Ethernet (Histórico)

Tamanho: px
Começar a partir da página:

Download "Ethernet (Histórico)"

Transcrição

1 Ethernet 5

2 Ethernet (Histórico) Surgiu em 1972 Laboratórios da Xerox (Robert Metcalfe); Cabo coaxial, barramento e taxas de 2,94 Mbps; Padrão Network Alto Aloha Ethernet Falta de Padronização Dificultava progresso das pesquisas e a venda de equipamentos; Homologado para IEEE 1980.

3 ETHERNET É a tecnologia dominante de redes locais do mundo; É uma família de tecnologias de redes locais; Especificações suportam diferentes: meios físicos, larguras de banda e outras variações das camadas 1 e 2; O formato dos quadros e o esquema de endereçamento é idêntico para todas as variedades de Ethernet. Para várias estações acessarem os meios físicos e outros dispositivos das redes, existem várias estratégias de controle de acesso aos meios físicos; Entender o método de acesso ao meio físico permite um maior entendimento para solução de problemas em operação.

4 ETHERNET É uma família de tecnologias de redes locais; Família? Ethernet legada, Fast Ethernet e Gigabit Ethernet. Largura de Banda: 10, 100, 1000 e Mbps Formato básico dos quadros e as subcamadas IEEE das camadas 1 e 2 do modelo OSI permanecem consistentes através de todas as formas de Ethernet. Modificações de expansão do meio físico ou capacidade IEEE publica um novo suplemento para o padrão

5 ETHERNET Regras de Nomeclatura IEEE novos suplementos: recebem uma ou duas letras de designação, como 802.3u. uma descrição abreviada (denominada identificador) também é designada para o suplemento. A descrição abreviada consiste em: Um número indicando o número de Mbps transmitido. A palavra base, indicando que foi usada a sinalização banda base (baseband). Uma ou mais letras do alfabeto, indicando o tipo do meio físico usado (F = cabo de fibra ótica, T = par trançado de cobre não blindado). O IEEE tem como expectativa: Fornecer informações de engenharia necessárias para a fabricação de dispositivos que cumpram os padrões Ethernet. Promover inovações feitas pelos fabricantes.

6 ETHERNET Regras de Nomeclatura IEEE

7 ETHERNET A Ethernet opera em duas áreas do modelo OSI, a metade inferior da camada de enlace de dados, conhecida como subcamada MAC, e a camada física. Um domínio de colisão é um recurso compartilhado. Quaisquer problemas originados em uma parte do domínio de colisão geralmente afetam o domínio de colisão inteiro. Os padrões garantem um mínimo de largura de banda e operacionalidade, ao especificar o número máximo de estações, o comprimento máximo do segmento, o número máximo de repetidores entre estações, etc. As estações que são separadas por repetidores estão dentro do mesmo domínio de colisão. As estações separadas por bridges ou roteadores estão em domínios de colisão diferentes.

8 OSI - REVISÃO

9 Sub-Camadas L2

10 RM-OSI: L2 Enlace de Dados: Fornece um serviço à camada de rede (3) usando os serviços da camada física (1). promove ligações entre entidades de rede; enquadramento (à partição de dados em quadros e a transmissão destes quadros por meio de uma ligação); sequenciamento dos quadros, se necessário (manter a ordem correta dos quadros durante a transmissão); estabelecimento e manutenção de níveis aceitáveis de controle de fluxo enquanto os quadros são transmitidos através de uma ligação; detecção (e possível correção) de erros da camada física, o que inclui notificação de erros detectados e não corrigidos; Resumo: a camada de enlace de dados regula e dá forma à transmissão de dados de software de um nó ao sistema de cabo da rede. Dita o formato dos dados, tempos, sequenciamento de bits e muitas outras atividades para cada tipo particular de rede.

11 RM-OSI: L2 LAN 1980: IEEE assume responsabilidade de estabelecer padrões para redes locais; Projeto OSI X IEEE Subcamada LLC (Logical Link Control): enquadramento, controle de fluxo e de erros; Subcamada MAC (Media Access Control): gerencia de acesso ao meio para acessar meios compartilhados. Modo de Transmissão, transmissão e recepção dos quadros.

12 802.X (Exemplos) Alguns padrões de projetos de redes locais (802.x):

13 ETHERNET - ENDEREÇAMENTO A entrega local de quadros na Ethernet exige um sistema de endereçamento, uma maneira exclusiva de identificação de computadores e interfaces. A Ethernet usa endereços MAC que têm 48 bits de comprimento e são expressos como doze dígitos hexadecimais. Os primeiros seis dígitos hexadecimais, que são administrados pelo IEEE, identificam o fabricante ou o fornecedor. Esta parte do endereço MAC é conhecida como OUI (Organizational Unique Identifier). Os seis dígitos hexadecimais restantes representam o número de série da interface ou outro valor administrado pelo fabricante do equipamento específico. Os endereços MAC às vezes são conhecidos como burned-in addresses (BIA), porque são gravados na memória apenas de leitura (ROM) e são copiados na memória de acesso aleatório (RAM) quando a placa de rede é inicializada. As placas de rede usam o endereço MAC para avaliar se a mensagem deve ser passada para as camadas superiores do modelo OSI. Em uma rede Ethernet, quando um dispositivo quer enviar dados, ele pode abrir um caminho de comunicação com o outro dispositivo, usando o endereço MAC de destino. O dispositivo de origem insere um cabeçalho com o endereço MAC do destino pretendido e envia os dados para a rede. Como esses dados trafegam pelos meios físicos da rede, a placa de rede em cada dispositivo na rede verifica se o seu endereço MAC corresponde ao endereço de destino físico carregado pelo quadro de dados. Se não houver correspondência, a placa de rede descartará o quadro de dados. Quando os dados chegam ao seu nó de destino, a placa de rede faz uma cópia e passa o quadro adiante pelas camadas OSI. Em uma rede Ethernet, todos os nós precisam examinar o cabeçalho MAC.

14 ETHERNET - ENDEREÇAMENTO

15 ENCONTRANDO O MAC? (1) Verificando o MAC da placa de rede Ip config / all Endereço físico : 00-A0-D1-4B-8F-12 (2) Consultando na Internet o MAC da sua Máquina Ieee Fabricante: 00-A0-D1 (hex) INVENTEC CORPORATION

16 LAN LOCAL AREA NETWORKS A tecnologia de redes locais (Ethernet) baseia-se no princípio de comunicação com broadcast físico. A B DADOS CRC A B C quadro

17 QUADRO O quadro (frame) é a menor estrutura de informação transmitida através de uma rede local. ENDEREÇO (FÍSICO) DE ORIGEM ENDEREÇO (FÍSICO) DE DESTINO A B DADOS CRC CABEÇALHO

18 ETHERNET - FRAME Preâmbulo: é um padrão de uns e zeros alternantes usado para a sincronização da temporização em Ethernet assíncrona de 10 Mbps e em implementações mais lentas. As versões mais rápidas da Ethernet são síncronas, e essa informação de temporização é redundante mas mantida para fins de compatibilidade. Delimitador de Início de Quadro: consiste em um campo de um octeto que marca o final das informações de temporização e contém a seqüência de bits Endereço de Destino: contém um endereço de destino MAC. O endereço de destino pode ser unicast, multicast ou broadcast. Endereço de Origem: contém um endereço de origem MAC. O endereço de origem é geralmente o endereço unicast do nó Ethernet que está transmitindo. Comprimento/Tipo: suporta dois usos diferentes. Se o valor for inferior a 1536 decimal, 0x600 (hexadecimal), então o valor indica o comprimento. A interpretação do comprimento é usada onde a Camada LLC proporciona a identificação do protocolo. O valor do tipo especifica o protocolo da camada superior que recebe os dados depois que o processamento da Ethernet estiver concluído. O tamanho indica o número de bytes de dados que vêm depois desse campo. Dados: e o enchimento (padding), se necessário, pode ser de qualquer tamanho que não faça com que o quadro exceda o tamanho máximo permitido para o quadro A MTU (Unidade de Transmissão Máxima) para Ethernet é de 1500 octetos. Portanto, os dados não devem exceder esse tamanho. O conteúdo desse campo não é especificado. Um enchimento não especificado será inserido imediatamente após os dados do usuário quando não houver dados de usuário suficientes para que o quadro satisfaça o comprimento mínimo para o quadro. A Ethernet exige que o quadro tenha entre 64 e 1518 octetos. FCS (Frame Check Sequencia): contém um valor CRC de 4 bytes que é criado pelo dispositivo emissor e recalculado pelo dispositivo receptor para verificar se há quadros danificados.

19 Ethernet (Frames)

20 Ethertypes

21 Operadora Ethernet

22 ETHERNET Transmissão: Cada frame começa com o envio de 8 bytes, contendo um preâmbulo e uma seqüência de inicialização. Serve para informar estações que uma transmissão está prestes a começar; Estes 8 Bytes não fazem parte do frame e são descartados pelas placas de rede após recebidos (wireshark); Pacotes maiores devem ser divididos em fragmentos até 1500 Bytes e enviados usando vários frames; Junto com os dados é transmitido o cabeçalho do frame, conhecido como MAC (14 bytes no total); Os 4 Bytes CRC são usados pelas placas de rede para verificar a integridade do frame recebido; Ao receber cada frame a interface verifica a integridade do frame recebido e no caso de identificação de problemas, ela solicita uma retransmissão.

23 ETHERNET É a tecnologia de maior sucesso nas LANs: simplicidade de implementação flexibilidade da tecnologia que tem evoluído para atender às exigências do meio físico. Evolução: grandes melhoramentos na Ethernet 10-Mbps utilizada no início dos anos 80; O padrão da Ethernet 10-Mbps permaneceu inalterado até 1995; 1995: IEEE anunciou um padrão para Fast Ethernet de 100 Mbps; Rápido crescimento nas velocidade dos meios de comunicação provocando uma transição de Fast Ethernet para Gigabit Ethernet; Uma versão ainda mais rápida, a 10 Gigabit Ethernet, já está disponível; Estão sendo desenvolvidas versões ainda mais rápidas.

24 ETHERNET Modificações: O endereçamento MAC, o CSMA/CD e o formato de quadros não foram modificados em relação aos utilizados nas primeiras versões de Ethernet; Alguns aspectos da sub-camada MAC, da camada física e dos meios de comunicação foram alterados; Facilidade em encontrar Placas de rede (NICs) utilizando meio de cobre e capazes de operar a 10/100/1000; Gigabit para switches e para roteadores está se tornando padrão; A fibra óptica capaz de suportar o Gigabit Ethernet é considerada um modelo para o cabeamento de backbone na maioria das novas instalações.

25 IEEE Working Group develops standards for Ethernet based LANs. We have a number of active projects as listed below: IEEE P802.3ar, Congestion Management Task Force. IEEE P802.3at, DTE Power Enhancements Task Force. IEEE P802.3av, 10Gb/s PHY for EPON Task Force. IEEE 802.3ax, (IEEE P802.1AX) Link Aggregation Task Force. IEEE 802.3ay, (IEEE P802.3Rev) Maintenance #9 (Revision) Task Force. IEEE P802.3az, Energy-efficient Ethernet Task Force. IEEE P802.3ba 40Gb/s and 100Gb/s Ethernet Task Force. Additional information: Next IEEE Interim meeting notice. Next IEEE 802 Plenary meeting notice. IEEE Plenary minutes. IEEE Maintenance. IEEE Interpretations. IEEE joint sessions. IEEE related Plenary tutorials. IEEE reflector policy. IEEE Management registration arcs. IEEE Auto-Negotiation selector fields. IEEE Private area (password-protected). Other information: Operating Rules of IEEE Project 802 Working Group 802.3, CSMA/CD LANs. Requirements for Voting on IEEE Drafts. Typical Working Group meetings during IEEE 802 Plenary Week. Requesting an interpretation of the Standard. IEEE Patent policy. Discussion of cost in IEEE IEEE Tools and Resources (password-protected). Published Standard: IEEE 802 Standards Available for Free Download. Purchasing published IEEE Standards and drafts. IEEE Standards On-Line Subscription Information. IEEE Standards Ordering Information. Publication Status of IEEE Documents. Correction sheets for published IEEE Standard. ISO/IEC approval status for published IEEE Standard. Machine readable extracts of published IEEE Standard. Archive Information of completed work: IEEE Std Conformance test reaffirmation. IEEE Trunking Study Group. IEEE Higher Speed Study Group. IEEE DTE Power via MDI Study Group. IEEE GBASE-CX4 Study Group. IEEE GBASE-T Study Group. IEEE Backplane Ethernet Study Group. IEEE Gb/s on FDDI-grade MM fiber Study Group. IEEE Power over Ethernet Plus Study Group.

26 Ethernet Legadas Redes Ethernet Antigas (legadas) Ethernet 10BASE5, 10BASE2 e 10BASE-T; Características comuns: parâmetros de temporização, o formato de quadros, o processo de transmissão e as regras básicas de projeto.

27 Futuro da Ethernet Cenário das LANs: A Ethernet tem passado por uma evolução: tecnologias Ethernet legada Fast? Gigabit? MultiGigabit; Outras tecnologias de redes locais ainda podem ser encontradas em funcionamento (instalações antigas); A Ethernet domina as novas instalações de redes locais; Ethernet agora é o padrão para conexões horizontais, verticais e entre edifícios; As versões de Ethernet recentemente desenvolvidas estão tornando confusas as distinções entre redes locais, MANs e WANs; Atualmente existe uma ampla disponibilidade de produtos 1-Gigabit Ethernet e os de 10 Gigabit estão se tornando mais acessíveis; IEEE e o Ethernet Alliance estão trabalhando com padrões de 40, 100 ou mesmo 160 Gbps. Para o Futuro, as tecnologias que serão adotadas dependem de vários fatores como: Taxa de maturação das tecnologias e padrões; Taxa de adoção no mercado; Custos. Melhorias: Surgimento de novas propostas de esquemas de arbitramento Ethernet além do CSMA/CD; O problema de colisões existente nas topologias físicas de barramentos do 10BASE5 e do 10BASE2 e nos hubs 10BASE-T e 100BASE-TX já não são tão comuns; O uso de cabos UTP e de fibra ótica com caminhos separados de Tx e Rx; Redução nos custos de switches tornam muito menos importantes as conexões em um único meio físico compartilhado e half-duplex.

28 Futuro da Ethernet O futuro dos meios físicos de rede engloba três fatores: Cobre (até 1000 Mbps, talvez mais) Wireless (sem-fio) (aproximadamente 100 Mbps, talvez mais) Fibra óptica (atualmente até Mbps e em breve será mais) Os meios de cobre e wireless têm certas limitações físicas e práticas nos sinais das freqüências mais altas que podem ser transmitidos. Este não é um fator limitador para a fibra ótica num futuro próximo. As limitações de largura de banda da fibra óptica são extremamente grandes e ainda não estão sendo ameaçadas. Nos sistemas de fibra, é a tecnologia eletrônica (como emissores e detectores) e o processo de manufatura de fibras que mais limitam a velocidade. Futuros desenvolvimentos na Ethernet provavelmente envolverão fontes de luz Laser e fibra óptica monomodo mais do que qualquer outra tecnologia. Quando a Ethernet era mais lenta, half-duplex, sujeita a colisões e a um processo "democrático" para priorização, não era considerada como tendo capacidades de QoS (Qualidade de Serviço) necessárias para lidar com certos tipos de tráfego. Isto incluía telefonia IP e vídeo multicast. As tecnologias Ethernet para full-duplex em alta velocidade, que agora dominam o mercado, estão se mostrando suficientes para suportar mesmo as aplicações que fazem uso intensivo de QoS. Isto torna a gama de aplicações potenciais em redes Ethernet ainda mais ampla. É irônico que a capacidade de QoS fim-a-fim ajudou a impulsionar o uso de ATM no ambiente dos desktops e na WAN em meados dos anos 90, mas agora é a Ethernet e não o ATM que está alcançando esta meta.

29 Futuro da Ethernet

30 Ethernet - Operação Operação da Ethernet: A Ethernet compartilhada funciona extremamente bem sob condições ideais. Quando o número de dispositivos que tentam acessar a rede é baixo, o número de colisões permanece bem dentro dos limites aceitáveis. No entanto, quando aumenta o número de usuários na rede, o aumento do número de colisões pode causar um desempenho inaceitavelmente baixo. O uso de bridges foi elaborado para ajudar a amenizar os problemas de desempenho que surgiram devido ao aumento das colisões. A comutação evoluiu a partir do bridging para tornar-se a tecnologia principal nas modernas redes locais Ethernet. As colisões e broadcasts são eventos esperados nas redes modernas e são elaborados como parte integrante do projeto de Ethernet e das tecnologias de camadas superiores. Quando as colisões e broadcasts ocorrem em número acima do aceitável, o desempenho da rede é afetada.

31 HUBS Hubs ou concentradores são dispositivos que simulam internamente a construção dos barramentos físicos. HUB A C A C A C A B C

32 Bridging da Camada 2 Com aumento do número de nós a um segmento físico Ethernet, vai aumentando a competição para os meios. Ethernet significa meios compartilhados, o que quer dizer que somente um nó de cada vez pode transmitir dados. O acréscimo de mais nós aumenta a demanda sobre a largura de banda disponível e coloca cargas adicionais nos meios físicos. Com o aumento do número de nós em um único segmento, aumenta a probabilidade de colisões, o que resulta em mais retransmissões. A solução deste problema é dividir os grandes segmentos em partes e separá-las em domínios de colisão isolados. Para que isso seja feito, uma bridge mantém uma tabela de endereços MAC e as portas a eles associadas. A bridge então encaminha ou descarta os quadros baseados nas entradas da tabela.

33 Bridging da Camada 2 Operação de uma bridge: A bridge acaba de ser iniciada de modo que a tabela da bridge está vazia. A bridge só espera o tráfego no segmento. Quando o tráfego é detectado, ele é processado pela bridge. O Host A está fazendo ping ao Host B. Já que os dados são transmitidos no segmento inteiro do domínio de colisão, tanto a bridge como o Host B processam o pacote. A bridge acrescenta o endereço de origem do quadro à sua tabela de bridge. Já que o endereço estava no campo endereço de origem e o quadro foi recebido na porta 1, o quadro precisa estar associado com a porta 1 na tabela. O endereço de destino do quadro é comparado com a tabela da bridge. Já que o endereço não está na tabela, apesar de estar no mesmo domínio de colisão, o quadro é encaminhado ao outro segmento. O endereço do Host B ainda não foi registrado porque somente o endereço de origem de um quadro é registrado. O Host B processa a solicitação de ping e transmite uma resposta de ping de volta ao Host A. Os dados são transmitidos através de todo o domínio de colisão. Tanto o Host A como a bridge recebem o quadro e o processam. A bridge acrescenta o endereço de origem do quadro à sua tabela de bridge. Já que o endereço de origem não estava na tabela da bridge e foi recebido na porta 1, o endereço de origem do quadro precisa ser associado à porta 1 na tabela. O endereço de destino do quadro é comparado com a tabela da bridge para ver se a entrada consta. Já que o endereço está na tabela, a designação da porta é verificada. O endereço do Host A é associado à porta pela qual o quadro entrou, de modo que o quadro não é encaminhado. O Host A agora vai fazer ping ao Host C. Já que os dados são transmitidos no segmento inteiro do domínio de colisão, tanto a bridge como o Host B processam o quadro. O Host B descarta o quadro porque não era o destino pretendido. A bridge acrescenta o endereço de origem do quadro à sua tabela de bridge. Já que o endereço já está registrado na tabela de bridge a entrada é apenas renovada. O endereço de destino do quadro é comparado com a tabela de bridge para ver se a entrada consta. Já que o endereço não consta da tabela, o quadro é encaminhado ao outro segmento. O endereço do Host C ainda não foi registrado porque somente o endereço de origem de um quadro é registrado. O Host C processa a solicitação de ping e transmite uma resposta de ping de volta ao Host A. Os dados são transmitidos através de todo o domínio de colisão. Tanto o Host D como a bridge recebem o quadro e o processam. O Host D descarta o quadro porque não era o destino pretendido. A bridge acrescenta o endereço de origem do quadro à sua tabela de bridge. Já que o endereço estava no campo de endereços de origem e o quadro foi recebido na porta 2, o quadro precisa estar associado à porta 2 na tabela. O endereço de destino do quadro é comparado com a tabela da bridge para ver se a entrada consta. O endereço consta da tabela mas está associado à porta 1, por isso, o quadro é encaminhado ao outro segmento. Quando o Host D transmite dados, o seu endereço MAC também é registrado na tabela da bridge. É assim que a bridge controla o tráfego entre os domínios de colisão. Estas são as etapas que a bridge usa para encaminhar e descartar quadros recebidos em qualquer uma de suas portas.

34 Bridging da Camada 2

35 Bridging da Camada 2 Etapas que a bridge usa para encaminhar e descartar quadros recebidos em qualquer uma de suas portas.

36 Comutação L2 (Switch) Uma bridge possui apenas duas portas e divide o domínio de colisão em duas partes. Todas as decisões feitas por uma bridge são baseadas no endereçamento MAC ou da Camada 2 e não afetam o endereçamento lógico ou da Camada 3. Assim, uma bridge divide um domínio de colisão mas não tem efeito nenhum no domínio lógico ou de broadcast. Não importa quantas bridges existam em uma rede, a não ser que haja um dispositivo como um roteador que funcione com o endereçamento da Camada 3, a rede inteira compartilhará o mesmo espaço de endereço lógico de broadcast. Uma bridge criará mais domínios de colisão mas não adicionará domínios de broadcast. Um switch: uma bridge rápida multiportas, que pode conter dezenas de portas. Em vez de criar dois domínios de colisão, cada porta cria seu próprio domínio de colisão. Em uma rede de vinte nós, podem existir vinte domínios de colisão se cada nó for ligado em sua própria porta no switch. Se estiver incluída uma porta uplink, um switch criará vinte e um domínios de colisão com um único nó. Um switch dinamicamente constrói e mantém uma tabela CAM (Content-Addressable Memory), mantendo todas as informações MAC necessárias para cada porta.

37 Bridge

38 Operação Switch É simplesmente uma bridge com muitas portas. Quando apenas um nó está conectado a uma porta do switch, o domínio de colisão nos meios compartilhados contém apenas dois nós. Os dois nós neste pequeno segmento, ou domínio de colisão, consistem na porta do switch e o host conectado a ela. Estes pequenos segmentos físicos são conhecidos como microssegmentos. Outra capacidade se revela quando apenas dois nós são conectados. Em uma rede que usa cabeamento de par trançado, um par é usado para transportar o sinal transmitido de um nó para outro. Um segundo par é usado para o sinal de retorno ou sinal recebido. É possível a passagem simultânea dos sinais através de ambos os pares. A capacidade da comunicação nos dois sentidos ao mesmo tempo é conhecida como full duplex. A maior parte dos switches é capaz de suportar full duplex, como é o caso das placas de rede (NICs). Além de microprocessadores e memória mais rápidas, dois outros avanços na tecnologia possibilitaram a existência de switches. CAM (Content-addressable memory): é uma memória que funciona de maneira contrária, comparada à memória convencional. A introdução de dados na memória retornará o endereço associado. A utilização da CAM permite que um switch encontre diretamente a porta associada ao endereço MAC sem usar algoritmos de procura. ASIC (application-specific integrated circuit): é um dispositivo que consiste de gates lógicos não dedicados que podem ser programados para realizar funções a velocidades de própria lógica. As operações antes realizadas no software agora podem ser realizadas no hardware, usando-se um ASIC. A utilização destas tecnologias reduz imensamente os atrasos causados pelo processamento de software e permite que um switch acompanhe as exigências de dados dos vários microssegmentos e da taxa alta de bits.

39 Swtich

40 Swtich

41 Latência É o atraso entre o tempo que o quadro primeiro começa a sair do dispositivo de origem e o tempo que a primeira parte do quadro chega ao seu destino. Uma grande variedade de condições pode causar atrasos a medida que o quadro se propaga desde a origem até o destino: Atrasos do meio físico causados pela velocidade finita em que os sinais podem se propagar através do meio físico. Atrasos de circuito causados pelos circuitos eletrônicos que processam o sinal ao longo do caminho. Atrasos de software causados pelas decisões que o software precisa tomar para implementar a comutação e os protocolos. Atrasos causados pelo conteúdo do quadro e onde na comutação do quadro poderão ser feitas as decisões de comutação. Por exemplo, um dispositivo não pode rotear um quadro para um destino até que o endereço MAC de destino tenha sido lido.

42 Modos de um Switch A maneira pela qual um quadro é comutado à sua porta de destino é uma concessão entre latência e confiabilidade. Um switch poderá começar a transferir o quadro assim que o endereço MAC de destino for recebido. A comutação feita neste ponto é conhecida como comutação cut-through e resulta na latência mais baixa através do switch. No entanto, não oferece nenhuma verificação de erros. Por outro lado, o switch pode receber um quadro completo antes de enviá-lo à porta de destino. Isso dá ao software do switch a oportunidade de verificar o FCS (Frame Check Sequence) para garantir que o quadro foi recebido com integridade antes de enviá-lo ao destino. Se o quadro for identificado como inválido, ele será descartado nesse switch e não no destino final. Já que o quadro inteiro é armazenado antes de ser encaminhado, este modo é conhecido como armazenar e encaminhar. Uma solução intermediária entre os modos cut-through e armazenar e encaminhar é o modo livre de fragmentos. O modo livre de fragmentos lê os primeiros 64 bytes, que incluem o cabeçalho do quadro, e a comutação se inicia antes que sejam lidos todo o campo de dados e o checksum. Este modo verifica a confiabilidade das informações do endereçamento e do protocolo LLC (Logical Link Control) para garantir que o destino e o tratamento dos dados estejam corretos. Quando se usa os métodos de comutação cut-through, tanto a porta de origem como a de destino precisam operar à mesma taxa de bits a fim de manter a integridade do quadro. Isto é conhecido como comutação simétrica. Se as taxas de bits não forem iguais, o quadro precisará ser armazenado com uma taxa de bits antes de ser enviado com outra taxa de bits. Isso é conhecido como comutação assimétrica. O modo Store-and- Forward precisa ser usado em comutação assímétrica. A comutação assimétrica proporciona conexões comutadas entre portas com larguras de banda desiguais, como por exemplo uma combinação de 100 Mbps e 1000 Mbps. A comutação assimétrica é otimizada para os fluxos de tráfego cliente/servidor no qual vários clientes se comunicam simultaneamente com um servidor, exigindo mais largura de banda dedicada à porta do servidor para evitar um gargalo naquela porta.

43 Modo de Operação de um Switch

44 Modo de Operação de um Switch

45 SWITCH (Transparent Bridging) Os switchs são dispositivos capazes de segmentar a rede local analisando os endereços físicos. A C SWITCH PORTA COMPUTADOR 1 A A C A C 3 C C A C A A B C

46 SWITCH Permitem também interligar dispositivos que trabalham com velocidades de transmissão diferentes. SWITCH HUB HUB A B C D E F G

47 Meios Compartilhados Para poder entender os domínios de colisão é preciso entender o que são colisões e como são causadas. Redes diretamente conectadas e todos os hosts compartilham a Camada 1: Ambiente de meios compartilhados: Isto ocorre quando vários hosts obtêm acesso ao mesmo meio. Por exemplo, se vários PCs estiverem conectados ao mesmo fio físico ou à mesma fibra ótica, todos eles compartilharão o mesmo ambiente de meios compartilhados. Ambiente estendido de meios compartilhados: Este é um tipo especial de ambiente de meios compartilhados no qual os dispositivos de rede podem estender o ambiente para que possa acomodar múltiplos acessos ou distâncias de cabos mais longas. Ambiente de rede ponto-a-ponto: Amplamente usado em conexões de redes dial-up é o mais conhecido pelo usuário domiciliar. É um ambiente de rede compartilhado onde um dispositivo está conectado a apenas um outro dispositivo, como a conexão de um computador ao provedor de serviços de Internet através de modem e uma linha telefônica. É muito importante poder identificar um ambiente de meios compartilhados, pois só em ambientes compartilhados ocorrem as colisões. Exemplo prático: um sistema de rodovias é um exemplo de um ambiente compartilhado no qual podem ocorrer colisões porque vários veículos estão usando as mesmas pistas. Conforme mais veículos entram no sistema, maior se torna a probabilidade de colisões. Uma rede de dados compartilhada é semelhante a uma rodovia. Existem regras para determinar quem tem acesso aos meios da rede, às vezes, no entanto, as regras simplesmente não podem acomodar a carga do tráfego e conseqüentemente ocorrem colisões.

48 Domínio de Colisão São os segmentos físicos conectados da rede onde podem ocorrer colisões. Efeitos: As colisões fazem com que a rede se torne ineficiente. Cada vez que ocorre uma colisão em uma rede, todas as transmissões são interrompidas por um período de tempo. A duração deste período de tempo sem transmissões varia e é determinado por um algoritmo de backoff (recuo) para cada dispositivo da rede. Dispositivos: Os tipos de dispositivos que interconectam os segmentos dos meios definem os domínios de colisão. Estes dispositivos têm sido classificados como dispositivos da Camada 1, 2 ou 3 do modelo OSI. Os dispositivos da Camada 1 não dividem os domínios de colisão; os dispositivos da Camada 2 e Camada 3 dividem domínios de colisão. A divisão ou aumento no número de domínios de colisão pelos dispositivos das Camadas 2 e 3 é também conhecida como segmentação. Dispositivos de Camada 1: Os dispositivos da Camada 1, como repetidores e hubs, atendem a função principal de estender os segmentos de cabos Ethernet. Mais hosts podem ser adicionados quando as redes são estendidas. No entanto, cada host adicionado aumenta o potencial de tráfego na rede. Já que os dispositivos da Camada 1 passam adiante tudo que é enviado sobre os meios, quanto maior o tráfego transmitido dentro de um domínio de colisão, maiores são as chances de colisões. O resultado final será uma diminuição no desempenho da rede, que será mais pronunciada se todos os computadores naquela rede estiverem solicitando um alto nível de largura de banda. Dispositivos da Camada 1: estendem os domínios de colisão, mas o comprimento de uma rede local também pode ser estendido demais e causar outros problemas de colisão.

49 Domínio de Colisão A regra de quatro repetidores na Ethernet declara que podem existir, no máximo, quatro repetidores ou hubs de repetição entre dois computadores na rede. Para garantir que uma rede 10BASE-T com repetidores funcione corretamente, o cálculo do atraso de ida e volta deverá permanecer dentro de certos limites, caso contrário, nem todas as estações de trabalho poderão escutar todas as colisões na rede. A latência dos repetidores, o atraso da propagação e a latência das placas de rede contribuem para a regra de quatro repetidores. Exceder a regra de quatro repetidores pode levar à violação do limite máximo de atraso. Quando for excedido este limite de atraso, o número de colisões tardias aumentará consideravelmente. colisão tardia: é quando ocorre uma colisão depois que os primeiros 64 bytes do quadro tenham sido transmitidos. Os chipsets (conjuntos de chips) nas placas de rede não são obrigados a retransmitir automaticamente com a ocorrência de uma colisão tardia. Estes quadros de colisão retardada adicionam um atraso conhecido como atraso de consumo. À medida que aumenta o atraso de consumo e a latência, vai diminuindo o desempenho da rede. regra : também oferece diretrizes para manter o tempo de atraso da ida e volta em uma rede compartilhada dentro dos limites aceitáveis: Cinco segmentos de meios de rede Quatro repetidores ou hubs Três segmentos de host da rede Duas seções de links (sem hosts) Um domínio grande de colisão

50 RM-OSI e Domínio de Colisão

51 Regra dos 4 Repetidores

52 Regra dos 4 Repetidores

53 Cálculo de atraso ida-e-volta

54 Segmentação A história de como a Ethernet lida colisões e domínios de colisão data do ano de 1970 em pesquisas na University of Hawaii. Enquanto tentavam desenvolver um sistema de comunicação sem-fio para as ilhas do Havaí, os pesquisadores da universidade desenvolveram um protocolo conhecido como Aloha. O protocolo Ethernet é na realidade baseado no protocolo Aloha. Uma habilidade importante para um profissional de rede é a capacidade de reconhecer os domínios de colisão. A conexão de vários computadores a um único meio de acesso compartilhado que não possui nenhum outro dispositivo de rede conectado cria um domínio de colisão. Esta situação limita o número de computadores que podem usar os meios, também conhecido como segmento. Os dispositivos da Camada 1 estendem mas não controlam os domínios de colisão. Dispositivos da Camada 2: segmentam ou dividem os domínios de colisão. O controle da propagação do quadro usando um endereço MAC designado a cada dispositivo Ethernet realiza essa função. Os dispositivos da Camada 2, as bridges e os switches, rastreiam os endereços MAC e os segmentos nos quais se encontram. Ao fazerem isso, estes dispositivos podem controlar o fluxo do tráfego ao nível da Camada 2. Esta função aumenta a eficiência das redes ao permitir que os dados sejam transmitidos em diferentes segmentos da rede local simultaneamente sem a colisão dos quadros. Com a utilização de bridges e switches, o domínio de colisão é dividido em partes menores, cada um deles se tornando seu próprio domínio de colisão. Estes domínios de colisão menores terão menos hosts e menos tráfego que o domínio original. Quanto menos hosts existirem em um domínio de colisão, maior será a probabilidade de que os meios estejam disponíveis. Contanto que não haja muito tráfego entre os segmentos interligados via bridge, uma rede com bridges funciona perfeitamente. Caso contrário, o dispositivo da Camada 2 poderá até retardar a comunicação e também transformar-se em gargalo. Os dispositivos da Camada 3: Mesma maneira que os dispositivos da Camada 2, não encaminham colisões. A utilização dos dispositivos da Camada 3 em uma rede tem o efeito de dividir os domínios de colisão em domínios menores. Os dispositivos da Camada 3 realizam mais funções do que apenas dividir um domínio de colisão. Os dispositivos da Camada 3 e suas funções domínios de broadcast.

55 Dispositivos de L1 Estendendo DColisão

56 Limitando Domínio de Colisão

57 Broadcast L2 Para a comunicação com todos os domínios de colisão, os protocolos usam os quadros broadcast e multicast na Camada 2 do modelo OSI. Quando um nó precisa comunicar-se com todos os hosts na rede, ele envia um quadro de broadcast com um endereço MAC de destino 0xFFFFFFFFFFFF. Este é um endereço ao qual a placa de rede (NIC) de cada host precisa responder. Os dispositivos da Camada 2 precisam propagar todo o tráfego de broadcast e multicast. O acúmulo de tráfego broadcast e multicast de cada dispositivo na rede é conhecido como radiação de broadcast. Em alguns casos, a circulação da radiação de broadcast poderá saturar a rede de maneira que não sobre largura de banda para os dados das aplicações. Neste caso, novas conexões de rede não podem ser estabelecidas e as conexões existentes podem ser descartadas, uma situação conhecida como tempestade de broadcast. A probabilidade de tempestades de broadcast aumenta com o crescimento da rede comutada. A placa de rede precisa interromper a CPU para processar cada grupo de broadcast ou multicast a que pertence, a radiação de broadcast afeta o desempenho do host na rede. Exemplo: O efeito da radiação de broadcast no desempenho da CPU de uma Sun SPARCstation 2 com uma placa Ethernet padrão incorporada. uma estação de trabalho IP pode ser virtualmente paralisada por uma inundação de broadcasts na rede. Embora seja um exemplo extremo, picos de broadcasts em milhares de broadcasts por segundo têm sido observados durante tempestades de broadcast. Os testes feitos sob condições controladas com uma variedade de broadcasts e multicasts na rede mostram considerável degradação do sistema até com 100 broadcasts ou multicasts por segundo.

58

59 Broadcast L2 Visão do Host: O host não se beneficia do processamento do broadcast, pois não é o destino almejado. O host não se preocupa com o serviço que está sendo anunciado, ou já sabe sobre o serviço. Altos níveis de radiação de broadcast podem degradar consideravelmente o desempenho do host. As três fontes de broadcasts e multicasts em redes IP são estações de trabalho, roteadores e aplicações multicast. Estações de trabalho: fazem broadcast de uma solicitação ARP (Address Resolution Protocol) todas as vezes que precisam localizar um endereço MAC que não se encontra na tabela ARP. Embora os números na figura possam parecer baixos, representam em média, uma rede IP média bem planejada. Quando o tráfego de broadcast e multicast chegam a um pico devido a uma condição de tempestade, as perdas de nível mais alto na CPU podem atingir ordens de magnitude acima da média. As tempestades de broadcast podem ser causadas por um dispositivo solicitando informações de uma rede que já está extremamente grande. Tantas respostas são enviadas à solicitação original que o dispositivo não pode processá-las, ou a primeira solicitação dispara solicitações semelhantes de outros dispositivos que virtualmente bloqueiam o fluxo do tráfego normal na rede. Como exemplo, o comando telnet mumble.com se traduz em endereço IP através de uma procura no DNS (Domain Name System). Para localizar o endereço MAC correspondente, a solicitação ARP é transmitida usando broadcast. Geralmente, as estações de trabalho IP mantêm em cache entre 10 e 100 endereços nas suas tabelas ARP durante mais ou menos duas horas. A taxa ARP para uma estação de trabalho típica deve ser de mais ou menos 50 endereços a cada duas horas ou 0,007 ARPs por segundo. Desta maneira, 2000 estações IP finais produzem mais ou menos 14 ARPs por segundo. Os protocolos de roteamento que estão configurados em uma rede podem aumentar consideravelmente o tráfego de broadcast. Alguns administradores configuram todas as estações de trabalho para que executem o RIP (Routing Information Protocol) por regra de redundância e alcance. Cada 30 segundos, o RIPv1 usa broadcasts para retransmitir a tabela inteira de roteamento RIP para outros roteadores RIP. Se 2000 estações de trabalho estiverem configuradas para executar o RIP e, na média, são exigidos 50 pacotes para transmitir a tabela de roteamento, as estações de trabalho gerariam 3333 broadcasts por segundo. A maioria dos administradores configura apenas um pequeno número de roteadores, geralmente de cinco a dez para executar o RIP. Para uma tabela de roteamento que tenha um tamanho de 50 pacotes, 10 roteadores RIP gerariam mais ou menos 16 broadcasts por segundo. As aplicações multicast IP podem afetar adversamente o desempenho das redes grandes, escalonadas e comutadas. Embora o multicasting seja uma maneira eficiente de se enviar um fluxo de dados de multimídia a vários usuários em um hub de meios compartilhados, ele afeta cada um dos usuários em uma rede linear comutada. Uma determinada aplicação de pacotes de vídeo pode gerar um fluxo de sete megabytes (MB) de dados multicast que, em uma rede comutada, seria enviado a cada segmento, resultando em um grave congestionamento.

60 Broadcast L2 ara a comunicação com todos os domínios de colisão, os protocolos usam os quadros broadcast e multicast na Camada 2 do modelo OSI. Quando um nó precisa comunicarse com todos os hosts na rede, ele envia um quadro de broadcast com um endereço MAC de destino 0xFFFFFFFFFFFF. Este é um endereço ao qual a placa de rede (NIC) de cada host precisa responder. Os dispositivos da Camada 2 precisam propagar todo o tráfego de broadcast e multicast. O acúmulo de tráfego broadcast e multicast de cada dispositivo na rede é conhecido como radiação de broadcast. Em alguns casos, a circulação da radiação de broadcast poderá saturar a rede de maneira que não sobre largura de banda para os dados das aplicações. Neste caso, novas conexões de rede não podem ser estabelecidas e as conexões existentes podem ser descartadas, uma situação conhecida como tempestade de broadcast. A probabilidade de tempestades de broadcast aumenta com o crescimento da rede comutada. Já que a placa de rede precisa interromper a CPU para processar cada grupo de broadcast ou multicast a que pertence, a radiação de broadcast afeta o desempenho do host na rede. A Figura mostra os resultados dos testes que a Cisco realizou sobre o efeito da radiação de broadcast no desempenho da CPU de uma Sun SPARCstation 2 com uma placa Ethernet padrão incorporada. Conforme indicado pelos resultados mostrados, uma estação de trabalho IP pode ser virtualmente paralisada por uma inundação de broadcasts na rede. Embora seja um exemplo extremo, picos de broadcasts em milhares de broadcasts por segundo têm sido observados durante tempestades de broadcast. Os testes feitos sob condições controladas com uma variedade de broadcasts e multicasts na rede mostram considerável degradação do sistema até com 100 broadcasts ou multicasts por segundo. Mais freqüentemente, o host não se beneficia do processamento do broadcast, pois não é o destino almejado. O host não se preocupa com o serviço que está sendo anunciado, ou já sabe sobre o serviço. Altos níveis de radiação de broadcast podem degradar consideravelmente o desempenho do host. As três fontes de broadcasts e multicasts em redes IP são estações de trabalho, roteadores e aplicações multicast. As estações de trabalho fazem broadcast de uma solicitação ARP (Address Resolution Protocol) todas as vezes que precisam localizar um endereço MAC que não se encontra na tabela ARP. Embora os números na figura possam parecer baixos, representam em média, uma rede IP média bem planejada. Quando o tráfego de broadcast e multicast chegam a um pico devido a uma condição de tempestade, as perdas de nível mais alto na CPU podem atingir ordens de magnitude acima da média. As tempestades de broadcast podem ser causadas por um dispositivo solicitando informações de uma rede que já está extremamente grande. Tantas respostas são enviadas à solicitação original que o dispositivo não pode processá-las, ou a primeira solicitação dispara solicitações semelhantes de outros dispositivos que virtualmente bloqueiam o fluxo do tráfego normal na rede. Como exemplo, o comando telnet mumble.com se traduz em endereço IP através de uma procura no DNS (Domain Name System). Para localizar o endereço MAC correspondente, a solicitação ARP é transmitida usando broadcast. Geralmente, as estações de trabalho IP mantêm em cache entre 10 e 100 endereços nas suas tabelas ARP durante mais ou menos duas horas. A taxa ARP para uma estação de trabalho típica deve ser de mais ou menos 50 endereços a cada duas horas ou 0,007 ARPs por segundo. Desta maneira, 2000 estações IP finais produzem mais ou menos 14 ARPs por segundo. Os protocolos de roteamento que estão configurados em uma rede podem aumentar consideravelmente o tráfego de broadcast. Alguns administradores configuram todas as estações de trabalho para que executem o RIP (Routing Information Protocol) por regra de redundância e alcance. Cada 30 segundos, o RIPv1 usa broadcasts para retransmitir a tabela inteira de roteamento RIP para outros roteadores RIP. Se 2000 estações de trabalho estiverem configuradas para executar o RIP e, na média, são exigidos 50 pacotes para transmitir a tabela de roteamento, as estações de trabalho gerariam 3333 broadcasts por segundo. A maioria dos administradores configura apenas um pequeno número de roteadores, geralmente de cinco a dez para executar o RIP. Para uma tabela de roteamento que tenha um tamanho de 50 pacotes, 10 roteadores RIP gerariam mais ou menos 16 broadcasts por segundo. As aplicações multicast IP podem afetar adversamente o desempenho das redes grandes, escalonadas e comutadas. Embora o multicasting seja uma maneira eficiente de se enviar um fluxo de dados de multimídia a vários usuários em um hub de meios compartilhados, ele afeta cada um dos usuários em uma rede linear comutada. Uma determinada aplicação de pacotes de vídeo pode gerar um fluxo de sete megabytes (MB) de dados multicast que, em uma rede comutada, seria enviado a cada segmento, resultando em um grave congestionamento.

61 Domínio de Broadcast É um agrupamento de domínios de colisão que estão conectados por dispositivos da Camada 2. A divisão de uma rede local em vários domínios de colisão aumenta a oportunidade para que cada host na rede ganhe acesso aos meios. Isto efetivamente reduz as chances de colisões e aumenta a disponibilidade de largura de banda para cada host. Mas os broadcasts são encaminhados pelos dispositivos da Camada 2 e se excessivos, poderão reduzir a eficiência de toda a rede local. Os broadcasts precisam ser controlados nos dispositivos na Camada 3, pois os dispositivos da Camada 2 e da Camada 1 não possuem recursos para controlá-los. O tamanho total de um domínio de broadcast pode ser identificado ao examinarmos todos os domínios de colisão que são processados pelo mesmo quadro de broadcast. Em outras palavras, todos os nós que fazem parte daquele segmento de rede ligado por um dispositivo de camada três. Os domínios de broadcast são controlados na Camada 3 pois os roteadores não encaminham broadcasts. Roteadores: Os roteadores na realidade funcionam nas Camadas 1, 2, e 3. Eles, como todos os dispositivos de Camada 1, possuem uma conexão física aos meios físicos e transmitem dados através deles. Eles possuem um encapsulamento da Camada 2 em todas as interfaces e funcionam como qualquer outro dispositivo da Camada 2. É a Camada 3 que permite que o roteador segmente os domínios de broadcast. Para que um pacote possa ser encaminhado através de um roteador, ele precisa já ter sido processado pelo dispositivo da Camada 2 e ter as informações do quadro removidas. O encaminhamento da Camada 3 é baseado no endereço IP de destino e não no endereço MAC. Para que um pacote possa ser encaminhado, ele precisa conter um endereço IP que esteja fora da faixa de endereços designados à rede local e o roteador precisa ter na sua tabela de roteamento um destino para onde enviar o pacote específico.

62

63 Fluxo de Dados Fluxo de dados no contexto dos domínios de colisão e broadcast se concentra em como os quadros de dados se propagam através de uma rede. Ele se refere ao movimento dos dados através dos dispositivos das Camadas 1, 2 e 3 e como os dados precisam ser encapsulados para fazerem o percurso com eficácia. Lembre-se de que os dados são encapsulados na Camada da rede com um endereço IP de origem e de destino, e na Camada de enlace com um endereço MAC de origem e de destino. Uma boa regra a ser seguida é que um dispositivo de Camada 1 sempre encaminha o quadro, enquanto que o dispositivo de Camada 2 quer encaminhar o quadro. Em outras palavras, um dispositivo de Camada 2 encaminhará o quadro a não ser que alguma coisa o impeça de fazê-lo. Um dispositivo de Camada 3 não encaminhará o quadro a não ser que seja obrigado. A utilização desta regra ajudará a identificar como os dados fluem através de uma rede. Os dispositivos de Camada 1 não fazem filtragem, de modo que tudo que é recebido é passado adiante ao próximo segmento. O quadro é simplesmente regenerado e retemporizado e assim restaurado à sua qualidade original de transmissão. Quaisquer segmentos conectados pelos dispositivos de Camada 1 fazem parte do mesmo domínio, isto é, de colisão e de broadcast. Os dispositivos de Camada 2 filtram os quadros de dados baseados no endereço MAC de destino. Um quadro é encaminhado se for para um destino desconhecido fora do domínio de colisão. O quadro será também encaminhado se for um broadcast, multicast ou unicast indo para fora do domínio de colisão local. A única situação em que um quadro não é encaminhado é quando o dispositivo de Camada 2 descobre que o host de envio e o host de recepção estão no mesmo domínio de colisão. Um dispositivo de Camada 2, como uma bridge, cria vários domínios de colisão mas mantém apenas um domínio de broadcast. Os dispositivos de Camada 3 filtram os pacotes de dados baseados no endereço IP de destino. A única maneira de um pacote ser encaminhado é se o seu endereço IP estiver fora do domínio de broadcast e se o roteador tiver um local identificado para onde mandar o pacote. Um dispositivo de Camada 3 cria vários domínios de colisão e de broadcast. O fluxo de dados através de uma rede roteada baseada em IP, envolve dados que passam através de dispositivos de gerenciamento de tráfego nas Camadas 1, 2 e 3 do modelo OSI. A Camada 1 é usada para a transmissão através de meios físicos, a Camada 2 para gerenciamento de domínios de colisão e a Camada 3 para gerenciamento de domínios de broadcast.

64 Fluxo de Dados Através de um Rede

65 Segmento de Rede Segmento: Uma porção de um todo Uma das partes nas quais uma entidade ou quantidade é dividida ou pela qual é delineada como se por marcos naturais No contexto das comunicações de dados, as seguintes definições são usadas: Uma seção de uma rede que é ligada por bridges, roteadores ou switches. Em uma rede local usando uma topologia de barramento, um segmento é um circuito elétrico contínuo que é freqüentemente conectado a outros tantos segmentos com repetidores. Um termo usado na especificação do TCP para descrever uma unidade de informação da camada de transporte. Os termos datagrama, quadro, mensagem e pacote são também usados para descrever agrupamentos lógicos de informações em várias camadas do modelo OSI de referência e em vários círculos tecnológicos. Para definir adequadamente o termo segmento, o contexto da sua utilização precisa ser apresentado juntamente com a palavra. Um termo usado na especificação do TCP para descrever uma unidade de informação da camada de transporte. Se o termo segmento estiver sendo usado no contexto de meios físicos de rede em uma rede roteada, será visto como uma das partes ou seções de uma rede total.

Capítulo 8 - Comutação Ethernet. Associação dos Instrutores NetAcademy - agosto de 2007 - Página

Capítulo 8 - Comutação Ethernet. Associação dos Instrutores NetAcademy - agosto de 2007 - Página Capítulo 8 - Comutação Ethernet 1 Bridging da Camada 2 CCNA1_8_1_1_pt[1].swf Ao acrescentarmos mais hosts em um segmento, aumentamos o domínio de colisão e o número de retransmissões. Uma solução é dividir

Leia mais

Módulo 8 Ethernet Switching

Módulo 8 Ethernet Switching CCNA 1 Conceitos Básicos de Redes Módulo 8 Ethernet Switching Comutação Ethernet 2 Segmentação de Redes Numa Ethernet o meio de transmissão é compartilhado Só um nó pode transmitir de cada vez. O aumento

Leia mais

Universidade do Sul de Santa Catarina. Tecnologia e Comutação Ethernet. Ana Lúcia Rodrigues Wiggers

Universidade do Sul de Santa Catarina. Tecnologia e Comutação Ethernet. Ana Lúcia Rodrigues Wiggers Universidade do Sul de Santa Catarina Tecnologia e Comutação Ethernet Conceitos de Ethernet Nos anos 80 foi publicado o primeiro padrão Ethernet por um consórcio entre a Digital Equipment Company, a Intel,

Leia mais

Há dois tipos de configurações bidirecionais usados na comunicação em uma rede Ethernet:

Há dois tipos de configurações bidirecionais usados na comunicação em uma rede Ethernet: Comunicação em uma rede Ethernet A comunicação em uma rede local comutada ocorre de três formas: unicast, broadcast e multicast: -Unicast: Comunicação na qual um quadro é enviado de um host e endereçado

Leia mais

Interconexão de redes locais. Repetidores. Pontes (Bridges) Hubs. Pontes (Bridges) Pontes (Bridges) Existência de diferentes padrões de rede

Interconexão de redes locais. Repetidores. Pontes (Bridges) Hubs. Pontes (Bridges) Pontes (Bridges) Existência de diferentes padrões de rede Interconexão de redes locais Existência de diferentes padrões de rede necessidade de conectá-los Interconexão pode ocorrer em diferentes âmbitos LAN-LAN LAN: gerente de um determinado setor de uma empresa

Leia mais

Fundamentos de Redes de Computadores. Elementos de Redes Locais

Fundamentos de Redes de Computadores. Elementos de Redes Locais Fundamentos de Redes de Computadores Elementos de Redes Locais Contexto Implementação física de uma rede de computadores é feita com o auxílio de equipamentos de interconexão (repetidores, hubs, pontos

Leia mais

Aula 03 Regras de Segmentação e Switches

Aula 03 Regras de Segmentação e Switches Disciplina: Dispositivos de Rede II Professor: Jéferson Mendonça de Limas 4º Semestre Aula 03 Regras de Segmentação e Switches 2014/1 19/08/14 1 2de 38 Domínio de Colisão Os domínios de colisão são os

Leia mais

O modelo ISO/OSI (Tanenbaum,, 1.4.1)

O modelo ISO/OSI (Tanenbaum,, 1.4.1) Cenário das redes no final da década de 70 e início da década de 80: Grande aumento na quantidade e no tamanho das redes Redes criadas através de implementações diferentes de hardware e de software Incompatibilidade

Leia mais

Redes Locais. Prof. Luiz Carlos B. Caixeta Ferreira

Redes Locais. Prof. Luiz Carlos B. Caixeta Ferreira Redes Locais. Prof. Luiz Carlos B. Caixeta Ferreira 5. Ethernet 5.1 Introdução 5.2 LLC (Logical Link Control) 5.3 MAC (Media Access Control) 5.4 Sistemas de Endereçamento 5.5 Quadros Ethernet 5.6 Codificação

Leia mais

Roteamento e Comutação

Roteamento e Comutação Roteamento e Comutação Design de Rede Local Design Hierárquico Este design envolve a divisão da rede em camadas discretas. Cada camada fornece funções específicas que definem sua função dentro da rede

Leia mais

PROJETO DE REDES www.projetoderedes.com.br

PROJETO DE REDES www.projetoderedes.com.br PROJETO DE REDES www.projetoderedes.com.br Curso de Tecnologia em Redes de Computadores Disciplina: Redes I Fundamentos - 1º Período Professor: José Maurício S. Pinheiro AULA 6: Switching Uma rede corporativa

Leia mais

switches LAN (rede de comunicação local)

switches LAN (rede de comunicação local) O funcionamento básico de uma rede depende de: nós (computadores) um meio de conexão (com ou sem fios) equipamento de rede especializado, como roteadores ou hubs. Todas estas peças trabalham conjuntamente

Leia mais

Prof. Samuel Henrique Bucke Brito

Prof. Samuel Henrique Bucke Brito - Switch na Camada 2: Comutação www.labcisco.com.br ::: shbbrito@labcisco.com.br Prof. Samuel Henrique Bucke Brito Introdução A conexão entre duas portas de entrada e saída, bem como a transferência de

Leia mais

REDES DE COMPUTADORES Prof. Ricardo Rodrigues Barcelar http://www.ricardobarcelar.com.br

REDES DE COMPUTADORES Prof. Ricardo Rodrigues Barcelar http://www.ricardobarcelar.com.br - Aula Complementar - EQUIPAMENTOS DE REDE 1. Repetidor (Regenerador do sinal transmitido) É mais usado nas topologias estrela e barramento. Permite aumentar a extensão do cabo e atua na camada física

Leia mais

Prof. Samuel Henrique Bucke Brito

Prof. Samuel Henrique Bucke Brito - Metro-Ethernet (Carrier Ethernet) www.labcisco.com.br ::: shbbrito@labcisco.com.br Prof. Samuel Henrique Bucke Brito - Ethernet na LAN www.labcisco.com.br ::: shbbrito@labcisco.com.br Prof. Samuel Henrique

Leia mais

COMPONENTES BÁSICOS DE

COMPONENTES BÁSICOS DE COMPONENTES BÁSICOS DE REDES 2ºPARTE Prof. Me. Hélio Esperidião SWITCH O SWITCH opera de forma mais inteligente. Ele analisa os pacotes de dados que chegam a ele e descobre os endereços de origem e destino.

Leia mais

Arquitetura de Redes de Computadores - aula 3

Arquitetura de Redes de Computadores - aula 3 Arquitetura de Redes de Computadores - aula 3 Prof. Celso Rabelo Universidade Castelo Branco 1 Objetivo 2 Conceitos Tratamento de Colisão Histórico 3 Características Regras de Controle Tipos de Cabo e

Leia mais

Centro Tecnológico de Eletroeletrônica César Rodrigues. Atividade Avaliativa

Centro Tecnológico de Eletroeletrônica César Rodrigues. Atividade Avaliativa 1ª Exercícios - REDES LAN/WAN INSTRUTOR: MODALIDADE: TÉCNICO APRENDIZAGEM DATA: Turma: VALOR (em pontos): NOTA: ALUNO (A): 1. Utilize 1 para assinalar os protocolos que são da CAMADA DE REDE e 2 para os

Leia mais

Protocolo Ethernet e Dispositivos de Interconexão de LANs

Protocolo Ethernet e Dispositivos de Interconexão de LANs Protocolo Ethernet e Dispositivos de Interconexão de LANs Prof. Rafael Guimarães Redes de Alta Velocidade Tópico 4 - Aula 1 Tópico 4 - Aula 1 Rafael Guimarães 1 / 31 Sumário Sumário 1 Motivação 2 Objetivos

Leia mais

Equipamentos de Rede. Prof. Sérgio Furgeri 1

Equipamentos de Rede. Prof. Sérgio Furgeri 1 Equipamentos de Rede Repetidor (Regenerador do sinal transmitido)* Mais usados nas topologias estrela e barramento Permite aumentar a extensão do cabo Atua na camada física da rede (modelo OSI) Não desempenha

Leia mais

CCNA 1 Conceitos de Ethernet. Kraemer

CCNA 1 Conceitos de Ethernet. Kraemer CCNA 1 Conceitos de Ethernet Conceitos de Ethernet Introdução ao Ethernet Formato do quadro CSMA/CD Tipos de colisão Tipos de erro Autonegociação Introdução ao Ethernet É essencial ter um entendimento

Leia mais

Cap 01 - Conceitos Básicos de Rede (Kurose)

Cap 01 - Conceitos Básicos de Rede (Kurose) Cap 01 - Conceitos Básicos de Rede (Kurose) 1. Quais são os tipos de redes de computadores e qual a motivação para estudá-las separadamente? Lan (Local Area Networks) MANs(Metropolitan Area Networks) WANs(Wide

Leia mais

REDES DE COMPUTADORES

REDES DE COMPUTADORES REDES DE COMPUTADORES Rede é um conjunto de módulos processadores capazes de trocar informações e compartilhar recursos. O tipo de rede é definido pela sua área de abrangência, podemos classificar as redes

Leia mais

REDE DE COMPUTADORES

REDE DE COMPUTADORES SERVIÇO NACIONAL DE APRENDIZAGEM COMERCIAL REDE DE COMPUTADORES Tecnologias de Rede Topologias Tipos de Arquitetura Prof. Airton Ribeiro de Sousa E-mail: airton.ribeiros@gmail.com 1 REDES LOCAIS LAN -

Leia mais

Voltar. Placas de rede

Voltar. Placas de rede Voltar Placas de rede A placa de rede é o dispositivo de hardware responsável por envio e recebimento de pacotes de dados e pela comunicação do computador com a rede. Existem placas de rede on-board(que

Leia mais

Equipamentos de Redes. Professor Leonardo Larback

Equipamentos de Redes. Professor Leonardo Larback Equipamentos de Redes Professor Leonardo Larback Componentes de Expansão e Segmentação Pontos de rede localizados à distâncias maiores que o limite estabelecido pela mídia utilizada, o aumento no número

Leia mais

Arquitetura de Rede de Computadores

Arquitetura de Rede de Computadores TCP/IP Roteamento Arquitetura de Rede de Prof. Pedro Neto Aracaju Sergipe - 2011 Ementa da Disciplina 4. Roteamento i. Máscara de Rede ii. Sub-Redes iii. Números Binários e Máscara de Sub-Rede iv. O Roteador

Leia mais

Redes de Computadores

Redes de Computadores Lembrando...desempenho de redes ethernet Instituto de Informátic ca - UFRGS Redes de Computadores Equipamentos de Interconexão de redes Aula 12! Ethernet emprega meio compartilhado para transmitir dados

Leia mais

Introdução Introduç ão Rede Rede TCP/IP Roteame Rotea nto nto CIDR

Introdução Introduç ão Rede Rede TCP/IP Roteame Rotea nto nto CIDR Introdução as Redes TCP/IP Roteamento com CIDR LAN = Redes de Alcance Local Exemplo: Ethernet II não Comutada Barramento = Broadcast Físico Transmitindo ESCUTANDO ESCUTANDO A quadro B C B A. DADOS CRC

Leia mais

Claudivan C. Lopes claudivan@ifpb.edu.br

Claudivan C. Lopes claudivan@ifpb.edu.br Claudivan C. Lopes claudivan@ifpb.edu.br Sobre a arquitetura Ethernet Camadas da arquitetura Ethernet Topologias para redes Ethernet IFPB/Patos - Prof. Claudivan 2 É a arquitetura mais comum em redes locais

Leia mais

REDE DE COMPUTADORES

REDE DE COMPUTADORES SERVIÇO NACIONAL DE APRENDIZAGEM COMERCIAL REDE DE COMPUTADORES Tecnologias de Rede Arquitetura Prof. Airton Ribeiro de Sousa E-mail: airton.ribeiros@gmail.com 1 A arquitetura de redes tem como função

Leia mais

Faculdade Anhanguera de São Caetano do Sul

Faculdade Anhanguera de São Caetano do Sul Faculdade Anhanguera de São Caetano do Sul Redes Locais Curso: Tecnologia em Redes de Computadores Prof:Eduardo M. de Araujo Site-http://professoreduardoaraujo.com Modelo de Rede Hierárquico Camada de

Leia mais

RCO2. LANs, MANs e WANs Visão geral

RCO2. LANs, MANs e WANs Visão geral RCO2 LANs, MANs e WANs Visão geral 1 LAN, MAN e WAN Classificação quanto a alcance, aplicação e tecnologias Distâncias: WAN: : distâncias arbitrariamente longas MAN: : distâncias médias (urbanas) LAN:

Leia mais

Módulo 7 Tecnologia da Ethernet

Módulo 7 Tecnologia da Ethernet CCNA 1 Conceitos Básicos de Redes Módulo 7 Tecnologia da Ethernet Ethernet a 10 e 100 Mbps Tipos de Ethernet Todas as verões da Ethernet têm: Endereçamento MAC. Formato das tramas idêntico. Utilizam o

Leia mais

Prof. Wilton O. Ferreira Universidade Federal Rural de Pernambuco UFRPE 1º Semestre / 2012

Prof. Wilton O. Ferreira Universidade Federal Rural de Pernambuco UFRPE 1º Semestre / 2012 Prof. Wilton O. Ferreira Universidade Federal Rural de Pernambuco UFRPE 1º Semestre / 2012 As redes de computadores possibilitam que indivíduos possam trabalhar em equipes, compartilhando informações,

Leia mais

ARP. Tabela ARP construída automaticamente. Contém endereço IP, endereço MAC e TTL

ARP. Tabela ARP construída automaticamente. Contém endereço IP, endereço MAC e TTL ARP Protocolo de resolução de endereços (Address Resolution Protocol) Descrito na RFC 826 Faz a tradução de endereços IP para endereços MAC da maioria das redes IEEE 802 Executado dentro da sub-rede Cada

Leia mais

UNIVERSIDADE FEDERAL DO PIAUI UFPI Colégio Técnico de Teresina CTT. Professor: José Valdemir dos Reis Junior. Disciplina: Redes de Computadores II

UNIVERSIDADE FEDERAL DO PIAUI UFPI Colégio Técnico de Teresina CTT. Professor: José Valdemir dos Reis Junior. Disciplina: Redes de Computadores II UNIVERSIDADE FEDERAL DO PIAUI UFPI Colégio Técnico de Teresina CTT Professor: José Valdemir dos Reis Junior Disciplina: Redes de Computadores II 2 3 Dispositivo que opera apenas na camada física recebendo

Leia mais

TOPOLOGIAS. Em redes de computadores modernos a transmissão de dados não ocorre através de bits contínuos.

TOPOLOGIAS. Em redes de computadores modernos a transmissão de dados não ocorre através de bits contínuos. TOPOLOGIAS Fundamentos de Redes Prof. Marcel Santos Silva Pacotes Em redes de computadores modernos a transmissão de dados não ocorre através de bits contínuos. Os dados são divididos em pequenos blocos

Leia mais

TRANSMISSÃO DE DADOS Prof. Ricardo Rodrigues Barcelar http://www.ricardobarcelar.com

TRANSMISSÃO DE DADOS Prof. Ricardo Rodrigues Barcelar http://www.ricardobarcelar.com - Aula 5-1. A CAMADA DE TRANSPORTE Parte 1 Responsável pela movimentação de dados, de forma eficiente e confiável, entre processos em execução nos equipamentos conectados a uma rede de computadores, independentemente

Leia mais

Roteamento e Comutação

Roteamento e Comutação Roteamento e Comutação A camada de enlace, cujo protocolo é utilizado para transportar um datagrama por um enlace individual, define o formato dos pacotes trocados entre os nós nas extremidades, bem como

Leia mais

Serviço de datagrama não confiável Endereçamento hierárquico. Facilidade de fragmentação e remontagem de pacotes

Serviço de datagrama não confiável Endereçamento hierárquico. Facilidade de fragmentação e remontagem de pacotes IP Os endereços IP são números com 32 bits, normalmente escritos como quatro octetos (em decimal), por exemplo 128.6.4.7. A primeira parte do endereço identifica uma rede especifica na interrede, a segunda

Leia mais

Guia de Conectividade Worldspan Go Res! A V A N Ç A D O

Guia de Conectividade Worldspan Go Res! A V A N Ç A D O Guia de Conectividade Worldspan Go Res! A V A N Ç A D O Í n d i c e Considerações Iniciais...2 Rede TCP/IP...3 Produtos para conectividade...5 Diagnosticando problemas na Rede...8 Firewall...10 Proxy...12

Leia mais

Redes de Computadores II INF-3A

Redes de Computadores II INF-3A Redes de Computadores II INF-3A 1 ROTEAMENTO 2 Papel do roteador em uma rede de computadores O Roteador é o responsável por encontrar um caminho entre a rede onde está o computador que enviou os dados

Leia mais

MÓDULO 7 Modelo OSI. 7.1 Serviços Versus Protocolos

MÓDULO 7 Modelo OSI. 7.1 Serviços Versus Protocolos MÓDULO 7 Modelo OSI A maioria das redes são organizadas como pilhas ou níveis de camadas, umas sobre as outras, sendo feito com o intuito de reduzir a complexidade do projeto da rede. O objetivo de cada

Leia mais

Redes e Conectividade

Redes e Conectividade Redes e Conectividade Camada de enlace: domínio de colisão e domínio de broadcast, segmentação, modos de switching para encaminhamento de quadros Versão 1.0 Março de 2016 Prof. Jairo jairo@uninove.br professor@jairo.pro.br

Leia mais

ICORLI. INSTALAÇÃO, CONFIGURAÇÃO e OPERAÇÃO EM REDES LOCAIS e INTERNET

ICORLI. INSTALAÇÃO, CONFIGURAÇÃO e OPERAÇÃO EM REDES LOCAIS e INTERNET INSTALAÇÃO, CONFIGURAÇÃO e OPERAÇÃO EM REDES LOCAIS e INTERNET 2010/2011 1 Protocolo TCP/IP É um padrão de comunicação entre diferentes computadores e diferentes sistemas operativos. Cada computador deve

Leia mais

Roteamento e Comutação

Roteamento e Comutação Roteamento e Comutação Uma estação é considerada parte de uma LAN se pertencer fisicamente a ela. O critério de participação é geográfico. Quando precisamos de uma conexão virtual entre duas estações que

Leia mais

09/06/2011. Profª: Luciana Balieiro Cosme

09/06/2011. Profª: Luciana Balieiro Cosme Profª: Luciana Balieiro Cosme Revisão dos conceitos gerais Classificação de redes de computadores Visão geral sobre topologias Topologias Barramento Anel Estrela Hibridas Árvore Introdução aos protocolos

Leia mais

Interconexão redes locais (LANs)

Interconexão redes locais (LANs) Interconexão redes locais (LANs) Descrever o método de funcionamento dos dispositivos bridge e switch, desenvolver os conceitos básicos de LANs intermediárias, do uso do protocolo STP e VLANs. Com o método

Leia mais

Aula 6 Modelo de Divisão em Camadas TCP/IP

Aula 6 Modelo de Divisão em Camadas TCP/IP Aula 6 Modelo de Divisão em Camadas TCP/IP Camada Conceitual APLICATIVO TRANSPORTE INTER-REDE INTERFACE DE REDE FÍSICA Unidade de Dados do Protocolo - PDU Mensagem Segmento Datagrama /Pacote Quadro 01010101010100000011110

Leia mais

Introdução. Arquitetura de Rede de Computadores. Prof. Pedro Neto

Introdução. Arquitetura de Rede de Computadores. Prof. Pedro Neto Introdução Arquitetura de Rede de Prof. Pedro Neto Aracaju Sergipe - 2011 Ementa da Disciplina 1. Introdução i. Conceitos e Definições ii. Tipos de Rede a. Peer To Peer b. Client/Server iii. Topologias

Leia mais

Acesso Ethernet com Hubs

Acesso Ethernet com Hubs Acesso Ethernet com Hubs O dado é enviado de um por vez Cada nó trafega a 10 Mbps Acesso Ethernet com Bridges Bridges são mais inteligentes que os hubs Bridges reuni os quadros entre dois segmentos de

Leia mais

Rede de Computadores

Rede de Computadores Escola de Ciências e Tecnologia UFRN Rede de Computadores Prof. Aquiles Burlamaqui Nélio Cacho Luiz Eduardo Eduardo Aranha ECT1103 INFORMÁTICA FUNDAMENTAL Manter o telefone celular sempre desligado/silencioso

Leia mais

Redes e Serviços em Banda Larga

Redes e Serviços em Banda Larga Redes e Serviços em Banda Larga Redes Locais de Alta Velocidade Paulo Coelho 2002 /2003 1 Introdução Fast Ethernet Gigabit Ethernet ATM LANs 2 Características de algumas LANs de alta velocidade Fast Ethernet

Leia mais

Redes de Computadores

Redes de Computadores Redes de Computadores Capítulo 5.6 e 5.7 Interconexões e PPP Prof. Jó Ueyama Maio/2011 SSC0641-2011 1 Elementos de Interconexão SSC0641-2011 2 Interconexão com Hubs Dispositivo de camada física. Backbone:

Leia mais

Aula 4. Pilha de Protocolos TCP/IP:

Aula 4. Pilha de Protocolos TCP/IP: Aula 4 Pilha de Protocolos TCP/IP: Comutação: por circuito / por pacotes Pilha de Protocolos TCP/IP; Endereçamento lógico; Encapsulamento; Camada Internet; Roteamento; Protocolo IP; Classes de endereços

Leia mais

prof.edney@superig.com.br Redes de Computadores

prof.edney@superig.com.br Redes de Computadores prof.edney@superig.com.br Redes de Computadores Apresentação do professor, da disciplina, dos métodos de avaliação, das datas de trabalhos e provas; introdução a redes de computadores; protocolo TCP /

Leia mais

Tecnologia e Infraestrutura. Conceitos de Redes

Tecnologia e Infraestrutura. Conceitos de Redes Tecnologia e Infraestrutura Conceitos de Redes Agenda Introdução às Tecnologias de Redes: a) Conceitos de redes (LAN, MAN e WAN); b) Dispositivos (Hub, Switch e Roteador). Conceitos e tipos de Mídias de

Leia mais

Capítulo 9 - Conjunto de Protocolos TCP/IP e Endereçamento. Associação dos Instrutores NetAcademy - Julho de 2007 - Página

Capítulo 9 - Conjunto de Protocolos TCP/IP e Endereçamento. Associação dos Instrutores NetAcademy - Julho de 2007 - Página Capítulo 9 - Conjunto de Protocolos TCP/IP e Endereçamento IP 1 História e Futuro do TCP/IP O modelo de referência TCP/IP foi desenvolvido pelo Departamento de Defesa dos Estados Unidos (DoD). O DoD exigia

Leia mais

Placa de Rede. Tipos de Redes LAN (Local Area Network) Rede local. MAN (Metropolitan Area Network) Rede Metropolitana

Placa de Rede. Tipos de Redes LAN (Local Area Network) Rede local. MAN (Metropolitan Area Network) Rede Metropolitana Rede de Computadores Parte 01 Prof. André Cardia Email: andre@andrecardia.pro.br MSN: andre.cardia@gmail.com Placa de Rede Uma placa de rede (NIC), ou adaptador de rede, oferece capacidades de comunicações

Leia mais

Unidade 3 Visão Geral de Equipamentos de Rede

Unidade 3 Visão Geral de Equipamentos de Rede Faculdade INED Curso Superior de Tecnologia: Banco de Dados Redes de Computadores Disciplina: Redes de Computadores Prof.: Fernando Hadad Zaidan 1 Unidade 3 Visão Geral de Equipamentos de Rede 2 Repetidor

Leia mais

Capítulo 2 - Conceitos Básicos de Redes. Associação dos Instrutores NetAcademy - agosto de 2007 - Página

Capítulo 2 - Conceitos Básicos de Redes. Associação dos Instrutores NetAcademy - agosto de 2007 - Página Capítulo 2 - Conceitos Básicos de Redes 1 Redes de Dados Inicialmente o compartilhamento de dados era realizado a partir de disquetes (Sneakernets) Cada vez que um arquivo era modificado ele teria que

Leia mais

A máscara de sub-rede pode ser usada para dividir uma rede existente em "sub-redes". Isso pode ser feito para:

A máscara de sub-rede pode ser usada para dividir uma rede existente em sub-redes. Isso pode ser feito para: Fundamentos: A máscara de pode ser usada para dividir uma rede existente em "s". Isso pode ser feito para: 1) reduzir o tamanho dos domínios de broadcast (criar redes menores com menos tráfego); 2) para

Leia mais

Arquitetura de Redes: Camadas de Protocolos (Parte II)

Arquitetura de Redes: Camadas de Protocolos (Parte II) Arquitetura de Redes: Camadas de Protocolos (Parte II) Outline Tarefa: Camadas do modelo OSI e Multiplexação Encapsulamento de dados Comunicação ponto a ponto Fluxo de pacotes nas camadas 1, 2 e 3 Discussões

Leia mais

Redes Locais. Prof. Luiz Carlos B. Caixeta Ferreira

Redes Locais. Prof. Luiz Carlos B. Caixeta Ferreira Redes Locais. Prof. Luiz Carlos B. Caixeta Ferreira 2. Padrões de Redes Locais 2.1 - Criação da Ethernet 2.2 - Padrões IEEE 802.x 2.3 - Especificações 802.3 2.4 - Token Bus 2.5 - Token Ring 2.1 - Criação

Leia mais

As colisões e a dimensão do domínio de colisão são dois fatores que afetam negativamente o desempenho da rede. A microssegmentação da rede reduz o

As colisões e a dimensão do domínio de colisão são dois fatores que afetam negativamente o desempenho da rede. A microssegmentação da rede reduz o As colisões e a dimensão do domínio de colisão são dois fatores que afetam negativamente o desempenho da rede. A microssegmentação da rede reduz o tamanho dos domínios de colisão e reduz o número de colisões.

Leia mais

Objetivo: Criar redes locais virtuais (VLANs) usando switches e computadores

Objetivo: Criar redes locais virtuais (VLANs) usando switches e computadores Laboratório de IER 7 o experimento Objetivo: Criar redes locais virtuais (VLANs) usando switches e computadores Introdução LANs Ethernet (padrão IEEE 802.3 e extensões) atualmente são construídas com switches

Leia mais

REDE EM BARRENTO UTILIZANDO O MÉTODO DE ACESSO CSMA-CD ETHERNET

REDE EM BARRENTO UTILIZANDO O MÉTODO DE ACESSO CSMA-CD ETHERNET REDE EM BARRENTO UTILIZANDO O MÉTODO DE ACESSO CSMA-CD ETHERNET HISTÓRICO 1973, XEROX INICIALIZOU O DESENVOLVIMENTO DE UM REDE LOCAL DE TOPOLOGIA DE BARRAMENTO NO XEROX PALO ALTO RESEARCH CENTER (PARC);

Leia mais

Na Figura a seguir apresento um exemplo de uma "mini-tabela" de roteamento:

Na Figura a seguir apresento um exemplo de uma mini-tabela de roteamento: Tutorial de TCP/IP - Parte 6 - Tabelas de Roteamento Por Júlio Cesar Fabris Battisti Introdução Esta é a sexta parte do Tutorial de TCP/IP. Na Parte 1 tratei dos aspectos básicos do protocolo TCP/IP. Na

Leia mais

Redes de Computadores IEEE 802.3

Redes de Computadores IEEE 802.3 Redes de Computadores Ano 2002 Profª. Vívian Bastos Dias Aula 8 IEEE 802.3 Ethernet Half-Duplex e Full-Duplex Full-duplex é um modo de operação opcional, permitindo a comunicação nos dois sentidos simultaneamente

Leia mais

1 - Cite o nome dos principais campos de um quadro Ethernet, explicando qual a funcionalidade de cada campo.

1 - Cite o nome dos principais campos de um quadro Ethernet, explicando qual a funcionalidade de cada campo. 1 - Cite o nome dos principais campos de um quadro Ethernet, explicando qual a funcionalidade de cada campo. Endereço de Destino = Endereço MAC de destino Endereço de Origem = Endereço MAC de origem Campo

Leia mais

APLICAÇÃO REDE APLICAÇÃO APRESENTAÇÃO SESSÃO TRANSPORTE REDE LINK DE DADOS FÍSICA 1/5 PROTOCOLOS DE REDE

APLICAÇÃO REDE APLICAÇÃO APRESENTAÇÃO SESSÃO TRANSPORTE REDE LINK DE DADOS FÍSICA 1/5 PROTOCOLOS DE REDE 1/5 PROTOCOLOS DE O Modelo OSI O OSI é um modelo usado para entender como os protocolos de rede funcionam. Para facilitar a interconexão de sistemas de computadores, a ISO (International Standards Organization)

Leia mais

5.2 MAN s (Metropolitan Area Network) Redes Metropolitanas

5.2 MAN s (Metropolitan Area Network) Redes Metropolitanas MÓDULO 5 Tipos de Redes 5.1 LAN s (Local Area Network) Redes Locais As LAN s são pequenas redes, a maioria de uso privado, que interligam nós dentro de pequenas distâncias, variando entre 1 a 30 km. São

Leia mais

Redes locais comutadas, visão geral da camada de acesso

Redes locais comutadas, visão geral da camada de acesso Redes locais comutadas, visão geral da camada de acesso A construção de uma rede local que satisfaça às exigências de organizações de médio e grande porte terá mais probabilidade de sucesso se for utilizado

Leia mais

ADMINISTRAÇÃO DE REDES DE COMPUTADORES. Elementos da rede (Repetidor, hub, bridge, switch, router) Spanning Tree Protocol UALG/FCT/DEEI 2005/2006

ADMINISTRAÇÃO DE REDES DE COMPUTADORES. Elementos da rede (Repetidor, hub, bridge, switch, router) Spanning Tree Protocol UALG/FCT/DEEI 2005/2006 ADMINISTRAÇÃO DE REDES DE COMPUTADORES Elementos da rede (Repetidor, hub, bridge, switch, router) Spanning Tree Protocol Engª de Sistemas e Informática Licenciatura em Informática UALG/FCT/DEEI 2005/2006

Leia mais

Curso de Instalação e Gestão de Redes Informáticas

Curso de Instalação e Gestão de Redes Informáticas ESCOLA PROFISSIONAL VASCONCELLOS LEBRE Curso de Instalação e Gestão de Redes Informáticas EQUIPAMENTOS PASSIVOS DE REDES Ficha de Trabalho nº2 José Vitor Nogueira Santos FT13-0832 Mealhada, 2009 1.Diga

Leia mais

PRIMEIRA LISTA DE EXERCÍCIOS CAR. 48 Hosts Link C 6 Hosts

PRIMEIRA LISTA DE EXERCÍCIOS CAR. 48 Hosts Link C 6 Hosts CTRA C U R S O SUPERIOR EM REDES E AMBIENTES OPERACIONAIS CAR Componentes Ativos de Rede Prof.: Roberto J.L. Mendonça PRIMEIRA LISTA DE EXERCÍCIOS CAR 1. De acordo com a figura abaixo determine os endereços

Leia mais

Comunicando através da rede

Comunicando através da rede Comunicando através da rede Fundamentos de Rede Capítulo 2 1 Estrutura de Rede Elementos de comunicação Três elementos comuns de comunicação origem da mensagem o canal destino da mensagem Podemos definir

Leia mais

Exercícios de Revisão Redes de Computadores Edgard Jamhour. Nome dos Alunos

Exercícios de Revisão Redes de Computadores Edgard Jamhour. Nome dos Alunos Exercícios de Revisão Redes de Computadores Edgard Jamhour Nome dos Alunos Cenário 1: Considere a seguinte topologia de rede IPB 210.0.0.1/24 IPA 10.0.0.5/30 220.0.0.1\24 4 5 3 1 IPC 10.0.0.9/30 REDE B

Leia mais

Curso: Tec. Em Sistemas Para Internet 1 semestre Redes de Computadores Memória de Aula 10. Prof. Moises P. Renjiffo

Curso: Tec. Em Sistemas Para Internet 1 semestre Redes de Computadores Memória de Aula 10. Prof. Moises P. Renjiffo Curso: Tec. Em Sistemas Para Internet 1 semestre Redes de Computadores Memória de Aula 10 1) Repetidor. Em informática, repetidor é um equipamento utilizado para interligação de redes idênticas, pois eles

Leia mais

(Open System Interconnection)

(Open System Interconnection) O modelo OSI (Open System Interconnection) Modelo geral de comunicação Modelo de referência OSI Comparação entre o modelo OSI e o modelo TCP/IP Analisando a rede em camadas Origem, destino e pacotes de

Leia mais

Redes e Serviços Internet (5388)

Redes e Serviços Internet (5388) Ano lectivo 2010/2011 * 2º Semestre Licenciatura em Engenharia Informática Aula 4 1 Agenda Redes e Serviços Internet (5388) Trabalho individual teórico Comunicação na camada de Dados (Data) Adaptação dos

Leia mais

Informática I. Aula 22. http://www.ic.uff.br/~bianca/informatica1/ Aula 22-03/07/06 1

Informática I. Aula 22. http://www.ic.uff.br/~bianca/informatica1/ Aula 22-03/07/06 1 Informática I Aula 22 http://www.ic.uff.br/~bianca/informatica1/ Aula 22-03/07/06 1 Critério de Correção do Trabalho 1 Organização: 2,0 O trabalho está bem organizado e tem uma coerência lógica. Termos

Leia mais

Prof. Marcelo Machado Cunha Parte 3 www.marcelomachado.com

Prof. Marcelo Machado Cunha Parte 3 www.marcelomachado.com Prof. Marcelo Machado Cunha Parte 3 www.marcelomachado.com Protocolo é a linguagem usada pelos dispositivos de uma rede de modo que eles consigam se comunicar Objetivo Transmitir dados em uma rede A transmissão

Leia mais

Entendendo como funciona o NAT

Entendendo como funciona o NAT Entendendo como funciona o NAT Vamos inicialmente entender exatamente qual a função do NAT e em que situações ele é indicado. O NAT surgiu como uma alternativa real para o problema de falta de endereços

Leia mais

CAMADA DE REDE. UD 2 Aula 3 Professor João Carneiro Arquitetura de Redes 1º e 2º Semestres UNIPLAN

CAMADA DE REDE. UD 2 Aula 3 Professor João Carneiro Arquitetura de Redes 1º e 2º Semestres UNIPLAN CAMADA DE REDE UD 2 Aula 3 Professor João Carneiro Arquitetura de Redes 1º e 2º Semestres UNIPLAN Modelo de Referência Híbrido Adoção didática de um modelo de referência híbrido Modelo OSI modificado Protocolos

Leia mais

Nway Switch 8 Portas Manual do Usuário

Nway Switch 8 Portas Manual do Usuário P R E F Á C I O Este é um produto da marca GTS Network, que está sempre comprometida com o desenvolvimento de soluções inovadoras e de alta qualidade. Este manual descreve, objetivamente, como instalar

Leia mais

REGRAS PARA SEGMENTAÇÃO

REGRAS PARA SEGMENTAÇÃO REGRAS PARA SEGMENTAÇÃO Professor Victor Sotero 1 Domínio de Colisão A conexão de vários computadores a um único meio de acesso compartilhado que não possui nenhum outro dispositivo de rede conectado cria

Leia mais

Subcamada de Controle de Acesso ao Meio. Bruno Silvério Costa

Subcamada de Controle de Acesso ao Meio. Bruno Silvério Costa Subcamada de Controle de Acesso ao Meio Bruno Silvério Costa 1. O Problema de Alocação do Canal Alocação estática de canais em LANs e MANs Alocação dinâmica de canais em LANs e MANs 1.1 Alocação dinâmica

Leia mais

SERVIÇO NACIONAL DE APRENDIZAGEM COMERCIAL REDE DE COMPUTADORES LAN MAN WAN

SERVIÇO NACIONAL DE APRENDIZAGEM COMERCIAL REDE DE COMPUTADORES LAN MAN WAN SERVIÇO NACIONAL DE APRENDIZAGEM COMERCIAL REDE DE COMPUTADORES LAN MAN WAN - Prof. Airton / airton.ribeiros@gmail.com - Prof. Altenir / altenir.francisco@gmail.com 1 REDE LOCAL LAN - Local Area Network

Leia mais

Equipamentos de rede. Repetidores. Repetidores. Prof. Leandro Pykosz Leandro@sulbbs.com.br

Equipamentos de rede. Repetidores. Repetidores. Prof. Leandro Pykosz Leandro@sulbbs.com.br 1 Equipamentos de rede Prof. Leandro Pykosz Leandro@sulbbs.com.br Repetidores É o dispositivo responsável por ampliar o tamanho máximo do cabeamento de rede; Como o nome sugere, ele repete as informações

Leia mais

Fernando Albuquerque - fernando@cic.unb.br REDES LAN - WAN. Fernando Albuquerque (061) 273-3589 fernando@cic.unb.br

Fernando Albuquerque - fernando@cic.unb.br REDES LAN - WAN. Fernando Albuquerque (061) 273-3589 fernando@cic.unb.br REDES LAN - WAN Fernando Albuquerque (061) 273-3589 fernando@cic.unb.br Tópicos Modelos Protocolos OSI e TCP/IP Tipos de redes Redes locais Redes grande abrangência Redes metropolitanas Componentes Repetidores

Leia mais

Módulo 6 Conceitos Básicos sobre Ethernet

Módulo 6 Conceitos Básicos sobre Ethernet CCNA 1 Conceitos Básicos de Redes Módulo 6 Conceitos Básicos sobre Ethernet Fundamentos de Ethernet Introdução à Ethernet A maior parte do tráfego da Internet tem origem em ligações Ethernet. Razões do

Leia mais

ADDRESS RESOLUTION PROTOCOL. Thiago de Almeida Correia

ADDRESS RESOLUTION PROTOCOL. Thiago de Almeida Correia ADDRESS RESOLUTION PROTOCOL Thiago de Almeida Correia São Paulo 2011 1. Visão Geral Em uma rede de computadores local, os hosts se enxergam através de dois endereços, sendo um deles o endereço Internet

Leia mais

Subcamada MAC. O Controle de Acesso ao Meio

Subcamada MAC. O Controle de Acesso ao Meio Subcamada MAC O Controle de Acesso ao Meio Métodos de Acesso ao Meio As implementações mais correntes de redes locais utilizam um meio de transmissão que é compartilhado por todos os nós. Quando um nó

Leia mais

LAN Design. LAN Switching and Wireless Capítulo 1. Version 4.0. 2006 Cisco Systems, Inc. All rights reserved. Cisco Public 1

LAN Design. LAN Switching and Wireless Capítulo 1. Version 4.0. 2006 Cisco Systems, Inc. All rights reserved. Cisco Public 1 LAN Design LAN Switching and Wireless Capítulo 1 Version 4.0 2006 Cisco Systems, Inc. All rights reserved. Cisco Public 1 Objetivos do Módulo Compreender os benefícios e do uso de uma organização hierárquica

Leia mais