte deve ser isolada do número, tipo e da topologia dos roteadores presentes; 3. Os endereços de rede que tornam os pacotes disponíveis para a camada de transporte devem usar um plano de numeração uniforme; Serviços não orientados à conexão: Os pacotes são injetados individualmente na rede e roteados de modo independente uns dos outros; Neste contexto os pacotes são denominados datagramase a rede formada é denominada rede de datagramas. Dois tipos de serviço: Não orientados à conexão; Orientados à conexão. 7 8 Serviços oferecidos Serviços oferecidos Serviços orientados à conexão: É estabelecido um caminho entre os roteadores de origem e destino antes do envio de qualquer pacote. Todos os pacotes serão enviados através deste caminho; Esta conexão é denominada circuito virtuale a rede formada é denominada rede de circuitos virtuais. Datagramas v.s. Circuitos Virtuais(1): Questão Rede de Datagramas Rede de Circuitos Virtuais Configuraçãode circuitos Desnecessária. Obrigatória. Endereçamento Cadapacote contém os endereços completos de origem e destino. Cada pacote contém um pequeno número do circuito virtual. Informações sobre o estado Os roteadores não armazenam informações sobre o estado das conexões. Cada circuitovirtual requer espaço em tabelas de roteadores por conexão. Roteamento Cada pacoteé roteado independentemente. A rota é escolhida quandoo circuito virtual é estabelecido; todos os pacotes seguem essa rota Serviços oferecidos Datagramas v.s. Circuitos Virtuais(2): Questão Rede de Datagramas Rede de Circuitos Virtuais Efeitos de falhas no roteador Nenhum, comexceção dos pacotes perdidos durante a falha. Todosos circuitos virtuais que tiverem passado pelo roteador que apresentou o defeito serão encerrados. Difícil. Fácil,se for possível alocar recursos suficientes com antecedência para cada circuito virtual. ; ; Controle de congestionamento Difícil. Fácil, se for possível alocar recursos suficientes com antecedência para cada circuito virtual. 11 ; ; Interligação de redes;. ALGORITMOS DE ROTEAMENTO 12 2

3 Tópicos ; O princípio da otimização; Roteamento pelo caminho mais curto; Roteamento por inundação (Flooding); Roteamento por vetor de distâncias; Roteamento de estado de enlace; Roteamento hierárquico; Roteamentos por broadcast, multicast e anycast; Roteamento para dispositivos móveis; Roteamento em redes ad hoc. 13 constituem um dos elementos mais importantes no projeto da camada de rede; O algoritmo de roteamentoé a parte do software da camada de rede que decide sobre a interface de saída a ser utilizada na transmissão de um pacote de entrada; O roteamento é o processo de preenchimento e atualização de tabelas de roteamento contidas em cada roteador; O encaminhamentoé o processo que trata a chegada de cada pacote, consultando a tabela de roteamento e direcionando-o através da interface de saída (definida previamente pelo roteamento). 14 O princípio da otimização podem ser classificados em: Não adaptativos (roteamento estático): A escolha das rotas é previamente calculada na inicialização da rede; Não responde bem a falhas; Mais útil quando a escolha de rotas é óbvia (ex. apenas uma opção); Caso o roteador Jesteja no caminho ótimo entre Ie K, então o caminho ótimo entre J e Ktambém está na mesma rota; O conjunto de rotas ideais de todas as origens para determinado destino formam uma árvore denominada árvore de escoamento; Como se trata de uma árvore, não contém loops, assim um pacote será entregue dentro de um limite finito de hops. Adaptativos (roteamento dinâmico): Alteram as decisões de roteamento para refletir mudanças de topologia e tráfego; (a) Uma rede. (b) A árvore de escoamento para o roteador B. Roteamento pelo caminho mais curto Roteamento por inundação (Flooding) Técnica simples para obter caminhos ideais a partir de uma imagem da rede; A partir de um grafo da rede (nósrepresentam hostse arestas representam interfaces de ligação), aplica-se um algoritmo para encontrar o caminho mais curto entre dois hosts; Métricas possíveis (pesos das arestas): Número de hops; Distância física; Tempo de retardo; Etc Cada pacote é enviado para cada interface de saída, exceto aquela pela qual ele chegou; Problema: muitos pacotes duplicados; O cabeçalho de cada pacote contém um contador de hopsque é decrementado a cada hop, quando zerado o pacote é descartado; Para evitar transmitir pacotes mais de uma vez, pode ser acrescentado um número de sequência relacionado a cada origem; Utilidades: Pode ser eficiente quando existirem vários destinos; É robusto, pois geralmente encontra um caminho, podendo ser eficiente em situações de guerra ou catástrofes. 18 3

4 Roteamento por vetor de distâncias Roteamento por vetor de distâncias Cada roteador mantém uma tabela contendo a melhor distância até cada destino e qual interface deve ser utilizada; Processo de atualização: Estas tabelas são atualizadas com base na troca de informações com seus vizinhos; As métricas utilizadas são variadas; Também conhecido como algoritmo de Bellmand-Ford ou Ford-Fullkerson; Usado na ARPANET até (a) Topologia da rede. (b) Entrada em A, I, H, K, e nova tabela de roteamento de J. 20 Roteamento por vetor de distâncias Roteamento de estado de enlace Problema da contagem ao infinito: O estabelecimento das rotas pela rede é chamado convergência; Apesar de convergir para a resposta correta, no roteamento por vetor de distâncias pode ser feito de forma lenta; Notícias boas se espalham rapidamente, as más notícias se propagam lentamente: 21 O roteamento por vetor de distância leva muito tempo para convergir (decorrência da contagem ao infinito); Assim, foi substituído por um novo algoritmo, o roteamento de estado de enlace; Nele, cada roteador realiza os seguintes passos: 1. Descobrir seus vizinhos e aprender seus endereços; 2. Medir a distância (ou custo) até cada um de seus vizinhos; 3. Criar um pacote contendo tudo que acabou de aprender; 4. Enviar este pacote e receber pacotes de todos os outros roteadores; 5. Calcular o caminho mais curto até cada um dos outros roteadores. 22 (a) A inicialmente está fora de funcionamento e reestabelece comunicação. (b) A inicialmente está em funcionamento e perde a comunicação. Roteamento de estado de enlace Roteamento de estado de enlace 1. Descobrir seus vizinhos e aprender seus endereços: Um pacote HELLO é enviado; Os vizinhos respondem com um identificador; Este identificador precisa ser exclusivo; Quando determinados roteadores estão conectados em broadcast a situação é um pouco mais complexa: 2. Medir a distância (ou custo) até cada um de seus vizinhos: O custo pode ser definido automaticamente ou configurado pelo administrador da rede; Automaticamente: Um pacote especial ECHO/REPLAY é enviado e devolvido imediatamente; Com o tempo de ida e volta é possível estimar o custo; Manualmente: Um exemplo é utilizar valores inversamente proporcionais à largura de banda das conexões (a) Nove roteadores e uma LAN. (b) Grafo para a rede considerando um nó virtual N para representar a LAN (um roteador da LAN é selecionado para representar N). 4

5 Roteamento de estado de enlace Roteamento de estado de enlace 3. Criar um pacote contendo tudo que acabou de aprender: Os pacotes devem conter: Identidade do transmissor, Número de sequência, Idade (TTL), Lista de vizinhos e seus custos; Quando criar estes pacotes? Periodicamente em intervalos regulares; Na ocorrência de eventos significativos. 4. Enviar este pacote e receber pacotes de todos os outros roteadores (1): Parte mais complicada do algoritmo, todos os roteadores precisam receber os pacotes de estado de enlace de forma rápida e confiável; Algoritmo mais básico: Inundação; É feito o controle de roteadores e números de sequência; Para não haver repetição de número de sequência usa 32 bits; Problemas: Falha do roteador e reinício da numeração; Erro (adulteração) do número de sequência; (a) Rede. (b) Pacotes de estado de enlace para rede (a) Roteamento de estado de enlace Roteamento de estado de enlace 4. Enviar este pacote e receber pacotes de todos os outros roteadores (2): Solução: incluir a idade (TTL) do pacote; Ele é decrementado a cada segundo, quando chega a 0 os dados do roteador são descartados; Aprimoramentos: Retenção do pacote de estado de enlace; Confirmação dos pacotes de estado. 5. Calcular o caminho mais curto até cada um dos outros roteadores: A partir dos pacotes de estado é possível criar o grafo da subrede; Executa-se então o algoritmo de Dijkstra localmente; Memória necessária: ordem de K * N(Kvizinhos e Nroteadores) Roteamento hierárquico Roteamento hierárquico Com o aumento do tamanho das redes, a quantidade de recursos necessários para o roteamento também crescem; Exemplo de roteamento em uma hierarquia de dois níveis com cinco regiões: Uma estratégia a ser usada é a segmentação da rede em regiões, originando o roteamento hierárquico; Isso pode acarretar em um aumento do comprimento do trajeto, mas pesquisas apontam para que esta perda não seja tão impactante; O número ideal de níveispara uma rede de Nroteadores é lnn, exigindo e lnnentradas por roteador na tabela de roteamento;

6 Roteamento por broadcast Roteamento por broadcast Em algumas aplicações os hostsnecessitam enviar mensagens a muitos ou a todos os outros hosts; Encaminhamento pelo caminho inverso: O envio para todos os outros hostsé denominado broadcast; Existem vários métodos; N mensagens (1 para cada destino); Roteamento para vários destinos; Inundação; Encaminhamento pelo caminho inverso (vide figura no próximo slide). 31 (a) Rede. (b) Árvore de escoamento associada ao roteador I. (c) Árvore a partir do encaminhamento inverso. 32 Roteamento por multicast Roteamento por multicast Em determinadas aplicações é necessário enviar mensagens para vários receptores; Para a realização do multcastingé necessário fazer o gerenciamento dos grupos; Quando o número de receptores é muito grande o roteamento por broadcast pode ser uma boa alternativa; Usaremos como premissa que o roteador sabe a que grupo pertence cada host; Por outro lado, quando ele for muito pequeno, enviar uma mensagem para cada receptor pode ser uma boa alternativa; Cada roteador calcula uma árvore de multicasting; Entretanto, quando este número não é grande ou pequeno o suficiente para as duas alternativas anteriores, um outro tipo de estratégia se torna necessária => Roteamento por multicast. 33 O encaminhamento pode ser feito realizando podas ; 34 Roteamento por multicast Roteamento por anycast Exemplo: Um pacote é entregue ao membro mais próximo de um grupo => Roteamento por anycast; Usado no DNS(protocolo da camada de aplicação); Não necessita um esquema novo para o roteamento, vetor de distância e estado de enlace podem ser usados; Todos os nós de um grupo receberão o mesmo identificador; (a) Rede. (b) Spanning tree* para o roteador mais à esquerda. (c) Árvore multicast para o grupo 1. (d) Árvore multicast para o grupo 2. * Umaspanning tree é umaárvorequeé um subconjuntodaredeque incluitodososroteadores masnãocontémloop. Umaárvorede escoamentoou de encaminhamento inversoé umaspanning tree. 35 Ressalva para estado de enlace: identificadores de grupos devem ser usados apenas como destinos finais; 36 6

7 Roteamento para dispositivos móveis Roteamento para dispositivos móveis Muitas pessoas utilizam dispositivos conectados enquanto viajam ou se locomovem; Hosts móveis: Dispositivos sem fio em carros em movimento; Celulares com acesso a redes; Notebooks utilizados em trânsito ; Poderíamos simplesmente utilizar os algoritmos vistos anteriormente, atualizado as tabelas de roteamento à medida que o hostse movimenta; O número de hostsmóveis vem crescendo rapidamente e a as atualizações necessárias começam a se tornar impeditivas. 37 Outra alternativa é oferecer mobilidade acima da camada de rede; Normalmente ocorre com os notebooks; Em cada local eles adquirem novo endereço; Não se faz a associação entre os diferentes endereços; Outra ideia, envolvendo a camada de redes: Usada na Internet e em redes de celulares; O hostmóvel informa a um hostlocal (agente local) onde ele está naquele instante; Como o agente local deverá sempre saber onde o hostmóvel se encontra, ele pode ser utilizado para manter a comunicação entre outros hostse o hostmóvel; Tunelamento: o agente local recebe um pacote destinado ao host móvel, encapsula este pacote em um novo pacote enviando-o ao host móvel; 38 Roteamento para dispositivos móveis Roteamento em redes ad hoc Roteamento de pacotes para dispositivos móveis: Vimos como realizar roteamento para hostsmóveis e roteadores fixos no roteamento para dispositivos móveis; Uma situação ainda mais extrema envolve também roteadores móveis. Ex.: Trabalhos emergenciais em áreas de catástrofes naturais; Veículos militares em campos de batalha; Um grupo de pessoas com notebooks em uma área sem instalações ; 39 Nestas situações, cada nó constitui um hoste um roteador, e a rede é denominada rede ad hocou MANET(Mobile Ad Hoc NETworks). 40 Roteamento em redes ad hoc Roteamento em redes ad hoc Vários algoritmos foram propostos: AODV(Ad Hoc On-demand Distance Vector); DSR (Dynamic Source Routing); GPSR (Greed Perimeter Stateless Routing); Descoberta de rota de A para I: No AODV as rotas são calculadas sob demanda, ou seja, apenas quando são necessárias; Duas tarefas essenciais são realizadas: Descoberta de rota (figura no próximo slide); Manutenção de rota: Cada nó envia um pacote Hello, aos vizinhos; Ausência de resposta indica que não está mais ao alcance, as rotas que o utilizam são eliminadas; 41 (a) Área de broadcast de A. (b) Após B e D receberem. (c) Após C, F e G receberem. (d) Após E, H e I receberem. Os nós sombreados são os novos nós receptores. As linhas tracejadas são possíveis rotas inversas. As linhas contínuas correspondem à rota descoberta. 42 7

8 Tópicos ; Roteamento com conhecimento do tráfego; Controle de acesso; Controle de tráfego; Corte de carga. ; ; ; ; Interligação de redes;. ALGORITMOS DE CONTROLE DE CONGESTIONAMENTO Quando há um número excessivo de pacotes trafegando pela rede podem ocorrer atrasos ou perdas que prejudicam seu desempenho; Colapso de Congestionamento: Este estado da rede é denominado Congestionamento; As camadas de rede e transporte possuem responsabilidades de lidar com congestionamento; 45 Goodputé diferente de throughput, ele exclui os bits de overhead de protocolos. Assim, ele será sempre menor que o throughput. 46 Controle de Congestionamento v.s. Controle de Fluxo: Controle de Congestionamento: Garantia de que a rede seja capaz de transportar o tráfego oferecido; É uma questão global, envolvendo o comportamento de toda a rede; Duas formas de tratar o congestionamento: Aumentar os recursos; Reduzir a carga; Escalas de tempo para impedir o congestionamento: Controle de Fluxo: Está relacionado ao tráfego entre um transmissor em particular e um receptor em particular; Garantia de que um transmissor rápido não transmita dados numa velocidade maior do que o receptor seja capaz de tratá-los

9 Roteamento com conhec. do tráfego Controle de acesso Os algoritmos de roteamento vistos anteriormente levam em consideração apenas pesos fixos para as arestas; Outros fatores (variáveis) podem ser levados em consideração: Carga (número de pacotes); Atraso de propagação; Atraso médio de enfileiramento; Técnica usada em redes de circuitos virtuais; A ideia é simples: não monte um novo circuito virtual a menos que a rede possa transportar o tráfego adicional sem ficar congestionada; Assim, a tarefa é estimar quantos circuitos caberão dentro da capacidade da rede sem causar congestionamento. Assim, caminhos com menor peso favorecerão caminhos menos sobrecarregados Controle de acesso Controle de tráfego O controle de acesso pode ser combinado ao roteamento com conhecimento de tráfego: Considera-se rotas em torno dos pontos críticos como parte do estabelecimento de uma conexão; Outra estratégia para contornar o congestionamento é fazer com que os transmissores reduzam suas transmissões em situações críticas (prevenção de congestionamento); Dois problemas precisam ser resolvidos (1): Determinar quando o congestionamento é iminente; Os roteadores precisam notificar os transmissores que estejam causando o congestionamento em tempo hábil. (a) Rede congestionada. (b) Parte da rede sem congestionamento. Circuito virtual existente entre A e B Controle de tráfego Controle de tráfego Dois problemas precisam ser resolvidos (2): Determinar quando o congestionamento é iminente: Monitoramento dos recursos da rede: Médias de utilização dos enlaces de saída; Enfileiramento de pacotes em buffer*; Número de pacotes perdidos em função de buffering insuficiente; Os roteadores precisam notificar os transmissores que estejam causando o congestionamento em tempo hábil. * Das 3 alternativas a segunda é mais útil. A 1ª não está diretamente relacionada ao congestionamento, uma média de 50% de utilização do enlace pode ser pouco para um tráfego constante, mas pode ser muito para um tráfego altamente variável. Na 3ª o congestionamento já estará ocorrendo quando os pacotes forem perdidos. 53 Dois problemas precisam ser resolvidos (3): Determinar quando o congestionamento é iminente; Os roteadores precisam notificar os transmissores que estejam causando o congestionamento em tempo hábil: Os roteadores precisam identificar os transmissores corretos e notificá-los sem sobrecarregar uma rede que já está congestionada (ou prestes a ficar); Estratégias (exemplos a seguir): Pacotes Reguladores; Pacotes reguladores Hop a Hop; Notificação explícita de congestionamento. 54 9

10 Controle de tráfego Pacotes reguladores: Controle de tráfego Notificação explícita de congestionamento: Não envia pacotes adicionais; Ao invés disso, marca um pacote que ao chegar ao destino será utilizado para alertar a necessidade de notificação ao transmissor; A notificação será então adicionada em um pacote de resposta do receptor ao transmissor; (a) Um pacote regulador que afeta apenas a origem. (b) Um pacote regulador que afeta cada hop pelo qual passa Corte de carga Quando os roteadores estão inundados de pacotes que não podem manipular, eles simplesmente os descarta; Quais pacotes descartar? Vinho: quanto mais velho melhor: Ex.: Transferência de arquivo; Leite: quanto mais novo melhor: Ex.: Mídia em tempo real; Prioridade: Ex.: Pacotes com informações de roteamento são mais importantes que pacotes de dados; A próprias aplicações podem marcar seus pacotes com uma indicação de sua importância; Como garantir idoneidade? Detecção Aleatória Prematura; 57 ; ; ; ; Interligação de redes;. QUALIDADE DE SERVIÇO 58 Tópicos ; Requisitos da aplicação; Modelagem de tráfego; Listagem de pacotes; Controle de acesso; Serviços integrados; Serviços diferenciados. As técnicas anteriores foram projetadas para reduzir o congestionamento e melhorar o desempenho da rede; Algumas aplicações exigem garantia de desempenho mais altas do que o melhor que se pode fazer em um momento; A atenção agora está em oferecer uma qualidade de serviço adequada às necessidades das aplicações

11 Um solução seria a sobreposição: montar uma rede com capacidade suficiente para qualquer tráfego exigido dela; Entretanto, esta solução é muito cara, além de ser dependente de estimativas de tráfego futuro (se o padrão mudar ela pode não atender mais); Os mecanismos de qualidade de serviço permitem que uma rede com menos capacidade atenda aos requisitos da aplicação da mesma forma. Quatro aspectos devem ser resolvidos para garantir a qualidade de serviço: 1. Quais aplicações da rede são necessárias; 2. Como regular o tráfego que entra na rede; 3. Como reservar recursos nos roteadores para garantir desempenho; 4. Se a rede pode aceitar mais tráfego com segurança Requisitos da aplicação Requisitos da aplicação Uma sequência de pacotes de uma origem para um destino é denominada fluxo; Não confundir fluxo com rota; Quatro parâmetros podem caracterizar as necessidades de um fluxo: 1. Largura de banda; 2. Atraso; 3. Flutuação (variação do atraso); 4. Perda; Estes parâmetros definem o QoS(QualityofService) para o fluxo. 63 Rigidez de requisitos de QoS de diferentes aplicações: Aplicação Largura de Banda Atraso Flutuação Perda Correio eletrônico Baixa Baixa Baixa Média Transf. de arquivos Alta Baixa Baixa Média Acesso à Web Média Média Baixa Média Login remoto Baixa Média Média Média Áudio por demanda Baixa Baixa Alta Baixa Vídeo por demanda Alta Baixa Alta Baixa Telefonia Baixa Alta Alta Baixa Videoconferência Alta Alta Alta Baixa 64 Requisitos da aplicação Modelagem de tráfego Categorias de suporte a QoS: 1. Taxa de bits constante: Largura de banda e atraso uniformes; Ex.: telefonia; 2. Taxa de bits variável de tempo real: Quando os pacotes podem variar em tamanho (compactação de vídeo por exemplo); Ex.: Videoconferência; 3. Taxa de bits variável não de tempo real: Pacotes podem variar de tamanho mas não exige tempo real; Ex.: Streamming de vídeo; 4. Taxa de bits disponível: Aplicações não sensíveis a atraso ou flutuação; Ex.: Correio eletrônico. 65 Em redes de dados o tráfego é caracterizado por rajadas, que são mais difíceis de lidar do que redes de tráfego constante; As rajadas podem encher os buffers e causar perdas de pacotes; A modelagem de tráfegoé uma técnica relacionada à regulagem da taxa média de fluxo de dados que entra na rede; Quando um fluxo é configurado o usuário e a rede concordam com um determinado padrão de tráfego: Acordo de nível de serviço SLA(Service Level Agreement); Os pacotes que excedem o padrão acordado podem ser descartados ou serem marcados com baixa prioridade; O monitoramento do fluxo é denominado controle de tráfego; 66 11

12 Modelagem de tráfego Algoritmos Leaky e Token bucket: Listagem de pacotes Para oferecer garantia de desempenho é necessário reservar recursos suficientes ao longo da rota percorrida pelos pacotes; Para isso, deve-se considerar que todos os pacotes de um fluxo seguem uma rota fixa: É difícil garantir qualidade se os pacotes percorrem rotas diferentes; Desta forma, algo semelhante a um circuito virtual será feito para todos os pacotes de um fluxo. (a) Modelagem de pacotes.(b) Leakybucket. (c) Token bucket Listagem de pacotes Os algoritmos que realizam a tarefa de alocar recursos de roteadores para os fluxos de pacotes são denominados algoritmos de escalonamento de pacotes; Listagem de pacotes Algoritmo de enfileiramento ordenado com rodízio de filas: Três tipos de recursos podem ser reservados: 1. Largura de banda; 2. Espaço em buffer; 3. Ciclos de CPU. 69 Problemas: Oferece mais largura de banda para pacotes maiores; Todos os hosts possuem a mesma prioridade. 70 Listagem de pacotes Controle de acesso Algoritmo de enfileiramento ordenado com rodízio de filas ponderado(wfq Weighted Fair Queueing): Rodízio é byte a bytee não pacote a pacote; Hosts com maior prioridade podem transmitir mais bytes. 71 Até aqui estudamos elementos necessários para a QoS, agora é hora de reuni-los para realmente oferecer QoS; No controle de acesso para regular o congestionamento procurávamos uma garantia de desempenho, mesmo que fraca; Agora, no controle de acesso para QoSas garantias são mais fortes: O usuário fornece à rede um fluxo com um requisito de QoS desejado (especificação de fluxo): Taxa e tamanho de token bucket; Taxa de dados de pico; Tamanho mínimo e máximo de pacote. 72 (a) Rodízio de filas ponderado. (b) Tempo final dos pacotes. 12

13 Controle de acesso Controle de acesso As reservas de recursos devem ser feitas em toda a rota; Muitos algoritmos de roteamento encontram o melhor caminho entre uma origem e destino e direciona todo o tráfego por ele; Muitos fluxos podem ser rejeitados por não haver recursos de reserva suficientes para atender o fluxo pelo melhor caminho; Roteamento por QoS: definir rotas diferentes que tenham capacidade de sobra para atender aos fluxos. 73 Algumas aplicações podem flexibilizar a especificação de fluxo: Exemplo: Uma aplicação de streamingde vídeo que normalmente utiliza 30 quadros/segundo pode reduzir a taxa do vídeo para 25 quadros por segundo caso a rede não possua recursos suficientes; Negociação de fluxo: Envolvidos: transmissor, receptor e roteadores intermediários; O transmissor prepara uma especificação de fluxo e o propaga através da rota; Cada roteador avalia e modifica os parâmetros conforme sua capacidade; Quando a especificação chega à outra extremidade os parâmetros podem ser estabelecidos. 74 Serviços integrados Serviços integrados Surgiram por iniciativa da IETF(Internet Engineering Task Force), nas RFCs 2205 a 2212 para a criação de uma arquitetura para streaming de multimídia; Protocolo RSVP(Resource reservation Protocol) (2): Uma rede em que 1 e 2 são transmissores e 3, 4 e 5 são receptores: Tinha como foco aplicações unicast e multicast; Protocolo RSVP(Resource reservation Protocol) (1): Parte principal da arquitetura; Trata-se de um protocolo de reserva de recursos; Utiliza roteamento multicast com spanning trees; (a) Rede. (b) A spanning tree multicast para o host 1. (c) A spanning tree multicast para o host 2. Serviços integrados Serviços diferenciados Protocolo RSVP(Resource reservation Protocol) (3): Processo de reserva: Os algoritmos baseados em fluxo têm uma desvantagem por necessitar realizar uma configuração antecipada para estabelecer cada fluxo; Quando existem muitos fluxos este problema é potencializado; Assim, a IETF procurou uma alternativa para resolver esta questão; (a) O host 3 solicita um canal para o host 1. (b) O host 3 então solicita um canal para o host 2. (c) O host 5 solicita um canal para o host Surgiram os Serviços Diferenciados(SD), descritos nas RFCs 2474, 2475, e outras

14 Serviços diferenciados Serviços diferenciados Esta técnica é conhecida como QoSbaseada em classe; Um conjunto de classes de serviço são definidas com regras de encaminhamento correspondentes; Um cliente utilizando o DS terá seus pacotes marcados com a classe correspondente; A reserva de recursos é feita para uma classe de pacotes; O tráfego de uma classe deve seguir uma forma específica. 79 A IETF definiu alguns gerenciamentos de classes independentes: Encaminhamento Expresso: Duas classes: Pacotes Expressos; Pacotes Regulares; Encaminhamento Garantido: Quatro classes de prioridades; Três classes de descarte de pacotes que estejam sofrendo congestionamento; Doze combinações (classes de serviço). 80 Serviços diferenciados Serviços diferenciados Encaminhamento Expresso: Encaminhamento Garantido: Interligação de redes Tópicos ; Como as redes podem ser conectadas; Tunelamento; Roteamento entre redes; Fragmentação de pacotes. ; ; ; ; Interligação de redes;. INTERLIGAÇÃO DE REDES

15 Interligação de redes Interligação de redes Existem diversas redes diferentes; Exemplos de diferenças entre redes: Como interligá-las para formar uma rede interligada, ou seja, uma internet(com i minúsculo)? Endereçamento; Orientada a conexão ou não; Como as redes interligadas normalmente diferem em aspectos importantes, levar pacotes de uma rede para outra nem sempre é fácil; QoS v.s. Melhor esforço; Mecanismos de segurança; Quais são as principais diferenças? 85 Nos próximos tópicos algumas estratégias para interligar diferentes redes. 86 Interligação de redes Interligação de redes Como as redes podem ser conectadas Como as redes podem ser conectadas Duas escolhas básicas: 1. Criar dispositivos que traduzam ou convertam pacotes de cada tipo em pacotes para outra rede; 2. Acrescentar uma camada de abstração, criando uma camada comum em cima das diferentes redes; Uma rede interligada: A segunda opção tem sido tremendamente bem sucedida, a camada proposta foi separada nos protocolos TCP e IP; O IP está na camada de rede e o TCP está na camada de transporte. 87 (a) Pacote cruzando diferentes redes. (b) Rede interligada e processamento de protocolo da camada de enlace. 88 MPLS(Multi Protocol Label Switching): rede orientada a conexões. Interligação de redes Como as redes podem ser conectadas Interligação de redes Tunelamento Este tipo de interligação é eficiente quando existe uma camada de rede comum entre as redes; É uma alternativa eficiente quando os hostsde origem e destino estão em um mesmo tipo de rede, mas estão separados por um tipo diferente; Exemplos: IP, é o protocolo de rede quase universal; Outros protocolos: IPX, SNA e AppleTalk; Túnel entre Paris e Londres: As versões do IP: IPv4e IPv6, são incompatíveis; Um roteador capaz de lidar com vários protocolos de rede é denominado roteador multiprotocolo

16 Interligação de redes Roteamento entre redes Interligação de redes Fragmentação de pacotes Deferentes redes podem utilizar algoritmos de roteamento distintos, e incompatíveis (estratégias, pesos, etc...); Isso leva à necessidade de um roteamento em dois níveis: Protocolo de Gateway Interior, intradomínio; Protocolo de Gateway Exterior, interdomínio; Gateway : termo mais antigo para roteador; Na Internet o protocolo interdomínio é chamado BGP(Border Gateway Protocol); Como uma rede opera de forma independente das demais, ela é denominada de sistema autônimo, ou AS(Autonomous System). 91 Cada rede (ou enlace) impõe um tamanho máximo de pacote devido a uma variedade de motivos: 1. Hardware 2. Sistema operacional 3. Protocolos 4. Adequação aos padrões (inter)nacionais 5. Redução nas retransmissões devido a erros 6. Impedir que pacotes ocupem o canal por muito tempo Esse tamanho de pacote é denominado unidade máxima de transmissão do caminho, ou Path MTU(Path Maximum Transmission Unit); Como interligar redes com tamanhos MTUs diferentes? 92 Interligação de redes Fragmentação de pacotes Interligação de redes Fragmentação de pacotes Uma solução é o uso de fragmentação: A fragmentação apresenta alguns problemas: Overhead introduzido com a fragmentação; Um pacote inteiro pode ser perdido se apenas um de seus fragmentos for perdido; Pode ser um peso a mais para os hosts; Uma solução é eliminar a fragmentação, usando a descoberta da MTU do caminho: (a) Fragmentação tranparente. (b) Fragmentação não tranparente Tópicos ; ; Protocolo IPv6; Protocolos de controle; Protocolos de roteamento. ; ; ; ; Interligação de redes;. A CAMADA DE REDE DA INTERNET

17 pode ser vista como um conjunto de subredes, ou sistemas autônomos (AS), conectados entre si; Esquema da estrutura da Internet: Existem diversos backbonesconstruídos a partir de linhas de grande largura de banda e roteadores rápidos; Conectados aos backbonesestão os ISPs(Internet Service Providers) que oferecem acesso à Internet para residências e empresas Elemento que mantém a Internet unida; O cabeçalho IPv4: Foi projetado desde o início tendo como objetivo a interligação de redes; Um datagramaipv4 consiste de uma parte de cabeçalho e uma parte de dados; 99 Possui uma parte de tamanho fixo de 20 bytes e uma parte opcional de tamanho variado; 100 O cabeçalho IPv4: O cabeçalho IPv4: Versão(4 bits): Indica o número da versão corrente; A versão 4 é largamente utilizada. 101 IHL(4 bits): Indica o tamanho do cabeçalho em palavras de 32 bits; O tamanho mínimo é 5 (nenhuma opção presente); O tamanho máximo é 15 (60 bytes, sendo 40 para opções)

18 O cabeçalho IPv4: O cabeçalho IPv4: Serviços diferenciados (6 bits): Utilizado para distinguir diferentes classes de serviços; Possibilita diferentes combinações de confiabilidade e velocidade. 103 Tamanho total (16 bits): Tamanho em bytes de todo o pacote (cabeçalho + dados); Valor máximo O cabeçalho IPv4: O cabeçalho IPv4: Identificação (16 bits), DF(1 bit), MF(1 bit) e Deslocamento de Fragmento(13 bits) : Utilizados na fragmentação e remontagem de pacotes; DF: não fragmentar (utilizado para descoberta de MTU); MF: Mais fragmentos (todos exceto o último são marcados). 105 Tempo de vida (TTL)(8 bits) : Contador de hops utilizado para limitar a vida útil dos pacotes; Quando chega a zero o pacote é descartado e um pacote de advertência é enviado ao computador de origem. 106 O cabeçalho IPv4: O cabeçalho IPv4: Protocolo(8 bits) : Indica o processo de transporte para o qual o datagramadeve ser entregue no destino (normalmente TCP ou UDP). 107 Checksum do cabeçalho (16 bits) : Para validação do cabeçalho; Deve ser calculado para cada hoppois ao menos o TTL é alterado em cada roteador

19 O cabeçalho IPv4: O cabeçalho IPv4: Endereços de origem e destino (32 bits cada) : Endereços IP dos hosts de origem e destino. 109 Opções (tamanho variável) : Mecanismo para permitir inserir informações inexistentes no projeto original. 110 Endereços IP(1): Cada hoste roteador na Internet tem um endereço IP que pode ser usado nos campos origem e destino; O endereço está na verdade associado a uma interface de rede, assim, se um hostou roteador pode estar ligado a mais de uma rede e possuir mais de um endereço; Endereços IP(2): Cada endereço de 32 bits é composto de uma parte para a identificação da rede e uma parte para a identificação do host; O número de bits utilizados para a parte da rede é representado no final do endereço separado por uma barra: Ex.: /24 (24 bits para a parte da rede); A distribuição dos endereços é feita pela ICANN; São escritos em notação decimal separados por ponto: Ex.: Endereços IP(3): Para facilitar o gerenciamento de IPs, uma rede pode ser subdividida em subredes: Endereços IP(4): Os endereços IP são escassos, um endereço /16 fornece um número de hosts; Se um ISP tiver um número superior de clientes ele terá um sério problema; Uma estratégia para contornar este problema é não fornecer IPs fixos para seus clientes, ou seja, ao se conectar o cliente recebe um IP, após a conexão se tornar inativa este IP poderá ser atribuído a outro cliente; Ainda assim existe uma séria limitação. Subrede Ciência da Computação Engenharia Elétrica Artes Endereço XXXXXXX.XXXXXXXX XXXXXX.XXXXXXXX XXXXX.XXXXXXXX

20 Protocolo IPv6 Endereços IP(5): Uma solução melhor é o NAT(Network Address Translation); Cada empresa possui um IP único; Cada host possui um IP específico (usado internamente): a /8 ( hosts); a /12 ( hosts); a /16 ( hosts); Para tráfego externo é feita uma tradução de endereços; 115 Os últimos endereços IPv4 estão prestes a serem distribuídos; Antecipando este problema e visando solucionar outras deficiências do IPv4, a IETF, desde 1990 começou a trabalhar em uma nova versão do IP, o IPv6; Principais objetivos do IPv6 (1): Suporte a bilhões de hosts; Redução das tabelas de roteamento; Protocolo simplificado; Melhoria na segurança; 116 Protocolo IPv6 Protocolos de controle Principais objetivos do IPv6 (2): Cuidado com o tipo de serviço; Auxílio ao multicasting; Deslocamento de hosts sem alteração do IP; Possibilidade de evolução do protocolo; Coexistência entre protocolos antigos e novos; Entretanto, apesar de implementado, o IPv6 ainda não se popularizou, sendo usado por aproximadamente 1% da Internet. 117 Além do IP, a Internet possui outros protocolos usados na camada de rede, exemplos: ICMP(Internet Control Message Protocol); ARP(Address Resolution Protocol); DHCP(Dynamic Host Configuration Protocol); Veremos algumas características destes protocolos para suas versões correspondentes ao IPv4; ICMP e DHCP possuem versões semelhantes para o IPv6, e o correspondente ao ARP é o NDP(NeighborDiscovery Protocol). 118 Protocolos de controle Protocolos de controle ICMP(Internet Control Message Protocol) (1): A operação da Internet é monitorada pelos roteadores, quando algo inesperado ocorre durante o processamento de um pacote o transmissor será notificado através do protocolo de mensagem de controle, o ICMP; Também é usado para realização de testes da rede; Existem cerca de 12 tipos de mensagens ICMP; Cada mensagem é encapsulada e transmitida em um pacote IP; As mais importantes são apresentadas no quadro a seguir; 119 ICPM(Internet Control Message Protocol) (2): Principais tipos de mensagem: Tipo de Mensagem Destination unreachable Descrição O pacote não pode ser entregue. Time exceed O campo TTL atingiu 0. Parameter problem Source quench Redirect Echo e Echo reply Timestamp request/reply Router advertisement/solicitation Campos de cabeçalho inválido. Restringe o envio de pacotes. Ensina uma rota a um roteador. Verificam se uma máquina está ativa. O mesmo que Echo, mas com o registro de tempo. Encontra um roteador próximo. 120 Uma lista completa pode ser obtida em: 20

21 Protocolos de controle ARP(Address Resolution Protocol): O hardware na camada de enlace não reconhece endereços IP; Como mapear endereços IP para endereços NIC(Network Interface Cards)? Protocolos de controle DHCP(Dynamic Host Configuration Protocol): Quando um computador é iniciado, ele já possui seu NIC, mas ainda não possui um IP; Permite atribuir um endereço IP automaticamente; Para isso: O ARP envia um pacote DHCP DISCOVER em broadcast; Quando o servidor DHCP recebe o pacote ele atribui um endereço IP livre e o envia ao host em um pacote DHCP OFFER; Para evitar que endereços IP sejam perdidos, é adotada uma estratégia de aluguel (leasing) do endereço IP Protocolos de roteamento Na Internet existem diferentes protocolos para a realização de roteamento: MPLS(MultiProtocol Label Switching); OSPF(Open Shortest Path First); BGP(Border Gateway Protocol). Protocolos de roteamento MPLS(MultiProtocol Label Switching): O roteamento é feito com base em rótulos ao invés de ser pelo endereço IP; Com isso, fica bem próximo de um protocolo de comutação de circuitos; Definido pela IETF na RFC 3031; Protocolos de roteamento OSPF(Open Shortest Path First): Protocolo de Roteamento de Gateway Interior; Responsável pelo roteamento intradomínio; Utiliza estratégia de roteamento por estado de enlace; Realiza balanceamento de carga; Possui rápida adaptação a alterações de topologia; Definido pela IETF nas RFCs1131 e Protocolos de roteamento BGP(Border Gateway Protocol): Protocolo de Roteamento de Gateway Exterior; Responsável pelo roteamento interdomínio; Possui preocupações políticas; Restrições podem ser definidas manualmente; Utiliza estratégia de roteamento por vetor de distância; Rotas que infringem alguma restrição assumem distância infinita; Não sofre com o problema de contagem ao infinito; A versão 4 é definida na RFC

22 Fim! REFERÊNCIAS: A.S. TANENBAUM, Redes de Computadores, Prentice Hall, 5a. edição, 2011; Materiais didáticos dos professores: RandeA. Moreira, UFOP / Disponível em: em 17/08/2011); Fátima Figueiredo, PUC Minas, não disponível on-line;

Camada de Rede. BCC361 Redes de Computadores Universidade Federal de Ouro Preto Departamento de Ciência da Computação

Camada de Rede. BCC361 Redes de Computadores Universidade Federal de Ouro Preto Departamento de Ciência da Computação BCC361 Redes de Computadores Universidade Federal de Ouro Preto Departamento de Ciência da Computação Prof. Saul Delabrida www.decom.ufop.br/sauldelabrida 2018/02 Camada Nome 5 Aplicação 4 Transporte 3

Leia mais

Camada de Rede. BCC361 Redes de Computadores Universidade Federal de Ouro Preto Departamento de Ciência da Computação

Camada de Rede. BCC361 Redes de Computadores Universidade Federal de Ouro Preto Departamento de Ciência da Computação Redes de Computadores Universidade Federal de Ouro Preto Departamento de Ciência da Computação Prof. Reinaldo Fortes / Saul Delabrida www.decom.ufop.br/reinaldo Camada Nome 5 Aplicação 4 Transporte 3 Rede

Leia mais

Capítulo 5. A camada de rede

Capítulo 5. A camada de rede Capítulo 5 A camada de rede slide slide 1 1 slide 2 Questões de projeto da camada de rede Comutação de pacote: store-and-forward Serviços fornecidos à camada de transporte Implementação do serviço não

Leia mais

Camada de Rede. Agenda INTRODUÇÃO

Camada de Rede. Agenda INTRODUÇÃO BCC361 Redes de Computadores Universidade Federal de Ouro Preto Departamento de Ciência da Computação Prof. Reinaldo Silva Fortes www.decom.ufop.br/reinaldo 2011/02 Camada Nome 5 Aplicação 4 Transporte

Leia mais

Roteamento e Roteadores. Conceitos Diversos

Roteamento e Roteadores. Conceitos Diversos e Roteadores Conceitos Diversos Um roteador é um dispositivo que provê a comunicação entre duas ou mais LAN s, gerencia o tráfego de uma rede local e controla o acesso aos seus dados, de acordo com as

Leia mais

Redes de Computadores. Prof. MSc André Y. Kusumoto

Redes de Computadores. Prof. MSc André Y. Kusumoto Redes de Computadores Prof. MSc André Y. Kusumoto andrekusumoto.unip@gmail.com Nível de Rede Comunicação entre dispositivos de uma mesma rede ocorrem de forma direta. Quando a origem e o destino estão

Leia mais

ROUTER. Alberto Felipe Friderichs Barros

ROUTER. Alberto Felipe Friderichs Barros ROUTER Alberto Felipe Friderichs Barros Router Um roteador é um dispositivo que provê a comunicação entre duas ou mais LAN s, gerencia o tráfego de uma rede local e controla o acesso aos seus dados, de

Leia mais

# $ % & ' ( ) * ' ( ) *! " " Orientador +, -

# $ % & ' ( ) * ' ( ) *!   Orientador +, - #$ %&'()* '()*!"" Orientador +,- ."%&/0#12 3"/%'0)/))&/ )4506 7" %/0)/))&/ 8906 8)) :"'/0)/))&/ '% '); Um roteador recebe em alguma de suas interfaces um pacote vindo da rede local ou da rede externa.

Leia mais

Redes de Computadores. Prof. André Y. Kusumoto

Redes de Computadores. Prof. André Y. Kusumoto Redes de Computadores Prof. André Y. Kusumoto andrekusumoto.unip@gmail.com 2/16 Nível de Rede Comunicação entre dispositivos de uma mesma rede ocorrem de forma direta. Quando a origem e o destino estão

Leia mais

1 Exercícios da Parte 3 Camada de Enlace de Dados. 2. Qual a importância da tarefa de enquadramento em uma transmissão de dados?

1 Exercícios da Parte 3 Camada de Enlace de Dados. 2. Qual a importância da tarefa de enquadramento em uma transmissão de dados? BCC361 Redes de Computadores (2012-01) Departamento de Computação - Universidade Federal de Ouro Preto - MG Professor Reinaldo Silva Fortes (www.decom.ufop.br/reinaldo) Lista de Exercícios 02 - Camadas

Leia mais

Funcionalidades da camada de rede

Funcionalidades da camada de rede Camada de Rede Objetivo Conhecer as características, funcionalidades e protocolos da camada de rede, especialmente os protocolos IP e ICMP Entender as principais características e princípios operacionais

Leia mais

Camada de Rede Fundamentos e Protocolos. 6/7/18 Organizado por Bruno Pereira Pontes brunopontes.com.br

Camada de Rede Fundamentos e Protocolos. 6/7/18 Organizado por Bruno Pereira Pontes brunopontes.com.br Camada de Rede Fundamentos e Protocolos 1 Objetivos Conhecer as características, funcionalidades e protocolos da camada de rede, especialmente os protocolos IP e ICMP; Entender as principais características

Leia mais

Datagrama IP. Professor Leonardo Larback

Datagrama IP. Professor Leonardo Larback Professor Leonardo Larback O pacote apresentado abaixo é repassado à camada de enlace para que seja enviado ao equipamento destino. VERS: Identifica a versão do protocolo IP que montou o pacote. HLEN:

Leia mais

Redes de computadores e a Internet. Prof. Gustavo Wagner. A camada de rede

Redes de computadores e a Internet. Prof. Gustavo Wagner. A camada de rede Redes de computadores e a Internet Prof. Gustavo Wagner Capitulo Capítulo 4 A camada de rede NAT: Network Address Translation resta da Internet 138.76.29.7 10.0.0.4 rede local (ex.: rede doméstica) 10.0.0/24

Leia mais

Capítulo 4 A camada de REDE

Capítulo 4 A camada de REDE Capítulo 4 A camada de REDE slide 1 Introdução A camada de rede slide 2 Repasse e roteamento O papel da camada de rede é transportar pacotes de um hospedeiro remetente a um hospedeiro destinatário. Repasse.

Leia mais

Redes de Computadores I

Redes de Computadores I UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE CIÊNCIA DA COMPUTAÇÃO Redes de Computadores I Nível de Rede (IP) Prof. Helcio Wagner da Silva. p.1/36 Introdução

Leia mais

Capítulo 4 A camada de REDE

Capítulo 4 A camada de REDE Capítulo 4 A camada de REDE slide 1 Introdução A camada de rede slide 2 Repasse e roteamento O papel da camada de rede é transportar pacotes de um hospedeiro remetente a um hospedeiro destinatário. Repasse.

Leia mais

Curso de extensão em Administração de sistemas GNU/Linux: redes e serviços

Curso de extensão em Administração de sistemas GNU/Linux: redes e serviços Curso de extensão em Administração de sistemas GNU/Linux: redes e serviços - italo@dcc.ufba.br Gestores da Rede Acadêmica de Computação Departamento de Ciência da Computação Universidade Federal da Bahia,

Leia mais

Redes de computadores. Monteiro, Emiliano S. Professor Out/2016

Redes de computadores. Monteiro, Emiliano S. Professor Out/2016 Redes de computadores Monteiro, Emiliano S. Professor Out/2016 Algoritmos de Roteamento Algoritmos não adaptativos: não baseiam suas decisões de roteamento em medidas ou estimativas de tráfego e da topologia

Leia mais

Redes de Computadores

Redes de Computadores Nível de rede Inst tituto de Info ormátic ca - UF FRGS Redes de Computadores Nível de rede Trabalho sob a Licença Atribuição-SemDerivações-SemDerivados 3.0 Brasil Creative Commons. Para visualizar uma

Leia mais

Camada de Rede. Redes de Computadores. Motivação para interconexão. Motivação para interconexão (DCC023) Antonio Alfredo Ferreira Loureiro

Camada de Rede. Redes de Computadores. Motivação para interconexão. Motivação para interconexão (DCC023) Antonio Alfredo Ferreira Loureiro Redes de Computadores (DCC023) Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br Departamento de Ciência da Computação Universidade Federal de Minas Gerais Motivação para interconexão Diferentes tecnologias

Leia mais

Conceito de Serviço Universal. Conceito de Serviço Universal. Arquitetura de uma internet. Hardware básico de uma internet. Serviço universal:

Conceito de Serviço Universal. Conceito de Serviço Universal. Arquitetura de uma internet. Hardware básico de uma internet. Serviço universal: Redes de Computadores Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br Camada de Rede Departamento de Ciência da Computação Universidade Federal de Minas Gerais Motivação para interconexão Motivação

Leia mais

Protocolo TCP/IP. Protocolo TCP/IP. Protocolo TCP/IP. Origem:

Protocolo TCP/IP. Protocolo TCP/IP. Protocolo TCP/IP. Origem: Protocolo TCP/IP Origem: Surgiu na década de 60 através da DARPA (para fins militares) - ARPANET. Em 1977 - Unix é projetado para ser o protocolo de comunicação da ARPANET. Em 1980 a ARPANET foi dividida

Leia mais

CCNA 2 Conceitos Básicos de Roteadores e Roteamento. Capítulo 8 - Mensagens de Erro e de Controle do Conjunto de Protocolos TCP/IP

CCNA 2 Conceitos Básicos de Roteadores e Roteamento. Capítulo 8 - Mensagens de Erro e de Controle do Conjunto de Protocolos TCP/IP CCNA 2 Conceitos Básicos de Roteadores e Roteamento Capítulo 8 - Mensagens de Erro e de Controle do Conjunto de Protocolos TCP/IP 1 Objetivos do Capítulo Descrever o ICMP; Descrever o formato de mensagem

Leia mais

TRANSMISSÃO DE DADOS Prof. Ricardo Rodrigues Barcelar

TRANSMISSÃO DE DADOS Prof. Ricardo Rodrigues Barcelar - Aula 1-1. A CAMADA DE ENLACE DE DADOS (Parte 1) Relembrando as aulas do semestre passado quando estudamos os modelos de referência, lembramos que a Camada de Enlace de Dados é a camada responsável pela

Leia mais

Fornecer serviços independentes da tecnologia da subrede; Esconder do nível de transporte o número, tipo e a topologia das subredes existentes;

Fornecer serviços independentes da tecnologia da subrede; Esconder do nível de transporte o número, tipo e a topologia das subredes existentes; 2.3 A CAMADA DE REDE Fornece serviços para o nível de transporte, sendo, freqüentemente, a interface entre a rede do cliente e a empresa de transporte de dados (p.ex. Embratel). Sua principal função é

Leia mais

A camada de enlace de dados executa diversas funções específicas. Dentre elas

A camada de enlace de dados executa diversas funções específicas. Dentre elas A camada de enlace de dados executa diversas funções específicas. Dentre elas estão as seguintes: Fornecer uma interface de serviço bem definida à camada de rede. Lidar com erros de transmissão. Regular

Leia mais

Nível de Rede. Modelo de Referência OSI GCAR

Nível de Rede. Modelo de Referência OSI GCAR Nível de Rede Modelo de Referência OSI Camada 1: Física Camada 2: Enlace Camada 3: Rede Camada 4: Transporte Camada 5: Sessão Camada 6: Apresentação Camada 7: Aplicação APLICAÇÃO APRESENTAÇÃO SESSÃO TRANSPORTE

Leia mais

Comunicação de Dados II

Comunicação de Dados II Comunicação de Dados II Tecnologia em Redes de Computadores IFSULDEMINAS Campus Inconfidentes Prof. Kleber Rezende kleber.rezende@ifsuldeminas.edu.br Interligação em Redes Acomoda distintas tecnologias

Leia mais

Redes de Computadores Nível de Rede

Redes de Computadores Nível de Rede Comunicação de Dados por Fernando Luís Dotti fldotti@inf.pucrs.br Redes de Computadores Nível de Rede Fontes Fontes principais: principais: Redes Redes de de Computadores Computadores -- das das LANs,

Leia mais

Redes de Computadores RES 12502

Redes de Computadores RES 12502 Instituto Federal de Santa Catarina Redes de Computadores Redes de Computadores RES 12502 2014 2 Área de Telecomunicações slide 1 O material para essas apresentações foi retirado das apresentações disponibilizadas

Leia mais

Redes de Computadores

Redes de Computadores Redes de Computadores Prof. Marcelo Gonçalves Rubinstein Programa de Pós-Graduação em Engenharia Eletrônica Faculdade de Engenharia Universidade do Estado do Rio de Janeiro Ementa Introdução a Redes de

Leia mais

Técnicas de comutação

Técnicas de comutação Técnicas de comutação Abordagens para a montagem de um núcleo de rede [Kurose] Comutação Alocação de recursos da rede (meio de transmissão, nós intermediários etc.) para transmissão [Soares] Técnicas de

Leia mais

REDES DE COMPUTADORES Prof. Ricardo Rodrigues Barcelar

REDES DE COMPUTADORES Prof. Ricardo Rodrigues Barcelar - Aula 7 - MODELO DE REFERÊNCIA TCP O modelo de referência TCP, foi muito usado pela rede ARPANET, e atualmente usado pela sua sucessora, a Internet Mundial. A ARPANET é de grande utilidade para entender

Leia mais

RIP OSPF. Características do OSPF. Características do OSPF. Funcionamento do OSPF. Funcionamento do OSPF

RIP OSPF. Características do OSPF. Características do OSPF. Funcionamento do OSPF. Funcionamento do OSPF OSPF & mospf Visão Geral do Protocolo Escopo da Apresentação Introdução - Protocolos de roteamento - Tipos de protocolos - Histórico do protocolos de roteamento (RIP e suas características) OSPF MOSPF

Leia mais

Nível de Rede. Funções do nível de rede GCAR

Nível de Rede. Funções do nível de rede GCAR Nível de Rede Funções do nível de rede Multiplexação Endereçamento Mapeamento entre endereços de rede e de enlace Roteamento Estabeleciment/Liberação conexões de rede Controle de Congestionamento 1 Funções

Leia mais

FUNDAMENTOS DE REDES DE COMPUTADORES Unidade IV Camada de Rede. Luiz Leão

FUNDAMENTOS DE REDES DE COMPUTADORES Unidade IV Camada de Rede. Luiz Leão Luiz Leão luizleao@gmail.com http://www.luizleao.com Conteúdo Programático 4.1 Protocolo IP 4.2 Endereçamento IP 4.3 Princípios de Roteamento Introdução O papel da camada de rede é transportar pacotes

Leia mais

Camada de Rede. BCC361 Redes de Computadores Universidade Federal de Ouro Preto Departamento de Ciência da Computação

Camada de Rede. BCC361 Redes de Computadores Universidade Federal de Ouro Preto Departamento de Ciência da Computação BCC361 Redes de Computadores Universidade Federal de Ouro Preto Departamento de Ciência da Computação Prof. Reinaldo Silva Fortes www.decom.ufop.br/reinaldo 2011/02 Camada Nome 5 Aplicação 4 Transporte

Leia mais

INFO ARQ REDES. Prova 2 Bimestre. Obs: Questões RASURADAS são consideradas como ERRADAS GABARITO

INFO ARQ REDES. Prova 2 Bimestre. Obs: Questões RASURADAS são consideradas como ERRADAS GABARITO INFO3 2018.1 ARQ REDES Prova 2 Bimestre Obs: Questões RASURADAS são consideradas como ERRADAS GABARITO NOME: MATRÍCULA: Q U E S T Õ E S O B J E T I V A S (Valor de cada questão: 0,7 pts) 1. [ExAEx] Não

Leia mais

Camada de Rede. Endereçamento de Rede Protocolo IP

Camada de Rede. Endereçamento de Rede Protocolo IP Camada de Rede Endereçamento de Rede Protocolo IP Camada de Rede Protocolo mais importante: IP IPv4 (mais utilizada) IPv6 (atender ao crescimento das redes e a necessidade de novos endereços). PDU: Pacote

Leia mais

Redes de Computadores

Redes de Computadores Redes de Computadores Capítulo 4.7 Roteamento de broadcast e multicast Prof. Jó Ueyama Maio/2011 SSC0641-2011 1 Tipos de tráfego unicast: pacote enviado a um único destino. broadcast: pacote enviado a

Leia mais

Camada de Rede. BCC361 Redes de Computadores Universidade Federal de Ouro Preto Departamento de Ciência da Computação

Camada de Rede. BCC361 Redes de Computadores Universidade Federal de Ouro Preto Departamento de Ciência da Computação BCC361 Redes de Computadores Universidade Federal de Ouro Preto Departamento de Ciência da Computação Prof. Reinaldo Silva Fortes www.decom.ufop.br/reinaldo 2012/02 Camada Nome 5 Aplicação 4 Transporte

Leia mais

Redes de Computadores

Redes de Computadores Redes de Computadores Camada de Rede Parte I Prof. Thiago Dutra Agenda Camada de Rede n Introdução nprotocolo IP nipv4 n Roteamento nipv6 2 1 Agenda Parte I n Introdução n Visão

Leia mais

Redes de Computadores 2 Prof. Rodrigo da Rosa Righi - Aula 6

Redes de Computadores 2 Prof. Rodrigo da Rosa Righi - Aula 6 Agenda Redes de Computadores 2 Prof. Rodrigo da Rosa Righi - Aula 6 professor.unisinos.br/righi rrrighi@unisinos.br Camada de Rede na Internet Formato de Datagrama IP Fragmentação IP ICMP Camada de Rede

Leia mais

1 Exercícios da Parte 3 Camada de Enlace de Dados. 2. Qual a importância da tarefa de enquadramento em uma transmissão de dados?

1 Exercícios da Parte 3 Camada de Enlace de Dados. 2. Qual a importância da tarefa de enquadramento em uma transmissão de dados? BCC361 Redes de Computadores (2014-02) Departamento de Computação - Universidade Federal de Ouro Preto - MG Professor Reinaldo Silva Fortes (www.decom.ufop.br/reinaldo) Lista de Exercícios 02 - Camadas

Leia mais

Rede de Computadores II

Rede de Computadores II Slide 1 Interligação de Redes Acredita-se que sempre haverá uma variedade de redes com características (e protocolos) distintos por vários motivos. Slide 2 Interligação de Redes Slide 3 Diferenças entre

Leia mais

REDES DE COMPUTADORES E TELECOMUNICAÇÕES MÓDULO 11

REDES DE COMPUTADORES E TELECOMUNICAÇÕES MÓDULO 11 REDES DE COMPUTADORES E TELECOMUNICAÇÕES MÓDULO 11 Índice 1. ROTEAMENTO...3 1.1 Introdução... 3 1.2 O roteamento e seus componentes... 3 1.3 Tabelas de roteamento... 3 1.4 Protocolos de roteamento... 3

Leia mais

TE239 - Redes de Comunicação Lista de Exercícios 2

TE239 - Redes de Comunicação Lista de Exercícios 2 Carlos Marcelo Pedroso 11 de maio de 2017 Figura 1: Rede 1 Exercício 1: Suponha a rede apresentada na Figura 1 a) Escreva um esquema de endereçamento Classe B (invente os endereços). b) Escreva endereços

Leia mais

UNIVERSIDADE DA BEIRA INTERIOR Faculdade de Engenharia Departamento de Informática

UNIVERSIDADE DA BEIRA INTERIOR Faculdade de Engenharia Departamento de Informática 90 minutos * 24.05.2013 =VERSÃO B= 1 1. Esta teste serve como avaliação de frequência às aulas teóricas. 2. Leia as perguntas com atenção antes de responder. São 70 perguntas de escolha múltipla. 3. Escreva

Leia mais

Redes de Computadores

Redes de Computadores Redes de Computadores Endereçamento e Ethernet Prof. Jó Ueyama Junho/2013 1 slide 1 Redes Locais LAN: Local Area Network concentrada em uma área geográfica, como um prédio ou um campus. 2 slide 2 Tecnologias

Leia mais

NAT: Network Address Translation

NAT: Network Address Translation NAT: Network Address Translation restante da Internet rede local (p. e., rede doméstica) 10.0.0/24 10.0.0.4 10.0.0.2 10.0.0.3 todos os datagramas saindo da rede local têm mesmo endereço IP NAT de origem:,

Leia mais

Capítulo 4: Camada de rede

Capítulo 4: Camada de rede Capítulo 4: Camada de Objetivos do capítulo: entender os princípios por trás dos serviços da camada de : modelos de serviço da camada de repasse versus roteamento como funciona um roteador roteamento (seleção

Leia mais

Camada de rede. Introdução às Redes de Computadores

Camada de rede. Introdução às Redes de Computadores Rede Endereçamento Tradução de endereços de enlace Roteamento de dados até o destino Enlace Físico Provê os meios para transmissão de dados entre entidades do nível de transporte Deve tornar transparente

Leia mais

Arquitectura de Redes

Arquitectura de Redes Arquitectura de Redes Revisões de alguns conceitos dados em RSD Camadas Protocolares Aplicação Cabeç Dados Transporte Cabeç Dados Internet Cabeç Dados Revisões Ligação Física Cabeç Dados Dados TCP/IP PDU

Leia mais

1 Exercícios da Parte 3 Camada de Enlace de Dados. 2. Qual a importância da tarefa de enquadramento em uma transmissão de dados?

1 Exercícios da Parte 3 Camada de Enlace de Dados. 2. Qual a importância da tarefa de enquadramento em uma transmissão de dados? BCC361 Redes de Computadores (2012-02) Departamento de Computação - Universidade Federal de Ouro Preto - MG Professor Reinaldo Silva Fortes (www.decom.ufop.br/reinaldo) Lista de Exercícios 02 - Camadas

Leia mais

Rede de computadores Protocolos UDP. Professor Carlos Muniz

Rede de computadores Protocolos UDP. Professor Carlos Muniz Rede de computadores Professor Carlos Muniz User Datagram Protocol O User Datagram Protocol (UDP) é um protocolo simples da camada de transporte. Ele é descrito na RFC 768 [1] e permite que a aplicação

Leia mais

Redes de Computadores

Redes de Computadores Redes de Computadores Camada de Transporte Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br Departamento de Ciência da Computação Universidade Federal de Minas Gerais UFMG/DCC Redes de Computadores

Leia mais

Capítulo 5 Sumário. Formato das Mensagens ICMP. Tipos de Mensagens ICMP

Capítulo 5 Sumário. Formato das Mensagens ICMP. Tipos de Mensagens ICMP 1 Capítulo 5 Sumário Formato das Mensagens ICMP Tipos de Mensagens ICMP Solicitação de Eco / Resposta de Eco Destino Inatingível Tempo Esgotado (time-out) Source Quench Redirecionamento 2 Aplicação Telnet

Leia mais

Prof. Marcelo Cunha Parte 6

Prof. Marcelo Cunha Parte 6 Prof. Marcelo Cunha Parte 6 www.marcelomachado.com ARP (Address Resolution Protocol) Protocolo responsável por fazer a conversão entre os endereços IPs e os endereços MAC da rede; Exemplo: Em uma rede

Leia mais

Redes de Computadores

Redes de Computadores Introdução Inst tituto de Info ormátic ca - UF FRGS Redes de Computadores Introdução ao roteamento Aula 20 Inter-rede TCP/IP (Internet) é composta por um conjunto de redes interligadas por roteadores Roteador

Leia mais

conceitual N h = p 3 3p + 3; N t = 1/(1 p) 2 p

conceitual N h = p 3 3p + 3; N t = 1/(1 p) 2 p 3 a. Lista -respostas Redes II pg. 1 UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO REDES DE COMUNICAÇÕES 2 Prof. Flávio Alencar 3 a. LISTA algumas respostas (Assuntos: Infraestrutura TCP/IP parte 2; Roteamento,

Leia mais

Redes de Computadores

Redes de Computadores Nível de rede Inst tituto de Info ormátic ca - UF FRGS Redes de Computadores Nível de rede Aula 6 Aplicação Apresentação Sessão Transporte Rede Enlace Físico Protocolo nível de aplicação Protocolo nível

Leia mais

Modelos de referência de arquiteturas de redes: OSI e TCP/IP Profsº Luciano / Roberto

Modelos de referência de arquiteturas de redes: OSI e TCP/IP Profsº Luciano / Roberto Modelos de referência de arquiteturas de redes: OSI e TCP/IP Profsº Luciano / Roberto Modelo OSI / ISO Nomenclaturas OSI - Open Systems Interconnect ISO International Organization for Standardization Conceitos

Leia mais

Capítulo 7: Roteando Dinamicamente (Resumo)

Capítulo 7: Roteando Dinamicamente (Resumo) Unisul Sistemas de Informação Redes de Computadores Capítulo 7: Roteando Dinamicamente (Resumo) Protocolos de roteamento Academia Local Cisco UNISUL Instrutora Ana Lúcia Rodrigues Wiggers Presentation_ID

Leia mais

REDES DE COMPUTADORES

REDES DE COMPUTADORES REDES DE COMPUTADORES Prof. Esp. Fabiano Taguchi fabianotaguchi@gmail.com http://fabianotaguchi.wordpress.com BENEFÍCIOS MODELO OSI Menor complexidade; Interfaces padronizadas; Interoperabilidade entre

Leia mais

Interconexão de redes locais. Repetidores. Pontes (Bridges) Existência de diferentes padrões de rede. Interconexão pode ocorrer em diferentes âmbitos

Interconexão de redes locais. Repetidores. Pontes (Bridges) Existência de diferentes padrões de rede. Interconexão pode ocorrer em diferentes âmbitos Interconexão de redes locais Existência de diferentes padrões de rede necessidade de conectá-los Interconexão pode ocorrer em diferentes âmbitos LAN-LAN LAN-WAN WAN-WAN Repetidores Equipamentos que amplificam

Leia mais

Jéfer Benedett Dörr

Jéfer Benedett Dörr Redes de Computadores Jéfer Benedett Dörr prof.jefer@gmail.com Conteúdo Camada de Rede Kurose Capítulo 4 Tanenbaum Capítulo 5 Camada de Rede terceira camada A camada de rede é usada para identifcar os

Leia mais

Redes de Computadores. Profa. Kalinka Castelo Branco. Abril de Universidade de São Paulo. Camada de Rede. Profa. Kalinka Branco.

Redes de Computadores. Profa. Kalinka Castelo Branco. Abril de Universidade de São Paulo. Camada de Rede. Profa. Kalinka Branco. s de Computadores Castelo Universidade de São Paulo Abril de 2019 1 / 48 Roteiro 1 2 3 2 / 48 Formados por 32 bits, representados por notação decimal com pontos; Exemplo: 192.168.0.1; Possuem uma parte

Leia mais

Redes de Computadores e a Internet

Redes de Computadores e a Internet Redes de Computadores e a Internet Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM 2010 Capítulo 4: Camada de Rede 4. 1 Introdução

Leia mais

Revisão de Introdução às TCP-IP INTERNET. Redes de Computadores TCP/IP

Revisão de Introdução às TCP-IP INTERNET. Redes de Computadores TCP/IP Revisão de Introdução às Redes de Computadores TCP-IP INTERNET Redes de Computadores TCP/IP MODELO DE REFERENCIA TCP/IP FLUXO DE DADOS MODELOS DE REFERÊNCIA MODELO DE REFERENCIA TCP/IP MODELOS DE REFERÊNCIA

Leia mais

Camada de Rede. Objetivos: entender os princípios em que se fundamentam os serviços de rede. Implementação na Internet

Camada de Rede. Objetivos: entender os princípios em que se fundamentam os serviços de rede. Implementação na Internet Camada de Rede Objetivos: entender os princípios em que se fundamentam os serviços de rede Implementação na Internet Camada de rede transporta segmentos da estação remetente à receptora no lado remetente,

Leia mais

Redes de Computadores

Redes de Computadores Redes de Computadores Prof. Marcelo Gonçalves Rubinstein Programa de Pós-Graduação em Engenharia Eletrônica Faculdade de Engenharia Universidade do Estado do Rio de Janeiro Ementa Introdução a Redes de

Leia mais

Nome: Nº de aluno: 3ª Ficha de Avaliação 20/5/2014

Nome: Nº de aluno: 3ª Ficha de Avaliação 20/5/2014 Instituto Superior de Engenharia de Lisboa Departamento de Engenharia de Electrónica e Telecomunicações e de Computadores Redes de Computadores (LEIC/LEETC/LERCM) Nome: Nº de aluno: 3ª Ficha de Avaliação

Leia mais

Data and Computer Network Endereçamento IP

Data and Computer Network Endereçamento IP Endereçamento IP P P P Prof. Doutor Félix Singo Camadas do TCP/IP Data and Computer Network Aplicação: Camada mais alta Protocolos de Aplicações clientes e servidores HTTP, FTP, SMTP, POP Transporte: Estabelece

Leia mais

MPLS- Multiprotocol Label Switching

MPLS- Multiprotocol Label Switching MPLS- Multiprotocol Label Switching Trabalho realizado por: João Pinto nº 56 798 Justimiano Alves nº 57548 Instituto Superior Técnico Redes Telecomunicações 200/2010 Rede MPLS Introdução. Definição. Motivação.

Leia mais

Redes de Computadores e a Internet

Redes de Computadores e a Internet Redes de Computadores e a Internet Magnos Martinello Universidade Federal do Espírito Santo - UFES Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM 2010 Capítulo 4:

Leia mais

SSC0641 Redes de Computadores

SSC0641 Redes de Computadores SSC0641 Redes de Computadores Capítulo 4 Camada de Rede 4.1 a 4.3 Prof. J ó Ueyama Abril/2011 SSC0641-2011 1 Objetivos do Capítulo 4 Camada de Rede Entender os princípios dos serviços da camada de rede:

Leia mais

Redes Ad-Hoc FEUP MPR. » DNS, routing pouco adequados, actualmente» IP Móvel requer rede infraestruturada; HomeAgent na rede fixa

Redes Ad-Hoc FEUP MPR. » DNS, routing pouco adequados, actualmente» IP Móvel requer rede infraestruturada; HomeAgent na rede fixa AdHoc 1 Redes Ad-Hoc FEUP MPR AdHoc 2 Redes Móveis Ad-Hoc Mobilidade IP» DNS, routing pouco adequados, actualmente» IP Móvel requer rede infraestruturada; HomeAgent na rede fixa Pode, no entanto, não haver

Leia mais

Roteamento e IP móvel

Roteamento e IP móvel Roteamento e IP móvel Introdução Milhares de pessoas precisam utilizar seus notebooks, tablets e smartphones enquanto viajam ou se locomovem fora de suas residências, seja para trabalhar, se comunicar

Leia mais

Rede de computadores Protocolos IP. Professor Carlos Muniz

Rede de computadores Protocolos IP. Professor Carlos Muniz Rede de computadores Professor Carlos Muniz Protocolo de Internet IP é um acrônimo para a expressão inglesa "Internet Protocol" (ou Protocolo de Internet), que é um protocolo usado entre duas ou mais máquinas

Leia mais

Aula 5 Camada de rede (TCP/IP):

Aula 5 Camada de rede (TCP/IP): Aula 5 Camada de rede (TCP/IP): Protocolos da Camada de Rede; Endereços IP (Versão 4); ARP (Address Resolution Protocol); ARP Cache; RARP (Reverse Address Resolution Protocol); ICMP. Protocolos da Camada

Leia mais

Protocolos e Arquiteturas de Redes. Thiago Leite

Protocolos e Arquiteturas de Redes. Thiago Leite Protocolos e Arquiteturas de Thiago Leite As redes são organizadas em camadas Forma de reduzir a complexidade Um conjunto de camadas forma uma pilha A função de cada camada da

Leia mais

Redes Ad-Hoc FEUP MPR. » Áreas remotas, reuniões ad-hoc, zonas de desastre» Custo elevado Ł Necessidade de redes ad-hoc

Redes Ad-Hoc FEUP MPR. » Áreas remotas, reuniões ad-hoc, zonas de desastre» Custo elevado Ł Necessidade de redes ad-hoc AdHoc 1 Redes Ad-Hoc FEUP MPR AdHoc 2 Redes Móveis Ad-Hoc Mobilidade IP» DNS, routing lentos ou inadequado» IP Móvel requer rede estruturada; HomAgent na rede fixa Pode, no entanto, não haver infraestrutura

Leia mais

Interconexão de redes locais. Repetidores. Hubs. Existência de diferentes padrões de rede

Interconexão de redes locais. Repetidores. Hubs. Existência de diferentes padrões de rede Interconexão de redes locais Existência de diferentes padrões de rede necessidade de conectá-los Interconexão pode ocorrer em diferentes âmbitos LAN-LAN LAN: gerente de um determinado setor de uma empresa

Leia mais

CCNA 1 Roteamento e Sub-redes. Kraemer

CCNA 1 Roteamento e Sub-redes. Kraemer CCNA 1 Roteamento e Sub-redes Roteamento e Sub-redes Introdução Protocolo roteado Visão geral de roteamento Endereçamento de sub-redes Introdução IP é o principal protocolo roteado da Internet IP permite

Leia mais

Redes TCP/IP. Prof. M.Sc. Alexandre Fraga de Araújo. INSTITUTO FEDERAL DO ESPÍRITO SANTO Campus Cachoeiro de Itapemirim

Redes TCP/IP. Prof. M.Sc. Alexandre Fraga de Araújo. INSTITUTO FEDERAL DO ESPÍRITO SANTO Campus Cachoeiro de Itapemirim Redes TCP/IP alexandref@ifes.edu.br Camada de Transporte 2 Camada de Transporte Função: Fornecer comunicação lógica entre processos de aplicação em diferentes hospedeiros. Os protocolos de transporte são

Leia mais

Redes de Computadores

Redes de Computadores Redes de Computadores Camada de Transporte - Parte II Prof. Thiago Dutra Agenda n Parte I n Introdução n Protocolos de Transporte Internet n Multiplexação e Demultiplexação n

Leia mais

Capítulo 3 - Sumário. Tipos de Rotas (Diretas, Estáticas e Dinâmicas) Protocolos de Roteamento (RIP, OSPF e BGP)

Capítulo 3 - Sumário. Tipos de Rotas (Diretas, Estáticas e Dinâmicas) Protocolos de Roteamento (RIP, OSPF e BGP) 1 Capítulo 3 - Sumário - Conceitos Tipos de Rotas (Diretas, Estáticas e Dinâmicas) Rotas Default Sumarização de Rotas Algoritmos de Roteamento Protocolos de Roteamento (RIP, OSPF e BGP) 2 ROTA é um caminho

Leia mais

PTC Aula O que há dentro de um roteador? 4.3 O Protocolo da Internet (IP): Repasse e Endereçamento na Internet

PTC Aula O que há dentro de um roteador? 4.3 O Protocolo da Internet (IP): Repasse e Endereçamento na Internet PTC 2550 - Aula 18 4.2 O que há dentro de um roteador? 4.3 O Protocolo da Internet (IP): Repasse e Endereçamento na Internet (Kurose, p. 241-254) (Peterson, p. 124-144) 02/06/2017 Muitos slides adaptados

Leia mais

Redes de Computadores

Redes de Computadores s de Computadores Prof. Macêdo Firmino Modelo TCP/IP e OSI Macêdo Firmino (IFRN) s de Computadores Setembro de 2011 1 / 19 Modelo de Camadas Para que ocorra a transmissão de uma informação entre o transmissor

Leia mais

Gestão de Sistemas e Redes

Gestão de Sistemas e Redes Gestão de Sistemas e Redes Comutação em Redes Locais Paulo Coelho 005 Versão.0 Comutação em LANs Sumário Comutadores Store-and-Forward Comutação de circuitos vs Datagramas Bridges e segmentação de LANs

Leia mais

Capítulo 4 - Sumário

Capítulo 4 - Sumário 1 Capítulo 4 - Sumário Características do O Datagrama IP (Campos do Cabeçalho) Tamanho do Datagrama, MTU da Rede e Fragmentação 2 Aplicação Telnet HTTP FTP POP3 SMTP DNS DHCP Transporte TCP (Transmission

Leia mais

Rede de Computadores II

Rede de Computadores II Slide 1 Teoria das Filas Ferramenta matemática para tratar de eventos aleatórios. É o estudo da espera em filas. Proporciona uma maneira de definir o ambiente de um sistema de filas matematicamente. Permite

Leia mais

Qualidade de Serviços em Redes IP. Edgard Jamhour

Qualidade de Serviços em Redes IP. Edgard Jamhour Qualidade de Serviços em Redes IP Tipos de Comutação e Qualidade de Serviço slot de tempo = canal...... 1 2 N 1 2 N...... quadro... circuito sincronismo de quadro cabeçalho dados... t pacote Medidas de

Leia mais

TP308 Introdução às Redes de Telecomunicações

TP308 Introdução às Redes de Telecomunicações Unidade IV Roteamento TP308 Introdução às Redes de Telecomunicações 178 Tópicos Serviços Providos pela Camada de Rede Classificação dos Algoritmos de Roteamento Roteamento Centralizado Roteamento Isolado

Leia mais

Arquitetura TCP/IP - Internet Protocolo IP Protocolo ICMP

Arquitetura TCP/IP - Internet Protocolo IP Protocolo ICMP Departamento de Ciência da Computação - UFF Disciplina: Arquitetura TCP/IP - Internet Protocolo IP Protocolo ICMP Profa. Débora Christina Muchaluat Saade debora@midiacom.uff.br Arquitetura TCP/IP Internet

Leia mais

Open Shortest Path First (OSPF)

Open Shortest Path First (OSPF) Open Shortest Path First (OSPF) Carlos Gustavo A. da Rocha Introdução Protocolo de roteamento baseado em estado de enlace, padronizado na RFC 2328 Criado para solucionar as deficiências do RIP Roteadores

Leia mais

Arquitetura da Internet TCP/IP

Arquitetura da Internet TCP/IP Arquitetura da Internet TCP/IP A Internet Internet é a rede mundial de computadores, à qual estão conectados milhões de computadores do mundo todo; A idéia de concepção de uma rede mundial surgiu nos Estados

Leia mais