MODELAGEM DE TEMPOS DE TRÂNSITO SINTÉTICOS EM POÇOS DO CAMPO DE BELA VISTA, BACIA DO RECÔNCAVO

Tamanho: px
Começar a partir da página:

Download "MODELAGEM DE TEMPOS DE TRÂNSITO SINTÉTICOS EM POÇOS DO CAMPO DE BELA VISTA, BACIA DO RECÔNCAVO"

Transcrição

1 UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE GEOCIÊNCIAS CURSO DE GRADUAÇÃO EM GEOFÍSICA GEO213 TRABALHO DE GRADUAÇÃO MODELAGEM DE TEMPOS DE TRÂNSITO SINTÉTICOS EM POÇOS DO CAMPO DE BELA VISTA, BACIA DO RECÔNCAVO RAMON FERRARI PINTO SALVADOR BAHIA JUNHO 2011

2 Modelagem de Tempos de Trânsito Sintéticos em Poços do Campo de Bela Vista, Bacia do Recôncavo por Ramon Ferrari Pinto GEO213 TRABALHO DE GRADUAÇÃO Departamento de Geologia e Geofísica Aplicada do Instituto de Geociências da Universidade Federal da Bahia Comissão Examinadora Msc. Geraldo Girão Nery - Orientador Msc. Roberto Rosa da Silva Dra. Kátia Rejane Freitas do Nascimento Data da aprovação: 15/06/2011

3 Dizem que o talento cria suas próprias oportunidades. Mas às vezes parece que o desejo intenso cria não apenas suas próprias oportunidades, mas seus próprios talentos. Eric Hoffer A meus pais, cujo amor e cuja confiança incondicionais fizeram de mim homem capaz de vencer esta batalha.

4 RESUMO Com o objetivo de preparar mão de obra especializada para fomentar o crescente mercado petrolífero que se apresenta para reativação e aproveitamento de campos com acumulações marginais de hidrocarbonetos, a ANP estabeleceu convênio com a Universidade Federal da Bahia e a Universidade Federal do Rio Grande do Norte, através do Projeto Campo Escola (PCE), cedendo a estas universidades dados e apoio financeiro para reavaliação e operação dos campos de baixa produtividade (Ferreira, 2009). Dentre as etapas de reavaliação da viabilidade para a exploração e explotação de hidrocarbonetos em campos de petróleo, a perfilagem geofísica de poços se apresenta como uma ferramenta indispensável e decisiva no processo de análise. De fato, na indústria do petróleo a totalidade dos poços são perfilados. É através da perfilagem que as propriedades petrofísicas das rochas são estimadas. A partir da interpretação dessas medidas, é possível obter informações sobre o reservatório: saber quais são as zonas produtoras, a distinção entre gás, óleo e água, ter uma ideia de porosidade e saturação das rochas, etc. O objetivo deste estudo é a modelagem de perfis sônicos de poços usando outros perfis (outras propriedades petrofísicas) como variáveis, para futuras aplicações práticas na sísmica ou petrofísica. Serão descritos os procedimentos, as limitações de cada método, os resultados e será feita uma análise comparativa. A importância do perfil sônico é que ele pode ser útil tanto para o cálculo de porosidades, enquanto propriedade petrofísica de reservatório, quanto para integração de dados, como na calibração sísmica. Neste sentido, este trabalho encontrase estruturado da seguinte forma: O capítulo 1 apresenta as características geológicas e geofísicas da Bacia do Recôncavo, sua evolução tectono-sedimentar, sua estratigrafia, e sua importância econômica dentro do contexto atual, incluindo informações sobre campos marginais e o Projeto Campo Escola. O capítulo 2 aborda alguns aspectos teóricos da perfilagem de poço, as ferramentas e algumas propriedades físicas das rochas. Uma atenção especial é dada ao perfil sônico, uma vez que é nosso objeto de estudo. O capítulo também discute aspectos da interpretação dos dados de perfilagem e sua aplicabilidade no estudo de reservatórios. O capítulo 3 trata da modelagem numérica propriamente dita. São gerados perfis sintéticos que representam parâmetros petrofísicos obtidos de outros parâmetros petrofísicos. Ainda neste capítulo, os dados serão questionados e interpretados. iii

5 O capítulo 4 utiliza os dados do item anterior para modelar dados de perfis sônicos para poços adjacentes, do mesmo campo de petróleo. Assim, estes poços passam a contar com o perfil sônico em seus dados de interpretação. O capítulo 5 trata das conclusões relativas ao emprego dos diferentes métodos de predição de curvas de perfis em dados de poços Os dados aqui utilizados são oriundos do campo de Bela Vista na Bacia do Recôncavo, e foram disponibilizados pela ANP através do Projeto Campo Escola. iv

6 ABSTRACT With the aim of preparing a skilled workforce to promote the growing oil market that is presented in order to reactivate and use fields with marginal accumulations of hydrocarbons, ANP is partnering with Federal University of Bahia (UFBA) and Federal Univesity of Rio Grande do Norte (UFRN) through the Projeto Campo Escola (PCE), supplying to these universities data and financial support for review and operation of low productivity fields. (Ferreira, 2009). Among the steps from the study of the feasibility for the exploration and exploitation of hydrocarbons in oil fields, geophysical well logging is presented as an indispensable and decisive tool in the analysis process. In fact, in the petroleum industry well logs are made in almost all the wells. It is through well logging that the petrophysical properties of rocks are estimated. Based on the interpretation of these measures, it is possible to obtain information about the reservoir: to learn which are the producing areas and the distinction between gas, oil and water, to have an idea of the rock s porosity and saturation, etc. The purpose of this study is modeling sonic logs using other logs (other petrophysical properties) as variables, for future practical applications, as in seismic or petrophysics. The procedures and limitations of each method will be described, along with the results and a comparative analysis. The importance of the sonic log is that it can be useful for calculation of porosity as a petrophysical property of reservoirs and also match other data, as in seismic calibration. Thus, this work is structured as follows: Chapter 1 presents the geological and geophysical characteristics of Recôncavo Basin as well as its tectonic and sedimentary evolution, its stratigraphy and its economic importance within the current context, including information about marginal fields and the Projeto Campo Escola. Chapter 2 approaches theoretical aspects of well logging, the tools and some physical properties of the rocks. Special attention is given to the sonic log, once it s our object of study. It also discusses aspects of the data interpretation of well logging, and its applicability to the study of reservoirs. Chapter 3 deals about the numerical modeling itself. Synthetic profiles are generated to represent petrophysical parameters obtained from other petrophysical parameters. Still in this chapter, the data is questioned and interpreted. v

7 Chapter 4 uses the results provided by the last chapter to modeling synthetic sonic logs for adjacent wells from the same oil field. Therefore, these wells can count on sonic logs in your interpretation. Chapter 5 deals with the conclusions related to using well log prediction methods in well log data. The data used in this work are from the Bela Vista s field in Recôncavo Basin, and were provided by ANP through Projeto Campo Escola. vi

8 ÍNDICE RESUMO iii ABSTRACT v ÍNDICE vii ÍNDICE DE FIGURAS ix INTRODUÇÃO CAPÍTULO 1 Geologia e Geofísica da Bacia do Recôncavo O Projeto Campo Escola A Bacia do Recôncavo Aspectos Geológicos da Bacia Evolução Tectono-Sedimentar Importância Econômica e Perspectivas O campo de Bela Vista Os Dados Geofísicos CAPÍTULO 2 A Perfilagem Geofísica de Poços O Ambiente da Perfilagem O Perfil Cáliper - CAL O Perfil de Raios Gama - GR O Perfil de Densidade - RHOB O Perfil Neutrônico - NPHI A Lei de Archie O Perfil Esférico Focalizado - SFL O Perfil de Indução - ILD O Perfil Sônico - DT CAPÍTULO 3 Modelagem Numérica dos Dados Modelagem Utilizando Equações Empíricas Equação do Tempo Médio de Wyllie Equação de Raymer Equação de Gardner Equação de Smits vii

9 3.2 Modelagem Baseada em Análise Estatística Definição dos Limites da Regressão Treinamento e Validação do Modelo de Regressão Aplicação do Método Testes estatísticos e Análise dos Resultados CAPÍTULO 4 Modelagem Para os Demais Poços Modelagem para o poço 7-BLV-004-BA Modelagem para o poço 7-BLV-005-BA CAPÍTULO 5 Conclusões Recomendações Agradecimentos APÊNDICE A Desenvolvimento das Equações Normais Referências Bibliográficas ANEXO I Cartas Estratigráficas da Bacia do Recôncavo ANEXO II Dados de poços do Campo de Bela Vista, segundo o Banco de Dados de Exploração e Produção da ANP viii

10 ÍNDICE DE FIGURAS 1.1 Seção Geológica Esquemática da Bacia do Recôncavo. Modificado de Penteado (1999). Fonte: ANP Mapa geológico esquemático com localização do Rifte Recôncavo-Tucano- Jatobá, mostrando a distribuição de sedimentos de acordo as megassequências estratigráficas. Fonte: Magnavita (1992) Paleogeografia pré-rifte da Bacia do Recôncavo, modificado de Medeiros e Ponte (1981). Fonte: Magnavita et al. (2005) Paleogeografia sin-rifte da Bacia do Recôncavo, modificado de Medeiros e Ponte (1981). Fonte: Magnavita et al. (2005) Paleogeografia durante a deposição da Formação Taquipe, modificado de Figueiredo et al. (1994). Fonte: Magnavita et al. (2005) Localização dos poços estudados do Campo de Bela Vista Trecho de um perfil composto elaborado pela Petrobras, apresentando as principais curvas dos perfis geofísicos. Poço 1-BLV-001-BA, Campo de Bela Vista, Bacia do Recôncavo Fragmento do primeiro perfil geofísico obtido pelos irmãos Schlumberger em Adaptado de: Chopra et al. (2000) Compartimentos vicinais ao poço após invasão do fluido de perfuração Gráfico gerado a partir das equações 2.1 a 2.6 contendo a representação das equações de argilosidade e seus autores Comparação entre as fases observadas num sistema de bobinas do Perfil de Indução. Adaptado de Serra (1984) Esquema de funcionamento da ferramenta sônica com 1 transmissor e 2 receptores, ilustrando ainda a trajetória da onda compressional captada pelos receptores Perfil de poço relacionando o valor do perfil sônico com a profundidade, para o Membro Gomo da Formação Candeias. Os perfis sintéticos foram gerados utilizando-se a Equação de Wyllie e os valores de porosidade dos perfis RHOB e NPHI Distribuição de pontos relacionando os perfis sônicos sintéticos modelados pela Equação de Wyllie com o perfil sônico real, no intervalo de 1200 a 1431 metros da Formação Candeias ix

11 3.3 Perfil de poço relacionando o valor do perfil sônico com a profundidade, para o Membro Água Grande da Formação Itaparica. Os perfis sintéticos foram gerados utilizando-se a Equação de Wyllie e os valores de porosidade dos perfis RHOB e NPHI Distribuição de pontos relacionando os perfis sônicos sintéticos modelados pela Equação de Wyllie com o perfil sônico real, no intervalo de 1448 a 1513 metros da Formação Itaparica Perfil de poço relacionando o valor do perfil sônico com a profundidade, para a Formação Sergi. Os perfis sintéticos foram gerados utilizando-se a Equação de Wyllie e os valores de porosidade dos perfis RHOB e NPHI Distribuição de pontos relacionando os perfis sônicos sintéticos modelados pela Equação de Wyllie com o perfil sônico real, no intervalo de 1513 a 1592 metros da Formação Sergi Curvas de contorno representando o relacionamento entre o perfil sônico original, o perfil sônico modelado pela Equação de Wyllie usando NPHI e o perfil de Raios Gama, para o poço 1-BLV-001-BA Perfil de poço relacionando o valor do perfil sônico com a profundidade, para o Membro Gomo da Formação Candeias. Os perfis sintéticos foram gerados utilizando-se a Equação de Raymer e os valores de densidade e porosidade dos perfis RHOB e NPHI Distribuição de pontos relacionando os perfis sônicos sintéticos modelados pela Equação de Raymer com o perfil sônico real, no intervalo de 1200 a 1431 metros da Formação Candeias Perfil de poço relacionando o valor do perfil sônico com a profundidade, para o Membro Água Grande da Formação Itaparica. Os perfis sintéticos foram gerados utilizando-se a Equação de Raymer e os valores de densidade e porosidade dos perfis RHOB e NPHI Distribuição de pontos relacionando os perfis sônicos sintéticos modelados pela Equação de Raymer com o perfil sônico real, no intervalo de 1448 a 1513 metros da Formação Itaparica Perfil de poço relacionando o valor do perfil sônico com a profundidade, para a Formação Sergi. Os perfis sintéticos foram gerados utilizando-se a Equação de Raymer e os valores de densidade e porosidade dos perfis RHOB e NPHI Distribuição de pontos relacionando os perfis sônicos sintéticos modelados pela Equação de Raymer com o perfil sônico real, no intervalo de 1513 a 1592 metros da Formação Sergi Curvas de contorno representando o relacionamento entre o perfil sônico original, o perfil sônico modelado pela Equação de Raymer usando NPHI e o perfil de Raios Gama, para o poço 1-BLV-001-BA x

12 3.15 Relações densidade-velocidade empíricas em rochas de diferentes litologias. Fonte: Gardner et al. (1974) Perfil de poço relacionando o valor do perfil sônico com a profundidade, para o Membro Gomo da Formação Candeias. Os perfis sintéticos foram gerados utilizando-se a Equação de Gardner e os valores de densidade do perfis RHOB Distribuição de pontos relacionando os perfis sônicos sintéticos modelados pela Equação de Gardner com o perfil sônico real, no intervalo de 1200 a 1431 metros da Formação Candeias Perfil de poço relacionando o valor do perfil sônico com a profundidade, para o Membro Água Grande da Formação Itaparica. Os perfis sintéticos foram gerados utilizando-se a Equação de Gardner e os valores de densidade do perfis RHOB Distribuição de pontos relacionando os perfis sônicos sintéticos modelados pela Equação de Gardner com o perfil sônico real, no intervalo de 1448 a 1513 metros da Formação Itaparica Perfil de poço relacionando o valor do perfil sônico com a profundidade, para a Formação Sergi. Os perfis sintéticos foram gerados utilizando-se a Equação de Gardner e os valores de densidade do perfis RHOB Distribuição de pontos relacionando os perfis sônicos sintéticos modelados pela Equação de Gardner com o perfil sônico real, no intervalo de 1513 a 1592 metros da Formação Sergi Curvas de contorno representando o relacionamento entre o perfil sônico original, o perfil sônico modelado pela Equação de Gardner e o perfil de Raios Gama, para o poço 1-BLV-001-BA Perfil de poço relacionando o valor do perfil sônico com a profundidade, para o Membro Gomo da Formação Candeias. Os perfis sintéticos foram gerados utilizando-se a Equação de Smits e os valores de resistividade do perfil ILD Distribuição de pontos relacionando os perfis sônicos sintéticos modelados pela Equação de Smits com o perfil sônico real, no intervalo de 1200 a 1431 metros da Formação Candeias Perfil de poço relacionando o valor do perfil sônico com a profundidade, para o Membro Água Grande da Formação Itaparica. Os perfis sintéticos foram gerados utilizando-se a Equação de Smits e os valores de resistividade do perfil ILD Distribuição de pontos relacionando os perfis sônicos sintéticos modelados pela Equação de Smits com o perfil sônico real, no intervalo de 1448 a 1513 metros da Formação Itaparica xi

13 3.27 Perfil de poço relacionando o valor do perfil sônico com a profundidade, para a Formação Sergi. Os perfis sintéticos foram gerados utilizando-se a Equação de Smits e os valores de resistividade do perfil ILD Distribuição de pontos relacionando os perfis sônicos sintéticos modelados pela Equação de Smits com o perfil sônico real, no intervalo de 1513 a 1592 metros da Formação Sergi Curvas de contorno representando o relacionamento entre o perfil sônico original, o perfil sônico modelado pela Equação de Smits e o perfil de Raios Gama, para o poço 1-BLV-001-BA Relacionamento entre o perfil sônico real e todos os outros perfis, para todos os três intervalos escolhidos, para o poço 1-BLV-001-BA Relacionamento entre o perfil sônico real e todos os outros perfis, para todos os três intervalos escolhidos, para o poço 1-BLV-001-BA Relacionamento entre o perfil sônico real e a profundidade do poço 1-BVL- 001-BA englobando todos as litologias Relacionamento entre o perfil sônico real e os perfis de predição CAL e GR, para todos os três intervalos escolhidos do poço 1-BLV-001-BA Relacionamento entre o perfil sônico real e os perfis de predição ILD e GR, para todos os três intervalos escolhidos do poço 1-BLV-001-BA Relacionamento entre o perfil sônico real e os perfis de predição SFLA e GR, para todos os três intervalos escolhidos do poço 1-BLV-001-BA Relacionamento entre o perfil sônico real e os perfis de predição RHOB e GR, para todos os três intervalos escolhidos do poço 1-BLV-001-BA Relacionamento entre o perfil sônico real e os perfis de predição NPHI e GR, para todos os três intervalos escolhidos do poço 1-BLV-001-BA Gráficos com curvas de modelos univariáveis linear (Y = α 0 +α 1 X) e potência (Y = α 0 X α 1 ) e seus respectivos valores de coeficiente de deteminação (R 2 ) para pontos do Membro Gomo da Formação Candeias Gráficos com curvas de modelos multivariáveis linear (Y = α 0 + α 1 X 1 + α 2 X 2 + α 3 X α n X n.) e potência (Y = α 0 X α X αn n ) e seus respectivos valores de coeficiente de deteminação (R 2 ) para pontos do Membro Gomo da Formação Candeias Gráficos com curvas de modelos univariáveis linear (Y = α 0 +α 1 X) e potência (Y = α 0 X α 1 ) e seus respectivos valores de coeficiente de deteminação (R 2 ) para pontos do membro Água Grande da Formação Itaparica Gráficos com curvas de modelos multivariáveis linear (Y = α 0 + α 1 X 1 + α 2 X 2 + α 3 X α n X n.) e potência (Y = α 0 X α X αn n ) e seus respectivos valores de coeficiente de deteminação (R 2 ) para pontos do membro Água Grande da Formação Itaparica xii

14 3.42 Gráficos com curvas de modelos univariáveis linear (Y = α 0 +α 1 X) e potência (Y = α 0 X α 1 ) e seus respectivos valores de coeficiente de deteminação (R 2 ) para pontos da Formação Sergi Gráficos com curvas de modelos multivariáveis linear (Y = α 0 + α 1 X 1 + α 2 X 2 + α 3 X α n X n.) e potência (Y = α 0 X α X αn n ) e seus respectivos valores de coeficiente de deteminação (R 2 ) para pontos da Formação Sergi Gráfico com as curvas do sônico - tanto aquelas modeladas com maior valor de R 2 quanto o sônico original. O intervalo utilizado foi o correspondente à formação Itaparica Gráfico com as curvas do sônico modeladas para o poço 7-BLV-004-BA, Formação Candeias Gráfico com as curvas do sônico modeladas para o poço 7-BLV-005-BA, Formação Candeias Gráfico com as curvas do sônico modeladas para o poço 7-BLV-005-BA, Formação Itaparica Gráfico com as curvas do sônico modeladas para o poço 7-BLV-005-BA, Formação Sergi I.1 Carta Estratigráfica da Bacia do Recôncavo. Fonte: Silva et al. (2007) I.2 Carta Estratigráfica da Bacia do Recôncavo. Fonte: Silva et al. (2007) xiii

15 INTRODUÇÃO A geofísica se destaca como uma importante ferramenta na prospecção de hidrocarbonetos. O Brasil tem se mostrado um país inovador e está inserido no cenário mundial por ter aceitado os desafios tecnológicos relacionados a campos de difícil acesso, seja em terra ou em águas profundas. No processo exploratório e de avaliação dos campos de petróleo, a geofísica como um todo pode nos direcionar na procura das soluções às seguintes questões: - Onde se encontrar o petróleo? - Onde estão os reservatórios? - Quais as dimensões das jazidas? - Qual o valor econômico da reserva? Por sua vez, os dados de perfilagem geofísica de poços constituem importantes informações devido à sua riqueza de detalhes (com taxas de amostragem de ordem centimétrica) e grande variedade de informações (depende do conjunto de ferramentas utilizadas). Assim, a perfilagem pode nos fornecer parâmetros petrofísicos importantes (tais como densidade, porosidade, velocidade de ondas compressionais, etc.) das rochas situadas em subsuperfície. O tratamento e a interpretação dos dados de poço constituem uma importante ferramenta no processo de análise exploratória dos campos de petróleo, bem como seus potenciais de produção. Às vezes por questões econômicas ou ferramentais, não se dispõe de todos os perfis ou curvas necessários para uma completa análise petrofísica. Outras vezes, deseja-se fazer um controle de qualidade, predizendo a resposta de um perfil antes mesmo que ele seja adquirido. Dessa forma, muitos métodos de geração de perfis sintéticos de boa qualidade são desenvolvidos. Segundo Bucheb e Rodrigues (1997), o emprego de métodos de regressão para estimar propriedades petrofísicas, utilizando as curvas de perfis como variáveis independentes, é um procedimento de rotina em diversos segmentos da área de E&P da indústria do petróleo. Neste trabalho, serão apresentados alguns destes métodos de modelagem, aplicados em dados de perfis do poço 1-BLV-001-BA, do campo de Bela Vista, Bacia do Recôncavo, disponibilizado pelo PCE. As equações criadas são extrapoladas para os poços adjacentes 7-BLV-004-BA e 7-BLV-005-BA do mesmo campo. O objetivo deste trabalho é o de criar tempos de trânsito sintéticos (perfil sônico), 1

16 2 com a finalidade de proporcionar dados de velocidades sísmicas para futuros trabalhos de recuperação ou perfuração que venham a ser feitos no campo. Os métodos analíticos, baseados no desenvolvimento de equações empíricas relacionando as propriedades físicas das rochas constituem o primeiro grupo de métodos utilizados. Desta forma, cálculos de tempos de trânsito sintéticos podem ser feitos com expressões bastante conhecidas na literatura. O segundo bloco faz referência aos métodos estatísticos, que são bastante eficientes na análise e modelamento de dados. Atenção especial será dada à análise multivariável de dados, com o objetivo de atribuir um relacionamento entre uma variável dependente e um certo número de variáveis independentes. Segundo Kleinbaum (1998), a regressão merece destaque visto que é a técnica mais utilizada e, provavelmente, a mais simples de se implementar.

17 CAPÍTULO 1 Geologia e Geofísica da Bacia do Recôncavo 1.1 O Projeto Campo Escola Na década de 90 a exploração e produção de petróleo no Brasil passou por grandes transformações, dentre elas a abertura da Petrobras ao capital internacional, e a outorga da Lei n o 9.478/97, que criou o Conselho Nacional de Política Energética (CNPE) e a Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP), quebrando o monopólio do petróleo exercido até então pela Petrobras. Dentro deste cenário surgiu um novo mercado no ramo, destinado à produção de óleo e gás em campos marginais. Segundo a definição da ANP, campos marginais de petróleo são campos que produzem predominantemente petróleo, cuja produção não ultrapasse os 500 barris diários e sua última previsão de produção não ultrapasse este limite. Um campo marginal é produtor, não necessariamente maduro e nem pequeno, mas possui um VPL (valor presente líquido) já no limite da economicidade. A classificação de um campo como marginal engloba fatores econômicos e de mercado. Na prática, o termo campos de acumulações marginais envolve principalmente campos inativos explorados e desenvolvidos pela Petrobras, nas últimas décadas, tendo sido retornados à ANP. É papel da ANP incentivar e viabilizar a reativação destes campos, não somente pela sua função como agência reguladora, mas porque este se tornou um meio de promoção e desenvolvimento socioeconômico, distribuição de renda e melhoria da qualidade de vida das regiões adjacentes aos campos marginais. Neste intuito, a ANP deflagrou um processo de incentivo à implantação deste novo segmento de produtores independentes, que culminou em 2003, com a parceria com a Universidade Federal da Bahia (UFBA) na criação do Projeto Campo Escola (PCE). Este projeto tem como principais objetivos a capacitação de mão de obra especializada para pequenas e médias indústrias de petróleo e gás natural, bem como a disseminação de tecnologias para testes de equipamentos e dessa forma, otimizar a produção diária. Cinco campos foram cedidos à UFBA pela ANP para compor o PCE na Bahia: Quiambina, Bela Vista, Caracatu, Riacho Sesmaria e Fazenda Mamoeiro. Estes campos foram escolhidos de forma a representar as principais questões relativas à produção de óleo e gás 3

18 4 em campos marginais. O objetivo é a troca de tecnologia, realização de estudos geológicos e geofísicos e capacitação de mão de obra especializada. Nos dias de hoje, torna-se imprescindível a otimização da caracterização e desenvolvimento dos reservatórios para o sucesso da indústria do petróleo. Antes, porém, do tratamento de dados dos campos marginais propriamentes ditos, será discutido um pouco sobre a Bacia do Recôncavo, uma vez que é nela que estão os campos em questão, e é a sua geologia que vai definir seus dados geofísicos. 1.2 A Bacia do Recôncavo Aspectos Geológicos da Bacia A Bacia do Recôncavo localiza-se no Nordeste do Brasil, e ocupa uma área terrestre de aproximadamente km 2, estando limitada a norte e noroeste pelo Alto de Aporá; a sul, pelo Sistema de Falhas da Barra; a oeste pela Falha de Maragogipe; e a leste pelo Sistema de Falhas de Salvador (sistema muito expressivo, podendo atingir mais de seis mil metros de rejeito). A forma da bacia é a de um meio-gráben orientado na direção NE-SW, compondo um rifte intracontinental com direção geral N-S. Figura 1.1: Seção Geológica Esquemática da Bacia do Recôncavo. Modificado de Penteado (1999). Fonte: ANP.

19 5 O Rifte do Reco ncavo-tucano-jatoba foi gerado pelo processo de estiramento crustal que resultou na fragmentac a o e rifteamento do supercontinente Gondwana e na abertura do Oceano Atla ntico. Nas bacias costeiras brasileiras e comum a presenc a de quatro megasseque ncias estratigra ficas: do continente, do lago, do golfo e do mar. A Bacia do Reco ncavo apresenta somente as duas primeiras, uma vez que no final do Eocreta ceo, o ramo oeste do sistema de riftes foi abortado, na o permitindo a deposic a o de sedimentos marinhos em sua coluna. A seque ncia do continente corresponde aos sedimentos depositados durante a fase pre -rifte e a seque ncia dos lagos, aos sedimentos depositados durante a fase rifte. Figura 1.2: Mapa geolo gico esquema tico com localizac a o do Rifte Reco ncavotucano-jatoba, mostrando a distribuic a o de sedimentos de acordo as megasseque ncias estratigra ficas. Fonte: Magnavita (1992).

20 Evolução Tectono-Sedimentar O Embasamento Cristalino O embasamento cristalino da Bacia do Recôncavo é composto, principalmente, por gnaisses granulíticos do período arqueano pertencentes ao Bloco Serrinha (a oeste e norte), aos cinturões Itabuna-Salvador-Curaçá (a oeste-sudoeste) e Salvador-Esplanada (a lestenordeste). Ao norte ocorrem ainda rochas metassedimentares brasilianas do Grupo Estância. Supersequência Paleozoica Sequência depositada sob paleoclima árido e em situação de bacia intracratônica. As unidades apresentam tendência geral regressiva, com transição de uma sedimentação marinha rasa, marginal, a bacias evaporíticas isoladas ou até sistemas lacustres. É composta pela Formação Afligidos, que contém os membros Pedrão (inferior) e Cazumba (superior). A Fase Pré-rifte Os sedimentos jurássicos da fase pré-rifte foram depositados num período de estabilidade tectônica, antecedendo à ruptura do supercontinente. Eles são representados pelo Grupo Brotas, constituido pelas Formações Aliança (folhelhos avermelhados e arenitos) e Sergi (arenitos fluviais e eólicos) e pela base do grupo Santo Amaro (Formação Itaparica e Membro Tauá da Formação Candeias). A área passava por um estágio de subsidência que propiciou o desenvolvimento de uma sedimentação continental numa bacia intracratônica, rasa e de tectonismo incipiente. Assim, as formações Aliança e Sergi representam um complexo sistema aluvial, onde se alternam lamitos lacustres vermelhos e arenitos fluviais, finos a conglomeráticos, caracterizando um pacote de red-beds. Ambas as formações apresentam suas maiores espessuras na área sul da Bacia do Recôncavo. No final dessa sequência, depositaram-se os lamitos cinzas e marrons e os arenitos finos a médios da Formação Itaparica, representando um sistema flúvio-lacustre, seguidos pelos sedimentos fluviais com retrabalhamento eólico do Membro Água Grande e depois por folhelhos do Membro Tauá da formação Candeias. Paralelamente, ocorre o início do rompimento da crosta e o estabelecimento de um ambiente francamente lacustre, prenunciando a fase rifte que viria. A Fase Rifte Com o aumento da taxa de subsidência e a passagem de um clima de relativa aridez para um clima úmido, implantou-se a fase rifte, dando início à sequência dos lagos, com ampliação do sistema lacustre. São delineados os contornos da bacia rifte. Espessos pacotes

21 7 Figura 1.3: Paleogeografia pré-rifte da Bacia do Recôncavo, modificado de Medeiros e Ponte (1981). Fonte: Magnavita et al. (2005). de pelitos são depositados, intercalados a calcários (calcarenitos ostracoidais e calcilutitos) e arenitos turbidíticos (associados a pulsos tectônicos), dos Membros Gomo e Maracangalha da Formação Candeias. Existem ainda os arenitos maciços do Membro Pitanga. A espessura total dos sedimentos da Formação Candeias ultrapassa os três mil metros nos grandes baixos regionais, alcançando menores espessuras em áreas mais estáveis. Com o cessar da atividade tectônica, a subsidência torna-se tênue e a sedimentação lacustre começa a progradar, a partir de NO, num sistema deltaico. Sucedem-se então os arenitos da Formação Marfim e a intercalação cíclica de arenitos, folhelhos e calcários da Formação Pojuca, todos relativos ao Grupo Ilhas. Antes do final da deposição da Formação Pojuca, implantou-se na parte oeste do Compartimento Sul da bacia uma feição erosiva preenchida por lamitos e arenitos, que são denominados de Formação Taquipe. Outra feição importante ocorreu junto às bordas da bacia, onde depositou-se de maneira individualizada, ou interdigitada com outras formações da fase rifte, uma espessa cunha de conglomerados sintectônicos correspondentes à Formação Salvador, quando os pulsos tectônicos mais violentos permitiam sua entrada na bacia. O assoreamento final do sistema de riftes ocorreu com a deposição dos arenitos fluviais do grupo Massacará (Formação São Sebastião), encerrando desta forma a fase rifte. A Fase Pós-Rifte Iniciando a fase pós-rifte estão os arenitos e conglomerados aluviais da Formação Marizal, assentados de forma discordante 1 sobre o Grupo Massacará. Depois desta formação, em 1 Uma discordância angular separa a tectono-sequência do Cretáceo Inferior dos depósitos aluviais de conglomerados, arenitos e calcários da Formação Marizal.

22 8 Figura 1.4: Paleogeografia sin-rifte da Bacia do Reco ncavo, modificado de Medeiros e Ponte (1981). Fonte: Magnavita et al. (2005). alguns pontos localizados, ocorrem folhelhos, calca rios e arenitos de origem marinha, pertencentes a Formac a o Sabia. Finalmente, durante o Cenozoico, depositaram-se os arenitos continentais da Formac a o Barreiras. Figura 1.5: Paleogeografia durante a deposic a o da Formac a o Taquipe, modificado de Figueiredo et al. (1994). Fonte: Magnavita et al. (2005).

23 Importância Econômica e Perspectivas A bacia do Recôncavo tem se mostrado ao longo dos anos bastante prolífica no que diz respeito à produção de petróleo. As rochas geradores são os folhelhos da Formação Candeias, em especial os dos Membros Tauá e Gomo. As acumulações de petróleo da Bacia do Recôncavo podem ser agrupadas e três sistemas: pré-rifte, rifte-candeias e rifte-ilhas. A estruturação da bacia em blocos altos e baixos fez com que os reservatórios do primeiro sistema ficassem em contato lateral com o folhelhos geradores, situação em que ocorreu migração direta. O sistema pré-rifte é responsável por quase 60% do volume provado de óleo na Bacia, sendo que a Formação Água Grande e Sergi são os mais importantes plays exploratórios. Existe também a situação em que os reservatórios estão envoltos pelos folhelhos do Membro Gomo, no sistema rifte-candeias, onde também ocorre migração direta. Neste caso, o sistema apresenta condições de trapeamento estratigráfico ou misto, com as acumulações restringindo-se a uma porção da bacia. Nas demais situações, os falhamentos atuam como condutos de hidrocarbonetos. Este é o caso do sistema rifte-ilhas, caracterizando-se pela presença de estruturas dômicas originadas por falhas de crescimento e compactação diferencial. Embora muitos campos já tenham atingido a maturidade, muitos destes podem ainda produzir bastante óleo. O Campo de Quiambina, por exemplo, foi devolvido à ANP pela Petrobras e depois cedido à UFBA, pelo Projeto Campo Escola, que reativou a produção do poço 1-QB-04A-BA, gerando cerca de 15 barris/dia, um potencial baixo, porém relevante para o contexto.

24 O campo de Bela Vista O campo de Bela Vista localiza-se no compartimento nordeste da Bacia do Recôncavo, próximo ao município de Entre Rios (BA). Os principais reservatórios deste campo são formados por arenitos das Formações Candeias, Água Grande/Itaparica e Sergi. Trata-se de um campo raso, submetido a injeção de água. Neste campo foram perfurados os poços 1-BLV-001-BA, 3-BLV-002-BA, 3-BLV-003-BA, 7-BLV-004-BA, 7-BLV-005-BA, 7-BLV-006- BA e 7-BLV-007-BA. As principais informações sobre o campo constam na tabela abaixo, adaptada de Ferreira (Org.) (2009). Período de Produção Área (km 2 ) 2,1 Número de Poços 7 Volume in situ de óleo 9,7 bilhões de bbl Volume in situ de gás 63,4 bilhões de m 3 Fluido principal Óleo leve de 28,4 API Produção acumulada de óleo / FR mil bbl (FR = 1,8%) Produção acumulada de gás / FR 2,4 milhões de m 3 (FR = 3,8%) A figura 1.6 mostra a localização dos poços 1-BLV-001-BA, 7-BLV-004-BA e 7-BLV- 005-BA, que são os poços cujos dados foram fornecidos pelo Projeto Campo Escola e serão aqui analisados. 1 Fator de Recuperação - índice que reflete a eficácia das técnicas disponíveis para a recuperação do volume original de petróleo.

25 Figura 1.6: Localização dos poços estudados do Campo de Bela Vista. 11

26 Os Dados Geofísicos Os dados disponíveis do Campo de Bela Vista correspondem à seções sísmicas e dados de poços. Foram perfurados sete poços no campo, sendo que nos foram disponibilizados os dados de perfilagem de três destes. Os dados de poços correspondem aos dados numéricos dos perfis (arquivos no formato TIF, os quais foram convertidos para o formato LAS), os perfis compostos elaborados pela Petrobras, a pasta do poço, contendo informações sobre a operação de perfilagem, a perfuração, a descrição de amostra de calhas, os testemunhos, a avaliação dos testes de formação, a avaliação geoquímica, e todo o histórico de perfuração e completação desses poços. As tabelas abaixo relacionam o poço com as curva dos perfis geofísicos utilizados neste trabalho. Poço 1-BLV-001-BA Curvas Corridas (Ferramenta) Nome da Curva Intervalo Perfilado (m) Sônico (BHC) DT Cáliper CAL Raios Gama GR Indução (ISF) ILD Esférica Focalizada SFLA Potencial Espontâneo SP Raios Gama GR Densidade (FDC) RHOB Neutrônico (CNL) NPHI Poço 7-BLV-004-BA Curvas Corridas (Ferramenta) Nome da Curva Intervalo Perfilado (m) Cáliper CAL Raios Gama GR Indução (ISF) ILD Esférica Focalizada SFLA Potencial Espontâneo SP Raios Gama GR Densidade (FDC) RHOB Neutrônico (CNL) NPHI Poço 7-BLV-005-BA Curvas Corridas (Ferramenta) Nome da Curva Intervalo Perfilado (m) Cáliper CAL Raios Gama GR Indução (IEL) ILD Raios Gama (2) GR Densidade (CDL) RHOB Neutrônico (DSN) NPHI

27 13 A figura a seguir mostra um trecho do perfil composto do poço 1-BLV-001-BA. Na pista 1, em escala linear, estão representadas as curvas de raio gama (GR), potencial espontâneo (SP) e diâmetro do poço (CAL). Na pista 2, em escala logarítmica, estão os perfis de resistividade profunda (ILD) e rasa (SFLA). Na pista 3, em escala linear, encontram-se os perfis de porosidade: o sônico (DT), densidade (RHOB) e neutrônico (NPHI). Figura 1.7: Trecho de um perfil composto elaborado pela Petrobras, apresentando as principais curvas dos perfis geofísicos. Poço 1-BLV-001-BA, Campo de Bela Vista, Bacia do Recôncavo.

28 CAPÍTULO 2 A Perfilagem Geofísica de Poços A origem do termo perfilagem de poço remonta do francês carottage électrique, que foi traduzido para o espanhol como perfilaje e ajustado em português para perfilagem. A expressão original traduzida para o inglês é electrical coring, ou literalmente, testemunhagem elétrica. De fato, é uma descrição justa para a época que foi inventada a perfilagem, em A perfilagem consiste na medida de propriedades físicas das rochas, de maneira direta ou indireta, continuamente, dentro de um poço. Tendo sido criada para correlacionar padrões semelhantes de condutividade elétrica entre poços, a técnica evoluiu, agregou outras propriedades petrofísicas, ganhou novas ferramentas, e hoje, segundo Nery (2009), é um procedimento padrão para a totalidade dos poços de petróleo. As propriedades das rochas são registradas através de ferramentas que se deslocam no poço e após um estímulo físico (ou não), medem uma resposta geofísica. Os perfis geofísicos resultantes são gráficos da variação de uma propriedade medida com a profundidade. Através da obtenção dos parâmetros petrofísicos, é possível se caracterizar a geologia ao redor do poço. O objetivo é a avaliar as formações através de perfis e localizar as zonas produtoras, bem como recuperar informações sobre os reservatórios: porosidade, saturação, tipo de fluido, etc. Trataremos um pouco sobre o meio ambiente da perfilagem, os principais perfis utilizados neste trabalho, e a interpretação dos dados. Para uma leitura mais aprofundada sobre o assunto, recomenda-se a bibliografia no final deste trabalho. Figura 2.1: Fragmento do primeiro perfil geofísico obtido pelos irmãos Schlumberger em Adaptado de: Chopra et al. (2000). 14

29 O Ambiente da Perfilagem A perfuração de um poço envolve os efeitos causados pela pressão sobre os fluidos de perfuração, que tendem a perturbar as formações originais do poço, ocorrendo invasão do filtrado nas rochas, quando estas possuem permeabilidade o suficiente para tal. É possível dividir então o meio ambiente da perfilagem em zona lavada (completamente alterada), zona de transição e zona virgem (inalterada) (Figura 2.2). A entrada de um fluido de perfuração com características diferentes dos fluidos originalmente existentes nas formações causa mudanças nas propriedades físicas, como resistividade, densidade, velocidade de ondas compressionais e potencial elétrico. Essa mudança seria, a princípio, indesejável. No entanto, para se controlar efeitos de extravasão de fluidos (blowouts), é preferível manter esse ambiente de invasão de lama, permitindo maior segurança à operação. Outro ponto positivo é o de se ter conhecimento exato de qual fluido encontra-se na zona invadida, fluido este de propriedades controladas em laboratório. Dessa forma, a utilização de ferramentas que investiguem diferentes profundidades pode minimizar o efeito da invasão. Figura 2.2: Compartimentos vicinais ao poço após invasão do fluido de perfuração.

30 O Perfil Cáliper - CAL A ferramenta do cáliper é utilizada na medição do diâmetro do poço com a profundidade, através de braços pressionados contra a parede do poço, enquanto a ferramenta é corrida. Os braços vão abrindo e fechando a depender do espaço disponível e as informações acerca do diâmetro do poço vão sendo registradas. Um poço normalmente não permanece com diâmetro constante. Na perfuração, são utilizadas diferentes tamanhos de brocas. Além disso, fatores ambientais podem causar mudanças no valor do cáliper: Litologias já dissolvidas, ou que podem ser dissolvidas pela lama, tendem a aumentar o diâmetro do poço; Litologias como folhelhos podem estar associados com absorção do fluido de perfuração, com posterior desmoronamento; Litologias permeáveis e porosas tendem a ser capeadas por uma película denominada de reboco 1, diminuindo o diâmetro do poço. Na interpretação, o cáliper é usado como avaliador da integridade do poço ou qualidade da sua perfuração (refletindo diretamente na qualidade das curvas dos perfis). Zonas mais desmoronadas requerem atenção redobrada, uma vez que o diâmetro do poço pode influenciar nas medidas de todos os demais perfis. Deve-se lembrar que quanto maior seu diâmetro, maior será o volume de lama dentro do poço, e maior seu efeito sobre as medidas. 1 Fração mais viscosa da lama, que adere à parede do poço. A espessura do reboco, e reboco, pode ser calculada (se for o caso) por: e reboco = (d caliper d broca )/2, onde d caliper representa o diâmetro medido pela ferramenta na profundidade e d broca o diâmetro da broca usada na perfuração do intervalo em questão.

31 O Perfil de Raios Gama - GR Trata-se de um método nuclear que mede a radioatividade natural das formações, a partir da interação da radiação gama emitida naturalmente pelas rochas. O sinal é composto de emissões de vários níveis energéticos de radioisótopos, especialmente na faixa energética dos elementos 40 K, 232 T h e 238 U e dos elementos resultantes de seus decaimentos. Embora emita radiação num menor nível energético do que os outros dois elementos citados 2, o 40 K é bastante abundante nos minerais mais comuns da crosta terrestre, como o K-feldspato, micas (muscovita, biotita, etc.) e sais de potássio. Em rochas sedimentares, os valores de GR (Gamma Ray) são interpretados como uma função do teor do volume de folhelhos (que além de concentrar matéria orgânica, são constituídos de minerais ricos em 40 K e por este motivo, apresentam maior atividade radioativa) e por correspondência, do tamanho dos grãos 3. É comum então, na prática, associar-se que nos intervalos de maior contagem do GR estão localizados os folhelhos e nos intervalos de menor contagem estão os reservatórios (carbonatos, arenitos, etc.). É claro que se trata de uma aproximação. Arenitos arcosianos, por exemplo, contém alto teor de feldspatos e tende a possuir maiores valores de GR do que um arenito quartzoso. Deve-se permanecer atento às exceções. Uma importante propriedade dos reservatórios é o volume de argila, que pode ser calculado a partir do perfil de Raios Gama. O cálculo consiste em reescalonar os intervalos dos perfis, a partir da proporção entre os valores de GR nos folhelhos mais argilosos (desde que não representem anomalias de radioatividade) e nas areias limpas. A partir dessa proporção, faz-se um cálculo linear inicial para o chamado Índice de Argilosidade (I GR) que muitas vezes é utilizado como o próprio V sh 4 : V sh(linear) = I GR = GR log GR min GR max GR min (2.1) Para o cálculo de V sh utilizam-se ainda outras expressões não lineares, que consideram efeitos de compactação ou idade das rochas. O V sh pode ser calculado utilizando as seguintes fórmulas: Expressão de Larionov (1969) para rochas terciárias: V sh(larionov,1) = 0, 083(2 3,7 IGR 1) (2.2) Expressão de Larionov (1969) para rochas mais antigas: V sh(larionov,2) = 0, 33(2 2,0 IGR 1) (2.3) 2 Existem ferramentas mais sofisticadas, que descriminam e totalizam a contagem correspondente de cada um dos três elementos. 3 Folhelhos são compostos de minerais de granulometria argila, isto é, fração fina. 4 Volume of Shale ou Volume de Argila ou de Folhelho.

32 18 Expressa o de Stieber (1970): Vsh(Stieber) = IGR 2, 0 IGR (2.4) Expressa o de (Clavier et al., 1977): Vsh(Clavier) = 1, 7 (3, 38 (IGR + 0, 7)2 )2 (2.5) Neste trabalho, usaremos a me dia aritme tica das tre s equac o es acima: Vsh = Vsh(Larionov,2) + Vsh(Stieber) + Vsh(Clavier) 3 (2.6) Figura 2.3: Gra fico gerado a partir das equac o es 2.1 a 2.6 contendo a representac a o das equac o es de argilosidade e seus autores.

33 O Perfil de Densidade - RHOB O Perfil de Densidade (RHOB ou ρ b ) é outro perfil do tipo radioativo. Neste caso, uma fonte de 137 Cs emite raios gama artificiais com energia abaixo da eventualidade de promoverem eventos outros que não o Espalhamento Compton. Os fótons incidem sobre as rochas e interagem com os elétrons e têm sua energia reduzida, atenuada. O nível de atenuação da energia dos raios gama está relacionado com a densidade eletrônica das formações (abundância de elétrons presentes por volume investigado), que por sua vez é função da densidade (massa específica) da formação. Faz-se uma extrapolação do nível atômico para o nível molecular. Dessa forma, a densidade das rochas é estimada medindo-se a proporção de radiação gama que retorna para o detector na ferramenta. Na verdade, as ferramentas mais atuais utilizam dois ou mais detectores - são as ferramentas compensadas, que utilizam um detector mais próximo da fonte e um mais afastado. A ideia é minimizar a influência do reboco, ficando com valores mais próximos da densidade desejada da rocha. A porosidade (φ d ) pode ser estimada a partir das medidas de densidade. Neste caso consideraremos a densidade da rocha (ρ b ) como uma soma das contribuições da densidade da matriz (ρ m ) e dos fluidos nos poros (ρ f ). Assim: ρ b = φ d ρ f + (1 φ d ) ρ m (2.7) Ou ainda: φ d = ρ m ρ b ρ m ρ f (2.8) Uma análise mais completa leva em consideração também a presença de outros fluidos e matriz de composição variada: φ dc,hc = ( n i=1 ρ m,i P i ) ρ b ( n i=1 ρ m,i P i ) (ρ mf S xo + ρ H2O,irr S H2O,irr + ρ oleo,res S oleo,res + ρ gas S gas ) (2.9) Onde φ dc,hc é porosidade calculada pelo perfil de densidade, corrigida pelo tipo de fluido e matriz variada; ρ m,i é a densidade do elemento i-ésimo da matriz com participação P i (%) do total da fração sólida; ρ mf é a densidade do filtrado da lama, de saturação S xo ; ρ H2O,irr é a densidade da água irredutível dos poros, com saturação S H2O,irr ; ρ oleo,res é a densidade do óleo residual, de saturação S oleo,res ; ρ gas a densidade do gás presente nos poros, com saturação S gas. Costuma-se também considerar o efeito da porosidade devido à presença de argila: φ dc = φ d V sh φ d,sh (2.10) Onde φ d,sh é o valor da porosidade aparente dos folhelhos, obtida a partir do perfil de densidade lido defronte a uma camada espessa de folhelho (V sh alto).

34 20 A ferramenta de densidade é do tipo sapata, isto é, vai sendo pressionada na parede do poço. Assim, em intervalos onde o diâmetro do poço encontra-se irregular, as medidas são influenciadas pela rugosidade das formações. 2.5 O Perfil Neutrônico - NPHI O Perfil Neutrônico é um perfil radioativo, útil para obter o valor das porosidades das formações, a partir da ferramenta do tipo mandril e excentralizada. Neste caso, uma fonte bombardeia com nêutrons em velocidade os elementos não radioativos da formação, resultando numa perda de energia dos nêutrons ocasionada pelos sucessivos choques com os núcleos dos elementos. As ferramentas capturam esses nêutrons amortecidos. Os nêutrons colidem com os núcleos atômicos na rocha. Quando os núcleos tem muito mais massa que os nêutrons, estes retornam aos receptores com pouca perda de energia. No entanto, o íon de hidrogênio tem praticamente a mesma massa que um nêutron e, neste caso, a colisão transfere muita energia cinética, tornando o nêutron lento ou levando-o a um estado termal, coincidente com o existente no meio ambiente, passível de ser detectado pela ferramenta que traduz em medida do Índice de Hidrogênio da rocha, ou IH. Em arenitos e calcários, os íons de hidrogênio estão presentes nos fluidos das rochas, de forma que sua concentração é inteiramente dependente da porosidade. Nos folhelhos, entretanto, o hidrogênio pode resultar dos íons H + adsorvidos pela água intersticial dos minerais de argila. Assim, a ferramenta neutrônica é dependente da calibração em função da litologia. A estimativa da porosidade é calculada pela ferramenta, com base no IH e na litologia considerada. Os valores de porosidade medidos pela ferramenta neutrônica (φ n ) pode ser compensada também pela influência da argilosidade, num procedimento análogo ao do perfil de densidade: φ nc = φ n V sh φ n,sh (2.11) Onde φ n,sh é o valor da porosidade aparente dos folhelhos, obtida a partir do perfil neutrônico lido defronte a uma camada espessa de folhelho (V sh alto).

35 A Lei de Archie Para rochas em que a única forma de condução elétrica é a eletrolítica, pode ser aplicada a equação de Archie (1942). Segundo esta equação, a condutividade da rocha saturada por um fluido é proporcional à condutividade do fluido. Por exemplo, uma rocha saturada por água tem sua condutividade proporcional à condutividade dessa mesma água. Como resultado desta proporcionalidade, Archie apresentou o conceito de fator de formação F. Este fator de formação é dependente da estrutura da rocha e da porosidade. Para o caso em que a saturação em água é parcial, isto é, o espaço poroso é ocupado também por outros fluidos, a resistividade da rocha é proporcional à resistividade da rocha 100% saturada em água. Esta proporcionalidade depende da saturação da rocha. A fórmula de Archie pode ser então escrita como: Onde, segundo Schon (1996): R t = a φ m R w S n w (2.12) m: Expoente de cimentação. É adimensional e varia de 1,3 para rochas arenosas consolidadas até 1,8 a 2,0 para arenitos consolidados. φ: Porosidade efetiva da rocha, adimensional. a: Coeficiente adimensional, que varia com a litologia, o tamanho dos grãos e nível de compactação da rocha. Os valores médios estão entre 0,62 e 1,4. S w : é a saturação em água da rocha, adimensional. n: é o expoente de saturação, adimensional, obtido empiricamente. Varia entre 1,42 e 2,55 nos arenitos. R w : é a resistividade da água da formação (em Ω Temperatura da formação na profundidade lida). R t : é a resistividade da rocha (em Ω m). Segundo Nery (2009), as fórmulas de Archie são a base da perfilagem, e devem ser entendidas qualitativamente antes de se fazer a quantificação.

36 O Perfil Esférico Focalizado - SFL Esta ferramenta está inserida no conjunto de perfis elétricos de eletrodos galvânicos, nos quais, a partir de um arranjo de eletrodos de potencial e de corrente localizados no poço e em superfície é calculada a resistividade/condutividade elétrica das formações. De forma geral, diferentes arranjos de eletrodos são usados para gerar informações sobre diferentes zonas ao redor do poço. Mais especificamente, as ferramentas esféricas focalizadas são construídas de forma a ler a condutividade elétrica das formações próximas ao poço e fornecem a investigação rasa necessária para se avaliar os efeitos da invasão ou então da medida de resistividades mais profundas. Este tipo de perfil sofre grande influência do fluido de perfuração. Quanto mais resistivo (ou condutivo) ele for, mais sinal elétrico será perdido. A ferramenta SFL foi desenvolvida para substituir as antigas curvas normais dado ao fato de elas não terem um sistema que direcionassem (focalizassem) as linhas de corrente radialmente para as formações, de modo a minimizar o efeito do fluido de perfuração que envolvia os eletrodos (ferramenta). Nas ferramentas focalizadas, a corrente é direcionada horizontalmente devido à utilização de eletrodos de bloqueio.

37 O Perfil de Indução - ILD O perfil de indução é um perfil de condutividade. É utilizado em poços cujo fluido de perfuração não seja muito condutivo. O campo eletromagnético que energiza as rochas tem frequência de cerca de 20 khz. Este campo lança mão de bobinas, a fim de gerar correntes parasitas na formação por indução eletromagnética. O campo secundário criado pela formação é registrado numa bobina receptora que permite uma estimativa direta da condutividade da rocha, e por razão inversa, da sua resistividade. Na figura 2.4 tem-se uma representação da fase das correntes envolvidas no sistema de indução. A corrente da transmissora é aquela que circula na bobina transmissora. A corrente de acoplamento direto é aquela gerada pela bobina transmissora na bobina receptora. A corrente de Foucalt é uma corrente defasada de 90 em relação à transmissora, e é criada nas formações rochosas por indução. As correntes induzidas pelas correntes de Foucault são as correntes geradas pelas formações rochosas e que são medidas nas bobinas receptoras. As diferenças de fase e amplitude na receptoras individualizam os sinais desejados de condutividade/resistividade para registro. Figura 2.4: Comparação entre as fases observadas num sistema de bobinas do Perfil de Indução. Adaptado de Serra (1984). As ferramentas atuais são focalizadas, com uma distribuição de bobinas de bloqueio que forçam maior penetração de corrente nas formações, investigando mais profundamente. Costuma-se considerar a curva ILD como o próprio valor de R t (resistividade verdadeira da formação), muito embora deva-se fazer antes a correção ambiental para efeito da invasão, lama, etc. Ainda assim, a ILD é uma aproximação que ajuda bastante na primeira interpretação e cálculo da saturação, utilizando a fórmula de Archie.

38 O Perfil Sônico - DT O perfil sônico ou acústico é um perfil que registra o tempo de trânsito que as ondas compressionais percorrem em um certo espaço dentro das formações atravessadas por um poço. As velocidades de deslocamento de uma onda acústica variam de acordo com o meio pelo qual ela percorre, sendo maior para sólidos e menor para líquidos e gases. Isso significa dizer que se uma onda leva um tempo para percorrer determinada distância num meio sólido, ela levaria um tempo maior para percorrer a mesma distância num meio fluido. Pela análise anterior, percebe-se que, se fixarmos a distância, a velocidade pode ser escrita em função de uma medida de tempo. Este é o princípio da ferramenta sônica, que registra intervalos de tempos, que podem ser convertidos em velocidade da onda compressional. Figura 2.5: Esquema de funcionamento da ferramenta sônica com 1 transmissor e 2 receptores, ilustrando ainda a trajetória da onda compressional captada pelos receptores. Para maior entendimento do princípio deste perfil usa-se uma ferramenta do tipo mandril com uma fonte que gera impulsos ultrassônicos a uma frequência de 20 a 40 khz, e dois receptores (Figura 2.5). Um impulso sonoro (onda elástica) é emitido pelo transmissor T e propaga-se nas camadas do poço, atingindo os receptores R 1 e R 2. A onda sonora se propaga tridimensionalmente, mas o raio captado em R 1 percorre o menor caminho ABC, e a onda sonora captada em R 2 percorre o caminho menor ABD. Em termos de intervalo de tempo,

39 25 o tempo captado pelo receptor R 1 desde sua saída em T é: t T R,1 = A V lama + B V fm + C V lama (2.13) Onde V lama é a velocidade da onda compressional na lama, e V fm é a velocidade da onda compressional na formação. O tempo captado pelo receptor R 2 desde sua saída em T é: t T R,2 = A V lama + B + D + V fm V fm E V lama (2.14) A diferença de tempo t entre os percursos terminados em R 1 e R 2 é: t = t T R,2 t T R,1 = D V fm + E V lama C V lama (2.15) Entretanto, a ferramentas sônica é construída de modo simétrico com dois sistemas de pares Transmissor-Receptor para eliminar distorções e situações em que A C E. Assim, t = D V fm (2.16) Utilizando a medida D como igual a 1 pé, verifica-se que o tempo de trânsito sônico em segundos correponde ao inverso da velocidade em pés/segundo. Dessa forma, a velocidade sísmica (V p ) em pés/segundo pode ser convertida em tempo de trânsito ( t) através de razão inversa: t = 1/V p (2.17) A porosidade φ s pode ser estimada a partir das medições sônicas. A equação de Wyllie et al. (1956) considera o tempo de trânsito da onda sonora numa rocha ( t) igual a soma das participações dos tempos de trânsito da onda no fluido ( t fluido ) e na matriz ( t matriz ): t = φ s t fluido + (1 φ s ) t matriz (2.18) Ou ainda, φ s = t t matriz t fluido t matriz (2.19) A partir da Equação 2.18 e por razão inversa, obtém-se: 1 V p = φ s + (1 φ s) (2.20) V fluido V matriz Onde V p é a velocidade da onda sonora na rocha, V fluido é a velocidade da onda no fluido e V matriz a velocidade da onda na matriz rochosa. As equações apresentadas acima serão bastante utilizadas neste trabalho, por relacionarem propriedades como porosidade,

40 26 tempos de trânsito e velocidade de ondas compressionais. A equação de Wyllie, entretanto, calcula porosidades realistas apenas para rochas saturadas em água (S w = 1), com porosidade intergranular, compactadas e isentas de argila (V sh = 0). Na prática, utiliza-se a equação, usando o t fluido como o da água, e numa fase posterior faz-se uma correção por efeito de hidrocarbonetos. A presença de argila pode ser retirada de forma análoga àquela vista para outros perfis de porosidade: φ sc = φ s V sh φ s,sh (2.21) Neste caso, φ s,sh é uma porosidade aparente dos folhelhos calculada a partir do perfil sônico para os folhelhos adjacentes. Outra correção é a do efeito da não-compactação. Quando o tempo de trânsito sônico nos folhelhos adjacentes ( t sh ) forem maiores do que 100 µs/pé, corrige-se com a equação: φ corrigido = φ s 100 c t sh (2.22) Onde φ corrigido é a porosidade sônica corrigida pelo efeito de não-compactação, t sh é o valor do tempo de trânsito registrado nos folhelhos soto e sobrepostos, e c é uma constante empírica que depende do ambiente e varia entre 0, 8 a 1, 2. O perfil sônico é um perfil importantíssimo, não só para o cálculo de porosidades mas também pelo fato de que os dados sísmicos podem ser calibrados, permitindo inclusive a geração de sismogramas sintéticos. Estes, segundo Thomas (Org.) (2004) e Chagas et al. (2010), são obtidos usando-se um algoritmo próprio, com finalidade de auxiliar na interpretação dos horizontes sísmicos, permitindo correlacionar esses horizontes com os níveis estratigráficos atravessados pelo poço perfurado, além de propiciar a criação de tabelas de conversão tempo versus profundidade, fato que permite migrar toda uma interpretação sísmica, que está no domínio do tempo, para o domínio do espaço (profundidade). As ferramentas sônicas mais modernas registram ainda o tempo de trânsito das ondas acústicas Rayleigh e Stoneley, com objetivo de obter informações sobre propriedades mecânicas, fraturas e permeabilidade. Devido ao seu valor, este trabalho visa a modelagem de perfis sônicos utilizando outros perfis de poços. Num primeiro momento, testaremos a validade das equações empíricas da literatura especializada. No final, serão testados modelos de regressão. Espera-se que a presença de um perfil sônico nos poços que não dispõem deste perfil possa ajudar nas futuras interpretações de dados geológicos e geofísicos do campo de Bela Vista.

41 CAPÍTULO 3 Modelagem Numérica dos Dados É muito comum na indústria do petróleo a utilização de métodos de regressão para se estimar propriedades das rochas, a partir de propriedades petrofísicas (obtidas pela perfilagem geofísica, por exemplo). Segundo Bucheb e Rodrigues (1997), como as ferramentas de perfilagem são projetadas para registrar variações na porosidade, tipo de fluido e litologia, admite-se que qualquer curva de perfil pode ser considerada função de qualquer outra curva, medidas para os mesmos níveis de profundidade. Assim, a análise de regressão utiliza um conjunto de variáveis independentes e um modelo específico para gerar um relacionamento entre estas variáveis e a variável dependente. Neste caso, o perfil sônico será gerado em função das outras curvas dos perfis. Os modelos utilizados foram uni e multivariáveis, de expressão linear e de potência. Os coeficientes da regressão podem ser calculados por métodos de minimização de erros, como o Método dos Mínimos Quadrados, enquanto a qualidade do resultado pode ser medida por métodos estatísticos, fechando o conjunto de procedimentos que possibilitam a modelagem de dados gerando as equações para o perfil sônico. Bastante comuns na indústria são também as equações empíricas que descrevem relacionamentos entre propriedades físicas das rochas. A Equação de Wyllie et al. (1956), citada anteriormente, é o mais clássico exemplo: relaciona a velocidade das ondas compressionais (e, consequentemente, os tempos de trânsito registrados no perfil sônico) com a porosidade da rocha. Embora a equação proposta seja usada rotineiramente com poucas restrições, no trabalho original, Wyllie et al. (1956) fizeram diversas considerações acerca das condições ambientais necessárias à validade da expressão obtida. Na seção destinada aos modelos empíricos, a validade dessas expressões serão discutidas. Para a modelagem dos dados sintéticos, utilizou-se primeiramente o conjunto de perfis do poço 1-BLV-001-BA, dotado dos perfis GR, CAL, ILD, SFLA, DT, RHOB e NPHI. Este poço foi dividido em três intervalos, de acordo com a formação geológica: Formação Candeias / Membro Gomo - com o registro completo de todos os perfis entre as profundidades de 1200 a 1431 metros. Formação Itaparica / Membro Água Grande - com o registro completo de todos os 27

42 28 perfis entre as profundidades de 1448 a 1513 metros. Formação Sergi - com o registro completo de todos os perfis entre as profundidades de 1513 a 1592 metros. Esta divisão foi baseada de acordo com o Relatório Geológico do Poço, elaborado pela Petrobras. A faixa de profundidades de 1431 a 1448 metros não se faz presente porque segundo os relatórios, é uma zona de falha correspondente ao Membro Tauá, não tendo sido utilizada para a regressão dos dados. Os dados foram modelados utilizando-se os pacotes de software Microsoft Office Excel R, Origin R e SPSS Statistics R.

43 Modelagem Utilizando Equações Empíricas As equações empíricas são baseadas em estudos específicos de relacionamento entre parâmetros petrofísicos, resultando em leis ou princípios que, dentro de condições experimentais determinadas, expressem uma ligação entre as propriedades físicas. Como exemplos neste trabalho, já foram citadas as equações de Wyllie et al. (1956) e de Archie (1942). As equações empíricas podem muito bem lançar mão de ferramentas estatísticas para o cálculo de constantes e validação da sua generalidade Equação do Tempo Médio de Wyllie Base Teórica Conforme descrito em Wyllie et al. (1956), medidas revelaram que uma relação simples muitas vezes pode ser encontradas entre velocidade de ondas compressionais e porosidade nas rochas sedimentares sob certas condições (que serão analisadas posteriormente). As relações foram aproximadas e deram origem à Equação de Wyllie: 1 V p = φ (1 φ) + (3.1) V fluido V matriz Onde V p, V fluido e V matriz representam, respectivamente, a velocidade da onda compressional na rocha saturada, no fluido constituinte e na matriz mineral. φ é a porosidade efetiva. Por relacionamento inverso, pode-se escrever a Equação de Wyllie como: t = φ t fluido + (1 φ) t matriz (3.2) Onde t, t fluido e t matriz representam, respectivamente, o tempo de trânsito da onda sonora numa rocha saturada, no fluido e na matriz mineral. Suposições e Limitações Segundo Mavko et al. (2009), a equação de Wyllie et al. (1956) pode ser usada para os seguintes fins: Dada a porosidade, constituição mineral e conhecimento do fluido dos poros, estimar a velocidade de ondas compressionais na rocha; Dada a velocidade da onda compressional e em cada elemento (matriz mineral e fluido), estimar a porosidade.

44 30 Algumas limitações foram feitas por Wyllie et al. (1956) para a validade da equação: A rocha é isotrópica e de mineralogia relativamente uniforme; A rocha deve ser 100% saturada por água; As amostras estão sujeitas a uma alta pressão efetiva; A equação não deve ser utilizada para relacionar velocidade e porosidade em rochas não-consolidadas; A equação funciona melhor para porosidade primária. Correções devem ser feitas para porosidade secundária; A equação foi feita com porosidades intermediárias. deve-se buscar outros modelos. Para porosidade muito altas, Aplicação em dados reais A partir da equação 3.2, é possível então fazer a primeira modelagem de dados (figuras 3.1, 3.2, 3.3, 3.4, 3.5 e 3.6), fazendo o caminho inverso da Equação de Wyllie, ou seja, calcular o tempo de trânsito t a partir de valores de porosidade obtidos dos perfis RHOB e NPHI. Foram utilizados os valores de tempos de trânsito e densidade como aqueles mais utilizados na indústria, sabendo-se que se comete um erro pois a litologia não é constante. Os valores foram aqueles convencionais bibliográficos: t fluido = 189 µs/pé e t matriz = 55, 5 µs/pé, ρ f = 1, 0 g/cm 3 e ρ m = 2, 65 g/cm 3. Análise dos Resultados De fato, observando as condições impostas por Wyllie et al. (1956), era de se esperar certas limitações do método: a geologia de subsuperfície não é isotrópica e as rochas não são 100% saturadas em água (nem gostaríamos que fossem!). Algumas das condições possíveis de se fazer foram realizadas para este estudo: foram retirados os efeitos da argilosidade e foram utilizadas outras equações para valores de porosidade muito altas. Deve-se ter ainda em mente de que as curvas de porosidade utilizadas (RHOB e NPHI) são bastante sensíveis à presença de porosidade secundária, enquanto o sônico não é. Além disso, os valores utilizados como tempo de trânsito da matriz e do fluido são convenções científicas e não o valor retirado de amostras do poço. A modelagem pela Equação de Wyllie et al. (1956) mostrou-se mais efetiva (dados modelados mais próximos dos dados obtidos pela ferramenta) na porosidade medida pelo

45 31 perfil neutrônico, e principalmente nas áreas com menor valor de tempo de trânsito (maior velocidade) e menor valor de argilosidade. Tendo em vista os valores de R 2, a melhor correlação entre o perfil sônico e o neutrônico, em detrimento do perfil de densidade, já era esperado em virtude do princípio de funcionamento dos perfis serem semelhantes em relação a V sh e presença de fluido. Outro fator que deve ser levado sempre em consideração é que as ferramentas dos perfis sônico e neutrônico são do tipo mandril, enquanto que a ferramenta do perfil de densidade é do tipo sapata. Isso explica o fato de a curva calculada pela porosidade de densidade sempre se afastar das demais no caso em que o cáliper encontra-se instável, uma vez que neste caso a sapata sofre os efeitos da rugosidade do poço. Deve-se lembrar que os cálculos de porosidades são feitos admitindo-se o fluido como água. Onde quer que haja hidrocarbonetos, comete-se um erro neste cálculo, afastando o intervalo de sua porosidade real, e modelando um tempo de trânsito distorcido da realidade. Foi plotado ainda o gráfico Perfil Sônico Sintético (Wyllie NPHI) versus Perfil Sônico Original (figura 3.7), mostrando em terceira dimensão as curvas de nível referentes ao perfil de raios gama, com objetivo de facilitar a descriminalização da litologia.

46 32 Figura 3.1: Perfil de poço relacionando o valor do perfil sônico com a profundidade, para o Membro Gomo da Formação Candeias. Os perfis sintéticos foram gerados utilizando-se a Equação de Wyllie e os valores de porosidade dos perfis RHOB e NPHI. Figura 3.2: Distribuição de pontos relacionando os perfis sônicos sintéticos modelados pela Equação de Wyllie com o perfil sônico real, no intervalo de 1200 a 1431 metros da Formação Candeias.

47 33 Figura 3.3: Perfil de poço relacionando o valor do perfil sônico com a profundidade, para o Membro Água Grande da Formação Itaparica. Os perfis sintéticos foram gerados utilizando-se a Equação de Wyllie e os valores de porosidade dos perfis RHOB e NPHI. Figura 3.4: Distribuição de pontos relacionando os perfis sônicos sintéticos modelados pela Equação de Wyllie com o perfil sônico real, no intervalo de 1448 a 1513 metros da Formação Itaparica.

48 34 Figura 3.5: Perfil de poço relacionando o valor do perfil sônico com a profundidade, para a Formação Sergi. Os perfis sintéticos foram gerados utilizandose a Equação de Wyllie e os valores de porosidade dos perfis RHOB e NPHI. Figura 3.6: Distribuição de pontos relacionando os perfis sônicos sintéticos modelados pela Equação de Wyllie com o perfil sônico real, no intervalo de 1513 a 1592 metros da Formação Sergi.

49 35 Figura 3.7: Curvas de contorno representando o relacionamento entre o perfil sônico original, o perfil sônico modelado pela Equação de Wyllie usando NPHI e o perfil de Raios Gama, para o poço 1-BLV-001-BA.

50 Equação de Raymer Base Teórica Raymer et al. (1980) sugerem melhorias à equação de Wyllie, supondo sempre a porosidade φ < 37%: V p = φ V fluido + (1 φ) 2 V matriz (3.3) Ou: [ t = φ t fluido + ] 1 (1 φ)2 (3.4) t matriz Suposições e Limitações Neste caso, as suposições e limitações do método seriam as mesmas da Equação de Wyllie, só que aplicada em porosidades menores do que a definida experimentalmente como sendo 37%. As aplicações também seriam as mesmas (encontrar valores de tempo de trânsito a partir de valores de porosidade e vice-versa). Aplicação em dados reais A partir das equações acima, a segunda modelagem foi feita (figuras 3.8, 3.9, 3.10, 3.11, 3.12 e 3.13). O procedimento foi o seguinte: utilizou-se os perfis de porosidade NPHI e RHOB para se obter os valores utilizados na equação de Raymer. Foram utilizados os mesmo valores de tempos de trânsito e densidade de matriz e fluido convencionais da indústria, tendo em mente que se comete erro de aproximação, a exemplo do que se disse do perfil sônico. Os valores foram os mesmos utilizados na Equação de Wyllie et al. (1956). Análise dos Resultados Deve-se ter em mente que a equação proposta por Raymer et al. (1980) somente constitui uma fórmula alternativa à proposta por Wyllie. As considerações são as mesmas. No entanto, como as fórmulas são diferentes, alguns dados específicos poderão se ajustar melhor à uma equação do que a outra. Nos dados de poços utilizados, a análise de R 2 indica que os dados se aproximam mais daqueles gerados pela Equação de Wyllie. Uma possível conclusão é que as rochas do poço possuem porosidades intermediárias, assim como aquelas dos dados utilizados por Wyllie et al. (1956).

51 37 Foi plotado ainda o gráfico Perfil Sônico Sintético (Raymer NPHI) versus Perfil Sônico Original (figura 3.14), mostrando em terceira dimensão as curvas de nível referentes ao perfil de raios gama, com objetivo de facilitar a descriminalização da litologia.

52 38 Figura 3.8: Perfil de poço relacionando o valor do perfil sônico com a profundidade, para o Membro Gomo da Formação Candeias. Os perfis sintéticos foram gerados utilizando-se a Equação de Raymer e os valores de densidade e porosidade dos perfis RHOB e NPHI. Figura 3.9: Distribuição de pontos relacionando os perfis sônicos sintéticos modelados pela Equação de Raymer com o perfil sônico real, no intervalo de 1200 a 1431 metros da Formação Candeias

53 39 Figura 3.10: Perfil de poço relacionando o valor do perfil sônico com a profundidade, para o Membro Água Grande da Formação Itaparica. Os perfis sintéticos foram gerados utilizando-se a Equação de Raymer e os valores de densidade e porosidade dos perfis RHOB e NPHI. Figura 3.11: Distribuição de pontos relacionando os perfis sônicos sintéticos modelados pela Equação de Raymer com o perfil sônico real, no intervalo de 1448 a 1513 metros da Formação Itaparica.

54 40 Figura 3.12: Perfil de poço relacionando o valor do perfil sônico com a profundidade, para a Formação Sergi. Os perfis sintéticos foram gerados utilizandose a Equação de Raymer e os valores de densidade e porosidade dos perfis RHOB e NPHI. Figura 3.13: Distribuição de pontos relacionando os perfis sônicos sintéticos modelados pela Equação de Raymer com o perfil sônico real, no intervalo de 1513 a 1592 metros da Formação Sergi.

55 41 Figura 3.14: Curvas de contorno representando o relacionamento entre o perfil sônico original, o perfil sônico modelado pela Equação de Raymer usando NPHI e o perfil de Raios Gama, para o poço 1-BLV-001-BA.

56 Equação de Gardner Base Teórica Gardner et al. (1974) sugeriram a seguinte equação empírica, relacionando a velocidade da onda P na rocha com a sua densidade: ρ b = 0, 23 V p 0,25 (3.5) Onde V p é dado em pés/segundo e ρ b é dado em g/cm 3. Segundo os autores, a relação expressa uma média de vários tipos de rochas. A figura 3.15 a seguir foi retirada do trabalho original de Gardner et al. (1974) e mostra como a equação se ajusta frente à densidade e velocidades das ondas compressinais nas rochas. Figura 3.15: Relações densidade-velocidade empíricas em rochas de diferentes litologias. Fonte: Gardner et al. (1974). Da equação acima, se obtém por razão inversa: ( ) 4 0, 23 t = (3.6) ρ b

57 43 Suposições e Limitações Segundo Mavko et al. (2009), o problema de se relacionar a velocidade com a densidade é que esta depende diretamente da porosidade do meio, e pequenas alterações na porosidade causam grandes variações na velocidade das ondas sonoras. Por outro lado, as relações da velocidade com a porosidade podem ser melhoradas com a introdução de outros fatores, tais como a saturação em fluido e a pressão efetiva. Deve-se estar atento às aproximações cometidas nos valores de tempos de trânsito e densidade de matriz e fluido. Aplicação em dados reais Equação largamente utilizada na sísmica, onde a velocidade das ondas compressionais e a densidade das camadas são as principais propriedades físicas. Neste caso, por razão inversa pode-se calcular o tempo de trânsito das formações por meio de sua densidade. Análise dos Resultados Apesar de a Equação de Gardner et al. (1974) ser amplamente utilizada na indústria do petróleo para se encontrar a densidade a partir da velocidade de ondas compressionais, o modelamento inverso não apresentou bons resultados. Ao utilizar os valores obtidos do perfil de densidade (RHOB) na equação proposta, os valores encontrados divergem bastante, e apresentam pequeno valor de coeficiente de correlação, especialmente para as rochas do Membro Água Grande. Segundo Rosa (2010), é comum a utilização da fórmula empírica de Gardner et al. (1974), a qual possibilita a sintetização das densidades a partir das velocidades de ondas compressionais. Segundo o mesmo, um importante ressalva é que embora a fórmula de Gardner seja amplamente utilizável, há locais em que ela pode modelar valores não condizentes, e propôe um ajuste preliminar da equação aos dados de poços, como proposto em Castagna et al. (1993). Este ajuste será feito no tópico num item específico deste trabalho. Foi plotado ainda o gráfico Perfil Sônico Sintético (Gardner) versus Perfil Sônico Original (figura 3.22), mostrando em terceira dimensão as curvas de nível referentes ao perfil de raios gama, com objetivo de facilitar a descriminalização da litologia.

58 44 Figura 3.16: Perfil de poço relacionando o valor do perfil sônico com a profundidade, para o Membro Gomo da Formação Candeias. Os perfis sintéticos foram gerados utilizando-se a Equação de Gardner e os valores de densidade do perfis RHOB. Figura 3.17: Distribuição de pontos relacionando os perfis sônicos sintéticos modelados pela Equação de Gardner com o perfil sônico real, no intervalo de 1200 a 1431 metros da Formação Candeias.

59 45 Figura 3.18: Perfil de poço relacionando o valor do perfil sônico com a profundidade, para o Membro Água Grande da Formação Itaparica. Os perfis sintéticos foram gerados utilizando-se a Equação de Gardner e os valores de densidade do perfis RHOB. Figura 3.19: Distribuição de pontos relacionando os perfis sônicos sintéticos modelados pela Equação de Gardner com o perfil sônico real, no intervalo de 1448 a 1513 metros da Formação Itaparica.

60 46 Figura 3.20: Perfil de poço relacionando o valor do perfil sônico com a profundidade, para a Formação Sergi. Os perfis sintéticos foram gerados utilizandose a Equação de Gardner e os valores de densidade do perfis RHOB. Figura 3.21: Distribuição de pontos relacionando os perfis sônicos sintéticos modelados pela Equação de Gardner com o perfil sônico real, no intervalo de 1513 a 1592 metros da Formação Sergi.

61 47 Figura 3.22: Curvas de contorno representando o relacionamento entre o perfil sônico original, o perfil sônico modelado pela Equação de Gardner e o perfil de Raios Gama, para o poço 1-BLV-001-BA.

62 Equação de Smits Base Teórica Smits (1968) propõe um modelo físico que descreve uma equação relacionando a condutividade/resistividade de arenitos argilosos saturados em água com o tempo de trânsito da onda compressional. As equação obtida foi a seguinte: t = 91R 0,15 t (3.7) Onde R t é a resistividade da formação. Suposições e Limitações A equação apresentada se ajustou aos dados utilizados pelo autor nos dados de seu artigo, mas são dados específicos e a equação não necessariamente se ajustará aos dados do campo de Bela Vista. Aplicação em dados reais A aplicação da fórmula é dada de forma direta - basta entrar com o valor de R t que no caso, será dado pelo perfil de Indução Profunda ILD. Substituindo o valor na equação acima, obtém-se diretamente o valor modelado para o tempo de trânsito. Análise dos Resultados Os dados modelados não se dispersaram tanto, concentram-se em torno de uma reta e apresentam valores moderados de coeficiente de correlação. No entanto, uma análise apurada dos gráficos gerados mostram uma tendência do sônico modelado apresentar valores que correspondem somente à metade do valor do sônico real. Assim, embora os dados se apresentem de forma convergente, eles convergem para valores distantes do sônico real. O coeficiente de determinação R 2 apresenta um valor satisfatório pelo caráter linear dos dados, mas numa linha que possui inclinação diferente da linha desejada, a primeira bissetriz. Uma alternativa é gerar nossa própria equação de análise univariável no modelo potência, relacionando o sônico com a resistividade. Este procedimento, além de muitos outros, será feito no item a seguir. Foi plotado ainda o gráfico Perfil Sônico Sintético (Smits) versus Perfil Sônico Original (figura 3.29), mostrando em terceira dimensão as curvas de nível referentes ao perfil de raios gama, com objetivo de facilitar a descriminalização da litologia.

63 49 Figura 3.23: Perfil de poço relacionando o valor do perfil sônico com a profundidade, para o Membro Gomo da Formação Candeias. Os perfis sintéticos foram gerados utilizando-se a Equação de Smits e os valores de resistividade do perfil ILD. Figura 3.24: Distribuição de pontos relacionando os perfis sônicos sintéticos modelados pela Equação de Smits com o perfil sônico real, no intervalo de 1200 a 1431 metros da Formação Candeias.

64 50 Figura 3.25: Perfil de poço relacionando o valor do perfil sônico com a profundidade, para o Membro Água Grande da Formação Itaparica. Os perfis sintéticos foram gerados utilizando-se a Equação de Smits e os valores de resistividade do perfil ILD. Figura 3.26: Distribuição de pontos relacionando os perfis sônicos sintéticos modelados pela Equação de Smits com o perfil sônico real, no intervalo de 1448 a 1513 metros da Formação Itaparica.

65 51 Figura 3.27: Perfil de poço relacionando o valor do perfil sônico com a profundidade, para a Formação Sergi. Os perfis sintéticos foram gerados utilizandose a Equação de Smits e os valores de resistividade do perfil ILD. Figura 3.28: Distribuição de pontos relacionando os perfis sônicos sintéticos modelados pela Equação de Smits com o perfil sônico real, no intervalo de 1513 a 1592 metros da Formação Sergi.

66 52 Figura 3.29: Curvas de contorno representando o relacionamento entre o perfil sônico original, o perfil sônico modelado pela Equação de Smits e o perfil de Raios Gama, para o poço 1-BLV-001-BA.

67 Modelagem Baseada em Análise Estatística Utilizaremos métodos estatísticos de regressão para modelar a variável dependente (estimada) tempo de trânsito - perfil sônico, a partir de variáveis independentes (estimadoras), que são as demais curvas dos perfis. Será utilizado aqui um procedimento semelhante àquele proposto por Bucheb e Rodrigues (1997), consistindo em: 1. Definição dos limites da regressão. 2. Treinamento e validação do modelo de regressão. 3. Aplicação do método. 4. Testes estatísticos e Análise dos Resultados. Segundo Bucheb e Rodrigues (1997) apud Zapparolli (1991), D Abbadia (1994) e Júnior (1992), a interface amigável dos pacotes estatísticos, como o SAS R e o SPSS R tornou bastante simples a tarefa de construir modelos para a geração das chamadas curvas sintéticas. A partir do conjunto de dados iniciais, pode-se criar diversos relacionamentos entre variáveis de predição. Utilizaremos neste trabalho o relacionamento linear e potência, para os casos uni e multivariável Definição dos Limites da Regressão Para a parametrização dos perfis sônicos em função dos outros perfis, utilizaremos um modelo de regressão, um conjunto de dados selecionados e a utilização de parâmetros estatísticos para controle dos resultados. Deve-se lembrar que os dados utilizados para a modelagem são os provenientes do poço 1-BLV-001-BA. Nesta primeira etapa, deve-se escolher os dados que serão utilizados para a modelagem, começando por separar os limites da regressão, ou seja, a faixa de profundidades do perfil base que fornecerão os parâmetros para geração do sônico. Segundo Bucheb e Rodrigues (1997), podem ocorrer situações em que seja conveniente subdividir formações ou membros, se ocorrerem variações nos dados que justifiquem tratá-los separadamente. Neste trabalho, as formações são divididas como foi indicado na página 27, pois o objetivo é o de encontrar as relações específicas para cada formação presente no poço de referência, a fim de se fazer um modelamento específico para utilização em outros poços. Segundo Santos (2010), outra etapa importante é a seleção das variáveis potencialmente importantes. De fato, deve-se fazer uma verificação prévia de quais curvas dos perfis exibem algum relacionamento com o perfil sônico, para que seja selecionado o melhor conjunto de variáveis que possam modelar o perfil sônico.

68 54 Dessa forma, o primeiro passo seguido foi a criação de gráficos relacionando o perfil sônico com os demais perfis, mostrando a tendência de relacionamento entre eles. Para esta análise, os dados não foram divididos nos intervalos citados anteriormente, porque o objetivo desta etapa é somente verificar a relação dominante entre as variáveis preditivas e o perfil sônico real, do qual procura-se a melhor aproximação. A análise dos gráficos exibidos nas figuras de 3.30 a 3.37 (páginas 55 a 59) permite chegar às seguintes observações: A relação entre o perfil sônico e a profundidade mostra-se sem tendência a agrupamentos ou a seguir uma curva. A utilização da profundidade como variável regressora deve ser bem analisada, pois mesmo que os pontos seguissem a tendência de uma curva, elas só valem para a faixa de profundidade específica, não podendo ser extrapolados para intervalos fora desta faixa, como se deseja fazer para outros poços. O relacionamento entre o perfil sônico e o perfil cáliper mostrou-se bastante dispersivo, muito embora há uma tendência geral de crescimento do tempo de trânsito com o aumento do cáliper. Isto porque muito embora a geometria de aquisição do sônico seja insensível ao diâmetro do poço, as variações locais de desmoronamento causam descontinuidades do percurso da onda sônica, gerando stretchs e um maior t. O relacionamento entre o perfil sônico e o perfil de raios gama possui tendência também dispersiva, embora encontre-se numa faixa restrita de valores. Fica visível que os maiores valores de perfil sônico estão associados a intervalos mais radioativos e de tendência a serem mais desmoronados (no caso, os folhelhos). O relacionamento entre o perfil sônico e o perfil de indução profunda mostra uma tendência aproximadamente de potência e decrescente (expoente negativo). Trata-se de um comportamento já esperado pelo resultado da modelagem utilizando a equação empírica de Smits (página 48). O relacionamento entre o sônico e o perfil esférico focalizado é semelhante ao anterior: exponencial decrescente. Este fato era esperado em pontos em que não há efeito pronunciado da invasão do fluido de perfuração, e a resistividade da lavada (obtido aproximadamente pela curva SFLA) é bem próxima da resistividade da zona virgem (obtido aproximadamente pela curva ILD). A relação entre o perfil sônico e o perfil de densidade já apresentou medidas mais concentradas em torno de uma região. Provavelmente por este motivo a Equação de Gardner (página 42) é largamente utilizada na sísmica. A relação entre o perfil sônico e o perfil neutrônico foi animadora - os pontos parecem se dispor em torno de uma linha reta, fato que reitera a boa correlação entre eles.

69 55 Figura 3.30: Relacionamento entre o perfil sônico real e todos os outros perfis, para todos os três intervalos escolhidos, para o poço 1-BLV-001-BA.

70 56 Figura 3.31: Relacionamento entre o perfil sônico real e todos os outros perfis, para todos os três intervalos escolhidos, para o poço 1-BLV-001-BA.

71 57 Figura 3.32: Relacionamento entre o perfil sônico real e a profundidade do poço 1-BVL-001-BA englobando todos as litologias. Figura 3.33: Relacionamento entre o perfil sônico real e os perfis de predição CAL e GR, para todos os três intervalos escolhidos do poço 1-BLV-001-BA

72 58 Figura 3.34: Relacionamento entre o perfil sônico real e os perfis de predição ILD e GR, para todos os três intervalos escolhidos do poço 1-BLV-001-BA. Figura 3.35: Relacionamento entre o perfil sônico real e os perfis de predição SFLA e GR, para todos os três intervalos escolhidos do poço 1-BLV-001-BA.

73 59 Figura 3.36: Relacionamento entre o perfil sônico real e os perfis de predição RHOB e GR, para todos os três intervalos escolhidos do poço 1-BLV-001-BA. Figura 3.37: Relacionamento entre o perfil sônico real e os perfis de predição NPHI e GR, para todos os três intervalos escolhidos do poço 1-BLV-001-BA.

74 Treinamento e Validação do Modelo de Regressão Esta etapa consiste na escolha do grupo de variáveis que constituirá a regressão, bem como o tipo da regressão e a escolha de métodos de validação ou análise quantitativa das respostas obtidas. Como os poços que terão o sônico construído a partir do poço de referência não possuem os mesmos perfis que foram corridos no poço-base, foram utilizados o maior número de perfis disponíveis o possível. Conforme a tabela da página 12, os dados de perfis disponíveis dos poços 7-BLV-004-BA e 7-BLV-005-BA são: Poço 7-BLV-004-BA: CAL, GR, ILD, SFLA, RHOB e NPHI. Poço 7-BLV-005-BA: GR, ILD, RHOB, NPHI 1. Estes perfis serão utilizados como variáveis regressoras (independentes) no cálculo da variável dependente, o perfil sônico. Para tal, deve-se definir: X é a variável independente, no caso univariável. X 1, X 2,..., X n são as n variáveis independentes, no caso multivariável. Y é a variável dependente, e neste trabalho corresponde sempre ao perfil sônico. O Modelo Linear Univariável por: Neste modelo, a relação entre o perfil sônico e a única variável regressora é linear e dada Y = α 0 + α 1 X (3.8) A equação 3.8 acima é bastante conhecida como a equação de uma reta de coeficiente angular α 1 e coeficiente linear α 0. Estes coeficientes são os parâmetros que definem a regressão, e o objetivo aqui é o de encontrar esses valores de forma a minimizar os erros obtidos no processo. O Modelo Linear Multivariável Neste caso, a relação entre o perfil sônico e as n perfis de regressão é dada por: Y = α 0 + α 1 X 1 + α 2 X 2 + α 3 X α n X n (3.9) 1 Embora mais perfis tenham sido corridos, os dados não se encontram disponíveis na pasta do poço.

75 61 Neste caso, os coeficientes [α 0, α 1, α 2,..., α n ] transcendem à interpretação geométrica básica, mas continuam sendo os parâmetros de definição da regressão. É intuitivo imaginar que mudanças nos valores dos coeficientes implicam em mudanças no valor calculado para o perfil sônico. Posteriormente, serão apresentadas as condições de escolha destes coeficientes. O Modelo Não-Linear Univariável Neste modelo, a relação entre o perfil sônico e a única variável regressora é da forma não-linear e dada por: Y = α 0 X α 1 (3.10) A equação acima pode ser linearizada pelo seguinte procedimento: Toma-se o logaritmo decimal dos dois lados da equação, obtendo-se: log Y = log (α 0 X α 1 ) = log α 0 + α 1 log X (3.11) Desta forma, os parâmetros de entrada deixam de ser X e Y e passam a ser log X e log Y, que arbitrariamente passam a ser chamados de X e Ŷ. Assim: Ŷ = log α 0 + α 1 X (3.12) Que é semelhante à fórmula 3.8. O Modelo Não-Linear Multivariável Por fim, a relação entre o perfil sônico e os outros perfis, no caso do modelo não-linear multivariável será dada por: Y = α 0 X α X αn n (3.13) A equação acima também pode ser linearizada, de forma análoga ao modelo anterior: log Y = log (α 0 X α X αn n ) = log α 0 + α 1 log X 1... α n log X n (3.14) Da mesma forma, os parâmetros de entrada deixam de ser (X 1,..., X n e Y ) e passam a ser (log X 1,..., log X n e log Y ), que arbitrariamente passam a ser chamados de ( X 1,..., X n e Ŷ ). Assim: Ŷ = log α 0 + α 1 X α n X n (3.15) Resultado análogo ao da equação 3.9. Os modelos propostos no presente item são baseados na análise feita anteriormente, que prevê relacionamentos lineares e de potência entre o perfil sônico e os outros perfis.

76 62 Método de Ajuste - O Método dos Mínimos Quadrados O Método dos Mínimo Quadrados (MMQ) é utilizado na obtenção da equação de ajuste da regressão. Segundo Bucheb e Rodrigues (1997) apud SSI (1997), dentre os métodos de ajuste mais utilizados nos pacotes de tratamento de dados, o método dos mínimos quadrados produz as melhores estimativas da variável dependente calculada a partir de outra(s) variáveis. Neste caso, considera-se somente os erros de medida da variável dependente. Para se modelar o perfil sônico sintético, parte-se do princípio de que a melhor equação ajustada será aquela que minimizar a soma dos quadrados das diferenças entre os valores estimados e os observados no perfil sônico real. Utilizando álgebra linear e notação matricial baseada em Janke e Tinsley (2005), é possível desenvolver a teoria dos mínimos quadrados, cuja solução é feita a partir do sistema de equações normais (EN s). O desenvolvimento das equações é apresentado no Apêndice A, página Aplicação do Método A modelagem linear univariável utilizou o relacionamento da seguinte forma: t = α 0 + α 1 X (3.16) A modelagem linear multivariável utilizou o relacionamento da seguinte forma: t = α 0 X α 1 (3.17) A modelagem multidimensional linear utilizou a seguinte relação: t = α 0 + α 1 X 1 + α 2 X α n X n (3.18) A modelagem multidimensional não-linear utilizou a seguinte relação: t = α 0 X α 1 1 X α X αn n (3.19) Os resultados foram gerados com softwares estatísticos e serão reproduzidos a seguir. Formação Candeias Os coeficientes gerados como solução das EN s permitiram obter as relações entre o tempo de trânsito sônico e os demais perfis: t univ,lin = 10, , 069 CAL (R 2 = 0, 450) (3.20)

77 63 t univ,n lin = 9, 075 CAL 0,950 (R 2 = 0, 468) (3.21) t univ,lin = 41, , 687 GR (R 2 = 0, 362) (3.22) t univ,n lin = 15, 861 GR 0,400 (R 2 = 0, 362) (3.23) t univ,lin = 83, 294 0, 248 ILD (R 2 = 0, 203) (3.24) t univ,n lin = 110, 830 ILD 0,152 (R 2 = 0, 627) (3.25) t univ,lin = 81, 313 0, 054 SF LA (R 2 = 0, 117) (3.26) t univ,n lin = 108, 940 SF LA 0,124 (R 2 = 0, 603) (3.27) t univ,lin = 207, , 334 RHOB (R 2 = 0, 442) (3.28) t univ,n lin = 321, 795 RHOB 1,549 (R 2 = 0, 421) (3.29) t univ,lin = 54, , 146 NP HI (R 2 = 0, 833) (3.30) t univ,n lin = 40, 699 NP HI 0,225 (R 2 = 0, 421) (3.31) t multi,lin = 38, , 486 CAL + 0, 007 GR 0, 026 ILD + 0, 004 SF LA +4, 422 RHOB + 1, 139 NP HI (R 2 = 0, 836) (3.32) t multi,n lin = 45, 290 CAL 0,136 GR 0,025 ILD 0,094 SF LA 0,042 RHOB 0,052 NP HI 0,167 (R 2 = 0, 796) (3.33) As duas equações acima foram adaptadas também para somente 4 variáveis independentes, para que possam ser aplicadas nos dados de um dos poços: t multi,lin = 45, 907 0, 008 GR 0, 019 ILD +3, 553 RHOB + 1, 175 NP HI (R 2 = 0, 835) (3.34) t multi,n lin = 69, 343 GR 0,039 ILD 0,058 RHOB 0,093 NP HI 0,170 (R 2 = 0, 793) (3.35)

78 64 Formação Itaparica Os coeficientes gerados como solução das EN s permitiram obter as relações entre o tempo de trânsito sônico e os demais perfis: t univ,lin = 51, , 098 CAL (R 2 = 0, 451) (3.36) t univ,n lin = 33, 684 CAL 0,332 (R 2 = 0, 457) (3.37) t univ,lin = 64, , 264 GR (R 2 = 0, 519) (3.38) t univ,n lin = 48, 166 GR 0,125 (R 2 = 0, 489) (3.39) t univ,lin = 83, 700 0, 932 ILD (R 2 = 0, 400) (3.40) t univ,n lin = 102, 690 ILD 0,162 (R 2 = 0, 639) (3.41) t univ,lin = 82, 654 0, 715 SF LA (R 2 = 0, 394) (3.42) t univ,n lin = 100, 410 SF LA 0,147 (R 2 = 0, 705) (3.43) t univ,lin = 128, , 699 RHOB (R 2 = 0, 057) (3.44) t univ,n lin = 138, 645 RHOB 0,647 (R 2 = 0, 054) (3.45) t univ,lin = 64, , 614 NP HI (R 2 = 0, 799) (3.46) t univ,n lin = 53, 187 NP HI 0,128 (R 2 = 0, 763) (3.47) t multi,lin = 99, 39 0, 346 CAL + 0, 036 GR 0, 605 ILD + 0, 245 SF LA 11, 576 RHOB + 0, 542 NP HI (R 2 = 0, 859) (3.48) t multi,n lin = 104, 713 CAL 0,011 GR 0,003 ILD 0,028 SF LA 0,056 RHOB 0,385 NP HI 0,081 (R 2 = 0, 865) (3.49) As duas equações acima foram adaptadas também para somente 4 variáveis independentes, para que possam ser aplicadas nos dados de um dos poços:

79 65 t multi,lin = 103, 473 0, 037 GR 0, 302 ILD 14, 390 RHOB + 0, 466 NP HI (R 2 = 0, 827) (3.50) t multi,n lin = 97, 051 GR 0,009 ILD 0,077 RHOB 0,399 NP HI 0,082 (R 2 = 0, 861) (3.51) Formação Sergi Os coeficientes gerados como solução das EN s permitiram obter as relações entre o tempo de trânsito sônico e os demais perfis: t univ,lin = 19, , 102 CAL (R 2 = 0, 519) (3.52) t univ,n lin = 14, 408 CAL 0,692 (R 2 = 0, 467) (3.53) t univ,lin = 66, , 183 GR (R 2 = 0, 102) (3.54) t univ,n lin = 51, 451 GR 0,097 (R 2 = 0, 097) (3.55) t univ,lin = 88, 804 2, 794 ILD (R 2 = 0, 430) (3.56) t univ,n lin = 100, 700 ILD 0,212 (R 2 = 0, 552) (3.57) t univ,lin = 88, 196 2, 209 SF LA (R 2 = 0, 468) (3.58) t univ,n lin = 104, 752 SF LA 0,216 (R 2 = 0, 682) (3.59) t univ,lin = 232, , 214 RHOB (R 2 = 0, 489) (3.60) t univ,n lin = 394, 389 RHOB 1,831 (R 2 = 0, 471) (3.61) t univ,lin = 61, , 696 NP HI (R 2 = 0, 922) (3.62) t univ,n lin = 53, 741 NP HI 0,143 (R 2 = 0, 813) (3.63) t multi,lin = 67, , 766 CAL 0, 032 GR 0, 547 ILD + 0, 019 SF LA

80 66 3, 122 RHOB + 0, 819 NP HI (R 2 = 0, 943) (3.64) t multi,n lin = 42, 462 CAL 0,278 GR 0,009 ILD 0,057 SF LA 0,022 RHOB 0,329 NP HI 0,095 (R 2 = 0, 895) (3.65) As duas equações acima foram adaptadas também para somente 4 variáveis independentes, para que possam ser aplicadas nos dados de um dos poços, que só tem disponível 4 curvas de perfis: t multi,lin = 82, 501 0, 023 GR 0, 438 ILD 6, 641 RHOB + 0, 875 NP HI (R 2 = 0, 939) (3.66) t multi,n lin = 105, 925 GR 0,041 ILD 0,046 RHOB 0,713 NP HI 0,092 (R 2 = 0, 861) (3.67) Os gráficos relacionando as variáveis de predição com o perfil sônico original e modelado estão presentes a seguir.

81 67 Figura 3.38: Gráficos com curvas de modelos univariáveis linear (Y = α 0 + α 1 X) e potência (Y = α 0 X α 1 ) e seus respectivos valores de coeficiente de deteminação (R 2 ) para pontos do Membro Gomo da Formação Candeias.

82 68 Figura 3.39: Gráficos com curvas de modelos multivariáveis linear (Y = α 0 +α 1 X 1 + α 2 X 2 +α 3 X α n X n.) e potência (Y = α 0 X α X αn n ) e seus respectivos valores de coeficiente de deteminação (R 2 ) para pontos do Membro Gomo da Formação Candeias.

83 69 Figura 3.40: Gráficos com curvas de modelos univariáveis linear (Y = α 0 + α 1 X) e potência (Y = α 0 X α 1 ) e seus respectivos valores de coeficiente de deteminação (R 2 ) para pontos do membro Água Grande da Formação Itaparica.

84 70 Figura 3.41: Gráficos com curvas de modelos multivariáveis linear (Y = α 0 +α 1 X 1 + α 2 X 2 +α 3 X α n X n.) e potência (Y = α 0 X α X αn n ) e seus respectivos valores de coeficiente de deteminação (R 2 ) para pontos do membro Água Grande da Formação Itaparica.

85 71 Figura 3.42: Gráficos com curvas de modelos univariáveis linear (Y = α 0 + α 1 X) e potência (Y = α 0 X α 1 ) e seus respectivos valores de coeficiente de deteminação (R 2 ) para pontos da Formação Sergi.

86 72 Figura 3.43: Gráficos com curvas de modelos multivariáveis linear (Y = α 0 +α 1 X 1 + α 2 X 2 +α 3 X α n X n.) e potência (Y = α 0 X α X αn n ) e seus respectivos valores de coeficiente de deteminação (R 2 ) para pontos da Formação Sergi.

87 Testes estatísticos e Análise dos Resultados Para se verificar a confiabilidade das curvas geradas, é preciso verificar a consistência estatística da regressão. Para a regressão realizada pelo Método dos Mínimos Quadrados, isto pode ser feito analisando o coeficiente de determinação (R 2 ) que acompanha cada curva. Os Coeficientes de Correlação e de Determinação O coeficiente de correlação ou aderência (R) é uma medida da excelência do ajuste. Sejam duas variáveis x e y, o coeficiente de correlação mede o grau e o sentido (positivo = crescente ou negativo = decrescente) da relação linear entre as variáveis. Para um ponto qualquer (x i, y i ), a diferença entre o valor observado e o valor médio (ȳ) é dada por: y i ȳ (3.68) Que pode ser escrita em termos do valor estimado pelo modelo na observação i, ŷ i : y i ȳ = (y i ŷ i ) + (ŷ i ȳ) (3.69) Para que os valores de variação sejam sempre positivos, tomemos os valores quadráticos: SQ tot = n (y i ȳ) 2 (3.70) i=1 SQ exp = SQ res = n (ŷ i ȳ) 2 (3.71) i=1 n (ŷ i y i ) 2 (3.72) i=1 SQ tot é a soma dos quadrados totais - representa a variação da variável resposta; SQ exp é a soma dos quadrados explicada - variação da variável resposta que é explicada pelo modelo; SQ res é a soma dos quadrados dos resíduos - variação da variável resposta que não é explicada pelo modelo. Representa-se então: SQ tot = SQ exp + SQ res (3.73) O coeficiente de determinação, R 2 é definido por:

88 74 R 2 = SQ exp SQ tot = SQ tot SQ res SQ tot = 1 SQ res SQ tot (3.74) Observa-se que: O coeficiente de determinação é adimensional e seu valor está no intervalo de 0 a 1; Quanto mais próximo R 2 for da unidade, mais explicativo é o modelo utilizado. Quanto menor for a soma dos quadrados dos resíduos, mais confiável é a predição feita pelo modelo. O coeficiente de determinação representa a porcentagem dos dados que é mais próxima à curva de melhor ajuste, ou seja, é uma medida do quanto a curva de regressão representa os dados observados. O coeficiente de determinação diz o quanto melhor é a equação de regressão em detrimento da média aritmética para predição de y. Assim, um valor de coeficiente de determinação de 0, 50 indica que 50% da variação total nos valores da variável resposta (perfil sônico) pode ser predita pelas variáveis regressoras (demais curvas dos perfis). Bucheb e Rodrigues (1997) consideram valores de R 2 acima de 0, 36 são considerados satisfatórios para geração de curvas sintéticas. Os resultados obtidos Anteriormente, foram testadas e modeladas diversas equações de modelos empíricos e estatísticos para o perfil sônico no poço 1-BLV-001-BA, que já possuia o perfil sônico, o que permitiu verificar a qualidade do método utilizado. Em termos de coeficiente de determinação (R 2 ), verifica-se que as cada modelo possui uma eficiência menor ou maior, a depender do(s) perfil(s) utilizados no modelo, o intervalo utilizado e a linearidade (ou não) do mesmo. Com base nos gráficos das páginas 67 a 72, algumas conclusões podem ser obtidas: O relacionamento entre o perfil sônico e o perfil cáliper não deve ser obtido por modelo univariável, seja linear ou potência, pois a dispersão é muita e os valores de R 2 raramente se mostraram superiores a 0, 500, muito embora o aumento do diâmetro do poço tenda a aumentar o tempo de trânsito da onda acústica. O mesmo comportamente se verifica para o perfil de raios gama. Os valores de coeficiente de regressão variaram de 0, 097 para o modelo potência univariável na Formação Sergi até o máximo de 0, 516 no modelo linear univariável na Formação Itaparica.

89 75 Como era esperado, as curvas elétricas ILD e SFLA exibem um comportamento decrescente, tipo de equações na forma de potência de expoente negativo. Assim, embora os modelos lineares não se adaptem ao formato da curva, os modelos potência se ajustaram muito bem, tanto graficamente quanto em termos estatísticos: na Formação Itaparica, verifica-se na imagem da página 69 (curva laranja), que a curva do modelo potência se ajusta bem aos dados de resistividade menores do que 30 ohm m, retornando o valor de R 2 = 0, 700, uma predição satisfatória. Comparando este caso com o modelo empírico de Smits (página 48), observa-se a semelhança dos termos que multiplicam a variável ILD ou SF LA, e também nos valores dos expoentes. Embora parecidos, os dados utilizados por Waxman e Smits (1968) são de outros poços, com outras litologias e fatores ambientais. Ainda assim, pode-se concluir que o relacionamento entre o tempo de trânsito sônico e a resistividade das formações pode ser bem ajustado por um modelo semelhante ao utilizado neste trabalho. De forma geral, os modelos univariáveis relacionando o perfil de densidade com o perfil sônico resultam em dados muito dispersos e baixos valores de coeficiente de determinação. Este resultado também foi encontrado ao utilizar-se a Equação de Gardner et al. (1974). Percebe-se que nem estes modelos conseguiram ajustar bem o relacionamento entre a densidade das formações e o tempo de trânsito. Deve-se, portanto, ficar atento na geração de perfis para a construção de sismogramas sintéticos. Conforme se esperava, tendo em vista a semelhança do princípio de funcionamento dos perfis sônico e neutrônico, a modelagem utilizando o neutrônico como variável regressora apresentou bons resultados. Tanto para o modelo linear quanto o modelo potência apresentam valores altos de R 2 (próximos a 0, 800 e até atingindo o máximo de 0, 922). No entanto, devido ao comportamento semelhante, o relacionamento linear obteve melhores resultados. Os modelos multivariáveis, sejam eles lineares ou de potência, apresentam valores R 2 > 0, o que significa alta correlação entre o modelo e o perfil sônico original. Observa-se nos gráficos que seja qual for o intervalo utilizado, os modelos multivariáveis trazem os dados de sônico modelado bem próximos ao sônico real. O grande lance do modelo multivariável é que ele pode associar aos perfis de melhor correlação (como o neutrônico) coeficientes maiores em relação aos demais perfis. Assim, o peso de cada variável será dado por sua relação de ajuste com os dados. A figura 3.44 a seguir mostra em forma de perfil a semelhança do sônico real com os sônicos sintéticos que melhor modelaram o perfil sônico para o primeiro poço, tomando-se apenas o intervalo 2 (Formação Itaparica), somente a título de ilustração. Observa-se a semelhança dos valores sintéticos com o sônico original, e fica determinado que essas curvas serão as utilizadas para a modelagem de tempos de trânsito nos outros poços.

90 76 Figura 3.44: Gráfico com as curvas do sônico - tanto aquelas modeladas com maior valor de R 2 quanto o sônico original. O intervalo utilizado foi o correspondente à formação Itaparica.

91 CAPÍTULO 4 Modelagem Para os Demais Poços As equações modeladas no capítulo 3 para o perfil sônico no poço 1-BLV-001-BA encontram-se sumarizadas nas tabelas das páginas seguintes, onde constam também o seu rótulo, a página onde aparecem, e seu valor de coeficiente de determinação (R 2 ). Neste momento, as equações que forneceram as melhores respostas (medidas em termos do coeficiente de determinação (R 2 ) serão utilizadas para a modelagem do perfil sônico sintético para os poços 7-BLV-004-BA e 7-BLV-005-BA. Dessa forma, os modelos escolhidos para a geração das curvas para os demais poços foram: O modelo univariável linear - com o perfil neutrônico como variável regressora. O modelo multivariável linear - com os demais perfis como variáveis regressoras. O modelo multivariável não-linear - com os demais perfis como variáveis regressoras. 77

92 78 Modelos Empíricos Rótulo, Página Equação Formação R 2 Observação 3.2, 29 t = φ t fluido + (1 φ) t matriz Candeias 0,833 Equação de Wyllie - porosidade φ n Candeias 0,442 Equação de Wyllie - porosidade φ d Itaparica 0,799 Equação de Wyllie - porosidade φ n Itaparica 0,057 Equação de Wyllie - porosidade φ d Sergi 0,922 Equação de Wyllie - porosidade φ n Sergi 0,489 Equação de Wyllie - porosidade φ d [ 3.4, 36 t = φ t fluido + (1 φ)2 t matriz ] 1 Candeias 0,829 Equação de Raymer - porosidade φ n Candeias 0,387 Equação de Raymer - porosidade φ d Itaparica 0,789 Equação de Raymer - porosidade φ n Itaparica 0,057 Equação de Raymer - porosidade φ d Sergi 0,914 Equação de Raymer - porosidade φ n Sergi 0,039 Equação de Raymer - porosidade φ d ( ) 4 3.6, 42 t = 0,23 Candeias 0,344 Equação de Gardner ρ b Itaparica 0,056 Equação de Gardner Sergi 0,382 Equação de Gardner 3.7, 48 t = 91R 0,15 t Candeias 0,596 Equação de Smits Itaparica 0,640 Equação de Smits Sergi 0,513 Equação de Smits Modelos Estatísticos - Formação Candeias Rótulo, Página Equação Formação R 2 Observação 3.20, 62 t = 10, , 069 CAL Candeias 0,450 Regressão Univariável Linear 3.21, 63 t = 9, 075 CAL 0,950 Candeias 0,468 Regressão Univariável Não-Linear 3.22, 63 t = 41, , 687 GR Candeias 0,362 Regressão Univariável Linear 3.23, 63 t = 15, 861 GR 0,400 Candeias 0,362 Regressão Univariável Não-Linear 3.24, 63 t = 83, 294 0, 248 ILD Candeias 0,203 Regressão Univariável Linear 3.25, 63 t = 110, 830 ILD 0,152 Candeias 0,627 Regressão Univariável Não-Linear 3.26, 63 t = 81, 313 0, 054 SF LA Candeias 0,117 Regressão Univariável Linear 3.27, 63 t = 108, 940 SF LA 0,124 Candeias 0,603 Regressão Univariável Não-Linear 3.28, 63 t = 207, , 334 RHOB Candeias 0,442 Regressão Univariável Linear 3.29, 63 t = 321, 795 RHOB 1,549 Candeias 0,421 Regressão Univariável Não-Linear 3.30, 63 t = 54, , 146 NP HI Candeias 0,833 Regressão Univariável Linear 3.31, 63 t = 40, 699 NP HI 0,225 Candeias 0,421 Regressão Univariável Não-Linear 3.32, 63 t = 38, , 486 CAL + 0, 007 GR 0, 026 ILD +0, 004 SF LA+4, 422 RHOB + 1, 139 NP HI 3.33, 63 t = 45, 290 CAL 0,136 GR 0,025 ILD 0,094 SF LA 0,042 RHOB 0,052 NP HI 0, , 63 t = 45, 907 0, 008 GR 0, 019 ILD + 3, 553 RHOB + 1, 175 NP HI Candeias 0,736 Regressão Multivariável Linear Candeias 0,796 Regressão Multivariável Não-Linear Candeias 0,835 Regressão Multivariável Linear 3.35, 63 t = 69, 343 GR 0,039 ILD 0,058 RHOB 0,093 NP HI 0,170 Candeias 0,793 Regressão Multivariável Não-Linear

93 79 Modelos Estatísticos - Formação Itaparica Rótulo, Página Equação Formação R 2 Observação 3.36, 64 t = 51, , 098 CAL Itaparica 0,451 Regressão Univariável Linear 3.37, 64 t = 33, 684 CAL 0,332 Itaparica 0,457 Regressão Univariável Não-Linear 3.38, 64 t = 64, , 264 GR Itaparica 0,519 Regressão Univariável Linear 3.39, 64 t = 48, 166 GR 0,125 Itaparica 0,489 Regressão Univariável Não-Linear 3.40, 64 t = 83, 700 0, 932 ILD Itaparica 0,400 Regressão Univariável Linear 3.41, 64 t = 102, 690 ILD 0,162 Itaparica 0,639 Regressão Univariável Não-Linear 3.42, 64 t = 82, 654 0, 715 SF LA Itaparica 0,392 Regressão Univariável Linear 3.43, 64 t = 100, 410 SF LA 0,147 Itaparica 0,705 Regressão Univariável Não-Linear 3.44, 64 t = 128, , 699 RHOB Itaparica 0,057 Regressão Univariável Linear 3.45, 64 t = 138, 645 RHOB 0,647 Itaparica 0,054 Regressão Univariável Não-Linear 3.46, 64 t = 64, , 614 NP HI Itaparica 0,799 Regressão Univariável Linear 3.47, 64 t = 53, 187 NP HI 0,128 Itaparica 0,763 Regressão Univariável Não-Linear 3.48, 64 t = 99, 39 0, 346 CAL + 0, 036 GR 0, 605 ILD + 0, 245 SF LA 11, 576 RHOB + 0, 542 NP HI 3.49, 64 t = 104, 713 CAL 0,011 GR 0,003 ILD 0,028 SF LA 0,056 RHOB 0,385 NP HI 0, , 65 t = 103, 473 0, 037 GR 0, 302 ILD 14, 390 RHOB + 0, 466 NP HI Itaparica 0,859 Regressão Multivariável Linear Itaparica 0,865 Regressão Multivariável Não-Linear Itaparica 0,827 Regressão Multivariável Linear 3.51, 65 t = 97, 051 GR 0,009 ILD 0,077 RHOB 0,399 NP HI 0,082 Itaparica 0,861 Regressão Multivariável Não-Linear Modelos Estatísticos - Formação Sergi Rótulo, Página Equação Formação R 2 Observação 3.52, 65 t = 19, , 102 CAL Sergi 0,519 Regressão Univariável Linear 3.53, 65 t = 14, 408 CAL 0,692 Sergi 0,467 Regressão Univariável Não-Linear 3.54, 65 t = 66, , 183 GR Sergi 0,102 Regressão Univariável Linear 3.55, 65 t = 51, 451 GR 0,097 Sergi 0,097 Regressão Univariável Não-Linear 3.56, 65 t = 88, 804 2, 794 ILD Sergi 0,430 Regressão Univariável Linear 3.57, 65 t = 100, 700 ILD 0,212 Sergi 0,552 Regressão Univariável Não-Linear 3.58, 65 t = 88, 196 2, 209 SF LA Sergi 0,468 Regressão Univariável Linear 3.59, 65 t = 104, 752 SF LA 0,216 Sergi 0,682 Regressão Univariável Não-Linear 3.60, 65 t = 232, , 214 RHOB Sergi 0,489 Regressão Univariável Linear 3.61, 65 t = 394, 389 RHOB 1,831 Sergi 0,471 Regressão Univariável Não-Linear 3.62, 65 t = 61, , 696 NP HI Sergi 0,922 Regressão Univariável Linear 3.63, 65 t = 53, 741 NP HI 0,143 Sergi 0,813 Regressão Univariável Não-Linear 3.64, 66 t = 67, 077+0, 766 CAL 0, 032 GR 0, 547 ILD + 0, 019 SF LA 3, 122 RHOB + 0, 819 NP HI 3.65, 66 t = 42, 462 CAL 0,278 GR 0,009 ILD 0,057 SF LA 0,022 RHOB 0,329 NP HI 0, , 66 t = 82, 501 0, 023 GR 0, 438 ILD 6, 641 RHOB + 0, 875 NP HI Sergi 0,943 Regressão Multivariável Linear Sergi 0,895 Regressão Multivariável Não-Linear Sergi 0,939 Regressão Multivariável Linear 3.67, 66 t = 105, 925 GR 0,041 RHOB 0,713 NP HI 0,092 Sergi 0,861 Regressão Multivariável Não-Linear

94 Modelagem para o poço 7-BLV-004-BA Segundo o relatório geológico do poço, este sofreu um desvio de 350 metros na direção N 76,24 W, fazendo com que uma falha fosse atravessada, o que causou a omissão das demais formações. O intervalo com dados completos para a modelagem é: Membro Gomo da Formação Candeias: 1260 a 1473 metros. As equações para a modelagem do sônico são: t Candeias = 54, , 146 NP HI (4.1) t Candeias = 38, , 486 CAL + 0, 007 GR 0, 026 ILD + 0, 004 SF LA +4, 422 RHOB + 1, 139 NP HI (4.2) t Candeias = 45, 290 CAL 0,136 GR 0,025 ILD 0,094 SF LA 0,042 RHOB 0,052 NP HI 0,167 (4.3) As curvas sintéticas para o perfil sônico do poço 7-BLV-004-BA encontram-se na figura a seguir. Observar que as curva gerada pela regressão linear multivariável acompanha aquela gerada pela regressão linear univariável em quase toda a profundidade do poço. Já a curva gerada pela regressão não-linear multivariável fica deslocada para tempos menores em relação às outras, mas mantém o mesmo comportamento das demais.

95 Figura 4.1: Gráfico com as curvas do sônico modeladas para o poço 7-BLV-004-BA, Formação Candeias 81

96 Modelagem para o poço 7-BLV-005-BA Este poço possui menos dados de perfis disponíveis, então os perfis utilizados na análise multivariável são: GR, ILD, RHOB e NPHI. O intervalo com dados completos para a modelagem é: Membro Gomo da Formação Candeias: 1319 a 1509 metros. Formação Itaparica: 1605 a 1644 metros. Formação Sergi: 1663 a 1678 metros. As equações utilizadas na modelagem serão: t Candeias = 54, , 146 NP HI (4.4) t Candeias = 45, 907 0, 008 GR 0, 019 ILD +3, 553 RHOB + 1, 175 NP HI (4.5) t Candeias = 69, 343 GR 0,039 ILD 0,058 RHOB 0,093 NP HI 0,170 (4.6) t Itaparica = 64, , 614 NP HI (4.7) t Itaparica = 103, 473 0, 037 GR 0, 302 ILD 14, 390 RHOB + 0, 466 NP HI (4.8) t Itaparica = 97, 051 GR 0,009 ILD 0,077 RHOB 0,399 NP HI 0,082 (4.9) t Sergi = 61, , 696 NP HI (4.10) t Sergi = 82, 501 0, 023 GR 0, 438 ILD

97 83 6, 641 RHOB + 0, 875 NP HI (4.11) t Sergi = 105, 925 GR 0,041 ILD 0,046 RHOB 0,713 NP HI 0,092 (4.12) As curvas sintéticas para o perfil sônico do poço 7-BLV-005-BA nos intervalos especificados encontram-se a seguir. Observar a diferença entre o acoplamento das curvas para cada formação: na Formação Candeias, as três curvas parecem se sobrepor; na Formação Itaparica, as curvas geradas pela regressão linear univariável e pela regressão não-linear multivariável ficam parecidas, enquanto a terceira (gerada pela regressão linear multivariável) diverge um pouco; na Formação Sergi, as três curvas se separam, embora ainda mantenham o mesmo comportamento.

98 Figura 4.2: Gráfico com as curvas do sônico modeladas para o poço 7-BLV-005-BA, Formação Candeias 84

99 Figura 4.3: Gráfico com as curvas do sônico modeladas para o poço 7-BLV-005-BA, Formação Itaparica 85

100 Figura 4.4: Gráfico com as curvas do sônico modeladas para o poço 7-BLV-005-BA, Formação Sergi 86

101 CAPÍTULO 5 Conclusões As equações empíricas e os modelos de regressão para a geração de curvas sintéticas são largamente utilizadas na indústria do petróleo, em função da fácil aplicabilidade e dos resultados satisfatórios produzidos. De qualquer forma, deve-se sempre verificar se o modelo é consistente, tanto com a realidade geológica quanto em termos estatísticos. Não se deve perder de mente que por se tratar de perfis geofísicos de poços, as curvas sintéticas precisam passar pelo processo de avaliação de qualidade e interpretação. O presente trabalho teve como objetivo proporcionar um retorno ao Projeto Campo Escola, devolvendo uma série de dados sintéticos a partir dos dados disponibilizados. Os poços 7-BLV-004-BA e 7-BLV-005-BA, que antes não dispunham de dados de perfis sônicos, passam a contar com os dados modelados neste trabalho, servindo de base para futuras interpretações, cálculos de porosidade e, principalmente, para a calibração sísmica. Na utilização de equações empíricas para o perfil sônico, percebeu-se que não basta buscar na literatura uma fórmula pronta sem antes testar a sua validade e aplicabilidade nos dados, acoplando a ela novos termos e variáveis, se necessário. Na modelagem dos perfis sônicos, a aplicação do Método dos Mínimos Quadrados apresentou resultados diversos, porém fornecendo altos valores de coeficiente de determinação (R 2 ) ao se tratar de modelos univariáveis (linear ou potência) envolvendo o perfil neutrônico ou os modelos multivariáveis (também lineares ou de potência) envolvendo toda a gama de perfis. Os resultados confirmaram a grande aproximação e semelhança do princípio de funcionamento do perfil sônico com o perfil neutrônico, como foi previsto desde o início, na avaliação do acoplamento entre as variáveis regressoras e a variável dependente, no item A falta de consistência na modelagem usando o perfil de densidade permite concluir que os dados devem ser corrigidos pelo efeito de diâmetro do poço. Já os perfis elétricos SFLA e ILD também apresentaram melhor aproximação para os modelos de potência, que reproduzem aproximadamente a geometria da curva exibida, em detrimento dos modelos lineares. Os modelos de regressão foram comparados e os que apresentaram melhores coeficientes de determinação foram escolhidos para gerar os dados sintéticos para os poços 7-BLV-004- BA e 7-BLV-005-BA, para o mesmo Campo de Bela Vista. Esses poços agora contam com 87

102 88 a curva de sônico para serem utilizadas em aplicações/interpretações futuras. 5.1 Recomendações As curvas de porosidade (sônico, densidade e neutrônico) utilizados neste trabalho foram previamente corrigidos pelo efeito da argilosidade, lançando mão das fórmulas apresentadas no Capítulo 2, páginas 19, 20, 26. Outras correções ambientais, que também deveriam ter sido realizadas, de modo a obter dados mais confiáveis, não puderam ser feitas devido à falta de programas específicos. Uma correção importante para a modelagem utilizando o perfil de densidade é a correção ambiental pelo diâmetro do poço, do qual a ferramenta sofre grande influência. Outra sugestão para trabalhos futuros é a correção das porosidades pelo efeito do hidrocarboneto, conforme os recuperados nos testes de formação, se gás ou líquido. Estas informações podem ser checadas na pasta do poço, que contém o relatório do poço. Outros métodos de modelagem podem ser utilizados, com outros parâmetros de regressão e outras análises estatísticas dos erros de predição. As aplicações do perfil sônico, como cálculo de porosidades, calibração sísmica e estudo de AVO podem ser feitos para comparar a utilização de um sônico original e um sônico sintético, a fim de testar a aplicabilidade dos dados modelados.

103 Agradecimentos Considerando que este trabalho de graduação é resultado de um processo que começou quando meus pais sairam em busca de minha primeira escola, o capítulo de agradecimentos poderia ser o maior deste trabalho. Para não cometer a injustiça de não citar alguém, quero dedicar de antemão a minha sincera gratidão a todas as pessoas que participaram desta jornada comigo. Devo agradecer em especial a meus pais, Amparo e Cristóvão, que têm me visto errar, crescer, acertar, e seguir em frente, sempre me ensinando valores de respeito e honestidade; A Rafa, meu irmão, por se fazer sempre disposto a me ajudar; A meus tios Heitor e Haidê, e meu primo Artur, que vêm participando ativamente do meu processo de maturação pessoal e profissional; A Camila e Clarinha, sempre me bombardeando de carinho e atenção; À minhas avós Cece (in memoriam) e Tetê por toda a dedicação e amor; A Tamires pela força, incentivo, amizade e carinho sempre constantes em minha vida; A Thyago por me fazer acreditar em meu potencial e se fazer presente desde a angústia do estudo para as provas até as celebrações pelas vitórias; A Carla, por ter me aturado e compreendido quando estive mais chato e distante; Ao meu estimado orientador e mestre, Girão Nery, pela paciência, pelo incentivo e por todas as lições ensinadas; Aos professores Roberto Rosa, Cícero Paixão e Wilson Figueiró pelas sugestões; A todos os professores que participaram de minha formação, em especial aos professores Carol Batista (in memoriam) e Mário Lins, por toda a confiança em mim depositada; A Valdir Rocha, Manoel Gontijo e Rodrigo Andrade por toda a experiência transmitida; A todos meus colegas e aos funcionários do IGEO e CPGG pelo ambiente acadêmico; Ao PIBIC e ao PRH-ANP pelo incentivo na forma de bolsas de estudos; Devo falar ainda de duas pessoas que me ajudaram bastante ao longo do curso e especialmente nesta reta final: Ana Duó, com todos seus cuidados; e Jacira Freitas, professora, amiga, e mãezona da turma. Sem vocês nada disso teria sido possível. Muito obrigado! 89

104 APÊNDICE A Desenvolvimento das Equações Normais O modelo será representado por operações matriciais, para o caso multivariável, que pode ser facilmente reduzido ao caso univariável. O número n representa o número de amostras (em cada perfil) e o número k o número de variáveis independentes (perfis de regressão). y = Xa + e (A.1) y = y 1 y 2. (A.2) y n X = 1 x 1,1 x 1,2... x 1,k 1 x 2,1 x 2, x 2,k (A.3) 1 x n,1 x n,2... x n,k a = α 0 α 1 α 2. (A.4) α k e = e 1 e 2. [ = y X ] [ 1 a ] (A.5) e n Onde, 90

105 91 O vetor y representa as medidas da variável dependente, neste caso, os dados do perfil sônico original; A matriz X reúne as informações relativas à(s) variável(is) de predição, sendo constituida por k + 1 colunas. A primeira coluna consiste somente do elemento 1 (correspondente ao termo constante) e o elemento x i,j representa a i-ésima amostra do perfil representado pelo vetor x j ; O vetor a representa as constantes de predição do modelo; O vetor e representa o erro associado a cada posição, ou seja, é o desvio entre os valores originais e os valores modelados. O critério de mínimos quadrados escolhe os valores α j (0 j k + 1) tal que a soma dos quadrados dos desvios seja mínimo. Para tal, fica definido o número real de variável vetorial Q(a), também chamado de forma quadrática, tal que: n Q = e 2 i = e T e i=1 [ ] [ Q = (y Xa) T y T (y Xa) = 1 a T X T ] [ y X ] [ 1 a ] (A.6) (A.7) Onde o símbolo T indica a matriz transposta. A condição de mínimo implica que o vetor â seja a solução para a em: Q a (â) = 0 (A.8) [ Q = 1 α 0 α 1... ] α k y T x T 0 x T 1. [ y x 0 x 1... ] x k 1 α 0 α 1. (A.9) x T k α k [ Q = 1 α 0 α 1... ] α k y T y y T x 0 y T x 1... y T x k x T 0y x T 0x 0 x T 0x 1... x T 0x k x T 1y x T 1x 0 x T 1x 1... x T 1x k α 0 α 1. (A.10) x T k y xt k x 0 x T k x 1... x T k x k α k

106 92 Ou seja, a derivada parcial de Q em relação a cada parâmetro α j deve ser nula. Assim, multiplicando-se as matrizes, separando os termos semelhantes, e derivando-os em relação ao parâmetro α j correspondente, obtém-se: Q α 0 Q α 1. Q α k = 2 x T 0y x T 0x 0 x T 0x 1... x T 0x k x T 1y x T 1x 0 x T 1x 1... x T 1x k..... x T k y xt k x 0 x T k x 1... x T k x k 1 α 0 α 1. α k = (A.11) Rearrumando a equação acima, obtém-se: x T 0x 0 x T 0x 1... x T 0x k x T 1x 0 x T 1x 1... x T 1x k.... x T k x 0 x T k x 1... x T k x k α 0 α 1. α k = x T 0y x T 1y. x T k y (A.12) Chega-se então à Equação Normal: (X T X)a = X T y (A.13) O objetivo final é encontrar o vetor a com os coeficientes da regressão que minimizam a soma dos quadrados dos desvios: a = (X T X) 1 X T y (A.14) É este vetor a que os programas estatísticos devem calcular para gerar as equações de regressão e plotar os gráficos.

107 Referências Bibliográficas Archie, G. E. (1942) The electrical resistivity log as an aid in determining some reservoir characteristics, Petroleum Transactions of AIME, pp Boore, D. M. (2007) Some thoughts on relating density to velocity, Unpublished Notes. Bucheb, J. A. e Rodrigues, F. S. (1997) Aspectos práticos relativos ao procedimento de geração de curvas sintéticas de perfis por meio de regressão, Boletim de Geociências da Petrobras, 11: Castagna, J. P.; Batzle, M. L. e Kan, T. K. (1993) Offset dependent reflectivity - theory and practice of avo analysis, In: Rock physics: the link between rock properties and AVO response, Investigations in Geophysics Series, 8, Society of Exploration Geophysicists. Chagas, E. S.; Russo, S. L. e Simon, V. H. (2010) Geração de perfil sônico sintético em poços de petróleo através dos modelos de regressão não lineares usando a profundidade como variável regressora, Scientia Plena, 6(12). Chopra, P.; Éva Papp e Gibson, D. (2000) Knowledge Creation Diffusion Utilization, vol. 1, cap. Geophysical Well Logging, pp , Academic Press Inc. Clavier, C.; Poupon, A.; Dumanoir, J.; Gaymard, R. e Misk, A. (1970) Log analysis of sandshale sequences - a systematic approach, Journal of Petroleum Technology, 22: da Cruz, M. M. (2003) Aplicação de perfilagem geofísica e sísmica na caracterização da faciologia do reservatório de Namorado, Universidade Federal Fluminense - UFF, Niterói. D Abbadia, M. R. I. (1994) Processo de geração de perfil sônico sintético com o suporte de regressões lineares, Relatório técnico, PETROBRAS, Salvador, BA. Dvorkin, J. e Nur, A. (2001) Time-average equation revisited, Department of Geophysics, Stanford University, Stanford. Eberhart-Phillips, D.; Han, D.-H. e Zoback, M. D. (1991) Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone, Geophysics, 56(12): Ellis, D. V. e Singer, J. M. (2008) Well Logging For Well Scientists, Springer. Faust, L. Y. (1951) Seismic velocity as a function of depth and geologic time, Geophysics, 16(2): Faust, L. Y. (1989) A velocity function including lithologic variation, Geophysics, 18(2):

108 94 Ferreira (Org.), D. F. (2009) Produção de Petróleo e Gás em Campos Marginais, Um Nascente Mercado no Brasil, Komedi, Campinas-SP. Gabaglia, G. P. R. e Milani, E. J. (1990) Origem e Evolução de Bacias Sedimentares, Gávea, Rio de Janeiro. Gardner, G. H. F.; Gardner, L. W. e Gregory, A. R. (1974) Formation velocity and density; the diagnostic basics for stratigraphic traps., Geophysics, 39: Janke, S. J. e Tinsley, F. (2005) Introduction to linear models and statistical inference, Wiley. Júnior, O. G. S. (1992) Análise de dados multivariados, uma eficiente ferramenta para descrição e caracterização de reservatórios, 6(3/4): Kleinbaum, D. G. (1998) Applied regression analysis and other multivariable methods, Pacific Grove : Duxbury Press, 3 o edic.. Klimentos, T. (1991) The effects of porosity-permeability-clay content on the velocity of compressional waves, Geophysics, 54(1): Larionov, V. V. (1969) Borehole Radiometry, Nedra, Moscow. Leite, M.; Carrasquilha, A. e da Silva, J. (2008) Simulação do perfil sônico a partir dos perfis de raios fama e de resistividade, Revista Brasileira de Geofísica, 26(2): de Lima, K. T. P. (2005) Utilização de Métodos Sísmicos, Perfilagem e Testemunhos de Poços para Caracterização dos Turbiditos da Formação Urucutuca da Bacia de Almada (BA), Universidade Estadual do Norte Fluminense - UENF, Macaé - RJ. Magnavita, L. P.; da Silva, R. R. e Sanches, C. P. (2005) Guia de campo da bacia do recôncavo, ne do brasil - roteiros geológicos, Boletim de Geociências da Petrobras, 13(2): Mavko, G.; Mukerji, T. e Dvorkin, J. (2009) The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media, Cambridge University Press, 2 o edic.. Miller, S. L. M. e Stewart, R. R. (1990) Effects of lithology, porosity and shaliness on p- and s-wave velocities from sonic logs, Geophysics, 26(1): Nery, G. G. (2009) Perfilagem geofísica de poços, In: Hidrogeologia - Conceitos e Aplicações, cap. 6.2, CPRM, 3 o edic.. de Oliveira Alves Augusto, F. e Martins, J. L. (2009) A well-log regression analysis for p- wave velocity prediction in the namorado oil field, campos basin, Revista Brasileira de Geofísica, 27(4). de Oliveira Duarte, O. (2003) Dicionário Enciclopédico Ingles Português de Geofísica e Geologia, Sociedade Brasileira de Geofísica. Porsani, M. J. (2009) O método dos mínimos quadrados, Notas de Aula.

109 95 Raymer, L. L.; Hunt, E. R. e Gardner, J. S. (1980) An improved sonic transit time-to-porosity transform, Trans. Soc. Prof. Well Log Analysts, 21st Annual Logging Symposium. Rolon, L.; Mohaghegh, S.; Ameri, S.; Gaskari, R. e McDaniel, B. (2005) Developing synthetic well logs for the upper devonian units in southern pennsylvania, Society of Petroleum Engineers. Rosa, A. L. R. (2010) Análise do Sinal Sísmico, Sociedade Brasileira de Geofísica - SBGf, Rio de Janeiro. Russo, S. L.; Camargo, M. E. e Simon, V. H. (2010) Avaliação de perfis sônicos sintéticos em poços de petróleo perfurados nas unidades geológicas pertencentes a bacia sedimentar sergipe-alagoas, Revista Gestão Industrial, 6(1): Santos, R. A. (2010) Interpretação e modelagem de perfis geofísicos de poço em campos marginais, Trabalho de graduação, Universidade Federal da Bahia, Salvador, BA. Schon, J. H. (1996) Physical Properties of rocks: fundamentals and principles of petrophysics, vol. 18 de Handbook of Geophysical Exploration - Seismic Exploration, Pergamon. Serra, O. (1984) Fundamentals of Well Log Interpretation, vol. 1 e 2, Elvesier, Amsterdam. Services, S. E. (1989) Schlumberger Manual Log Principles/Applications, New York. Sheriff, R. E. (2002) Encyclopedic Dictionary of Applied Geophysics (Geophysical References No. 13), Society Of Exploration Geophysicists, Tulsa, Oklahoma, 4 o edic.. da Silva, O. B.; Caixeta, J. M.; da Silva Milhomem, P. e Kosin, M. D. (2007) Bacia do recôncavo, Boletim de Geociências da Petrobras, 15(2). SSI, S. S. I. (1997) LOGCALD II Newsletter, Denver, Colo. Stieber, S. J. (1970) Pulsed neutron capture log evaluation in the louisiana gulf coast, SPE Annual Meeting, Houston. Telford, W. M.; Geltard, L. P. e Sheriff, R. E. (1990) Applied Geophysics, Cambridge University Press. Thomas (Org.), J. E. (2004) Fundamentos de Engenharia de Petróleo, Interciência, Rio de Janeiro. Tiwary, D. N.; Singh, B.; Arasu, R. T.; Rhaman, M.; Saha, P. e Chandra, M. (2004) Travel time modeling using gamma ray and resistivity log in sand shale sequence of gandhar field, 5th Conference and Exposition on Petroleum Geophysics, Hyderabad, pp Walls, J.; Dvorkin, J. e Carr, M. (2004) Well logs and rock physics in seismic reservoir characterization, Houston, Texas. Waxman, M. e Smits, L. (1968) Electrical conductivities in oil-bearing shaly sands, SPE Journal, 8(2).

110 96 Wyllie, M. R. J.; Gregory, A. R. e Gardner, L. W. (1956) Elastic wave velocities in heterogeneous and porous media, Geophysics, 21(1): Yadav, L.; Prasad, K. K. e Bhattacharya, A. N. (2004) Generalised sonic porosity transform for upper assam oil fields, 5th Conference and Exposition on Petroleum Geophysics, India, pp Zapparolli, L. H. (1991) Confecção da curva sintética do perfil sônico a partir da regressão de dados de perfis, Informe técnico, PETROBRAS, Natal.

111 ANEXO I Cartas Estratigráficas da Bacia do Recôncavo Figura I.1: Carta Estratigráfica da Bacia do Recôncavo. Fonte: Silva et al. (2007) 97

MODELAGEM DE TEMPOS DE TRÂNSITO SINTÉTICOS EM POÇOS DO CAMPO DE QUIAMBINA, BACIA DO RECÔNCAVO

MODELAGEM DE TEMPOS DE TRÂNSITO SINTÉTICOS EM POÇOS DO CAMPO DE QUIAMBINA, BACIA DO RECÔNCAVO UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE GEOCIÊNCIAS CURSO DE GRADUAÇÃO EM GEOFÍSICA GEO213 TRABALHO DE GRADUAÇÃO MODELAGEM DE TEMPOS DE TRÂNSITO SINTÉTICOS EM POÇOS DO CAMPO DE QUIAMBINA, BACIA DO RECÔNCAVO

Leia mais

Caracterização litográfica de reservatório, Vera Cruz BA Kesia de Souza Braun* (UFVJM); Carlos Henrique Alexandrino (UFVJM)

Caracterização litográfica de reservatório, Vera Cruz BA Kesia de Souza Braun* (UFVJM); Carlos Henrique Alexandrino (UFVJM) Kesia de Souza Braun* (UFVJM); Carlos Henrique Alexandrino (UFVJM) Copyright 2016, SBGf - Sociedade Brasileira de Geofísica Este texto foi preparado para a apresentação no, Ouro Preto, 25 a 27 de outubro

Leia mais

PERFILAGEM DE POÇOS DE PETRÓLEO. José Eduardo Ferreira Jesus Eng. de Petróleo Petrobras S.A.

PERFILAGEM DE POÇOS DE PETRÓLEO. José Eduardo Ferreira Jesus Eng. de Petróleo Petrobras S.A. PERFILAGEM DE POÇOS DE PETRÓLEO José Eduardo Ferreira Jesus Eng. de Petróleo Petrobras S.A. 1 Conceito É uma operação realizada após a perfuração, a cabo ou com coluna (toolpusher), ou durante a perfuração

Leia mais

CARACTERIZAÇÃO DE ZONAS PRODUTIVAS E CORRELAÇÃO DE POÇOS A PARTIR DA INTERPRETAÇÃO DE PERFIS ELÉTRICOS

CARACTERIZAÇÃO DE ZONAS PRODUTIVAS E CORRELAÇÃO DE POÇOS A PARTIR DA INTERPRETAÇÃO DE PERFIS ELÉTRICOS CARACTERIZAÇÃO DE ZONAS PRODUTIVAS E CORRELAÇÃO DE POÇOS A PARTIR DA INTERPRETAÇÃO DE PERFIS ELÉTRICOS Marcus Vinícius Nunes Lima Rocha; Larissa Rafaella Barbosa de Araújo; Fabrícia Medeiros Santandrea;

Leia mais

BACIA DO RECÔNCAVO. Paulo de Tarso Araripe Superintendência de Definição de Blocos

BACIA DO RECÔNCAVO. Paulo de Tarso Araripe Superintendência de Definição de Blocos Paulo de Tarso Araripe Superintendência de Definição de Blocos Localização Bacia do Tucano Bacia do Recôncavo Generalidades Área: 10.200 km 2 Origem: Relacionada a esforços distensivos que atuaram no Gondwana

Leia mais

MODELAGEM DAS ZONAS DE FLUXO USANDO AS TÉCNICAS: ZONEAMENTO ESTATÍSTICO E FZI

MODELAGEM DAS ZONAS DE FLUXO USANDO AS TÉCNICAS: ZONEAMENTO ESTATÍSTICO E FZI MODELAGEM DAS ZONAS DE FLUXO USANDO AS TÉCNICAS: ZONEAMENTO ESTATÍSTICO E FZI Marcella Mayara Costa Araújo Aragão (1); José Agnelo Soares (Orientador) Universidade Federal de Campina Grande, marcella.may@hotmail.com

Leia mais

3 Caracterização do Sítio Experimental

3 Caracterização do Sítio Experimental Caracterização do Sítio Experimental 3 Caracterização do Sítio Experimental 3.1 Localização Os trabalhos de campo foram realizados no município de São Sebastião do Passé, a nordeste do estado da Bahia,

Leia mais

ESTIMATIVA DE RESERVA ATRAVÉS DE PERFIS GEOFÍSICOS DE POÇOS DO CAMPO DE NAMORADO BACIA DE CAMPOS

ESTIMATIVA DE RESERVA ATRAVÉS DE PERFIS GEOFÍSICOS DE POÇOS DO CAMPO DE NAMORADO BACIA DE CAMPOS ESTIMATIVA DE RESERVA ATRAVÉS DE PERFIS GEOFÍSICOS DE POÇOS DO CAMPO DE NAMORADO BACIA DE CAMPOS V. F. DORNELAS 1 e C. A. M. da SILVA 2 1 Universidade Federal do Espírito Santo, Engenharia de Petróleo

Leia mais

DETERMINAÇÃO DA POROSIDADE DAS ROCHAS

DETERMINAÇÃO DA POROSIDADE DAS ROCHAS Escola Politécnica da Universidade de São Paulo Departamento de Engenharia de Minas e de Petróleo DETERMINAÇÃO DA POROSIDADE DAS ROCHAS PMI 1673 - Mecânica de Fluidos Aplicada a Reservatórios Prof. Eduardo

Leia mais

ESTUDO DAS GEOPRESSÕES APLICADAS AO ASSENTAMENTO DAS SAPATAS DE REVESTIMENTO NA BACIA DO SOLIMÕES

ESTUDO DAS GEOPRESSÕES APLICADAS AO ASSENTAMENTO DAS SAPATAS DE REVESTIMENTO NA BACIA DO SOLIMÕES ESTUDO DAS GEOPRESSÕES APLICADAS AO ASSENTAMENTO DAS SAPATAS DE REVESTIMENTO NA BACIA DO SOLIMÕES R.P.CONTE¹, C.A.S PINTO² e S.R.M SARKIS³ 1 Universidade Federal do Amazonas, Faculdade de Tecnologia, Departamento

Leia mais

COMPLETAÇÃO DO POÇO Z ATRAVÉS DA INTERPRETAÇÃO DE PERFIS ELÉTRICOS

COMPLETAÇÃO DO POÇO Z ATRAVÉS DA INTERPRETAÇÃO DE PERFIS ELÉTRICOS COMPLETAÇÃO DO POÇO Z ATRAVÉS DA INTERPRETAÇÃO DE PERFIS ELÉTRICOS Ianara Bomfim da Luz (1); José Aldo Rodrigues da Silva Filho (2); Marcela Morgana Bonifácio Chaveiro (3); Vanessa Limeira Azevedo Gomes

Leia mais

Introdução. Aspectos geológicos. Área de Bom Lugar

Introdução. Aspectos geológicos. Área de Bom Lugar Aviso importante Área de Bom Lugar A utilização desses dados e informações é de responsabilidade exclusiva de cada usuário, não podendo ser imputada à Agência Nacional do Petróleo, Gás Natural e Biocombustíveis

Leia mais

Figura 1 Localização do pré-sal no Brasil Fonte: Petrobras (c2012).

Figura 1 Localização do pré-sal no Brasil Fonte: Petrobras (c2012). 1 Introdução As reservas mundiais de petróleo e gás em grande parte estão situadas em reservatórios constituídos por rochas carbonáticas. Essas rochas formadas principalmente de calcários e dolomitas (carbonatos

Leia mais

PROPOSTA DE REVISÃO ESTRATIGRÁFICA E ASPECTOS HIDROGEOLÓGICOS DO GRUPO URUCUIA NA BACIA SANFRANCISCANA.

PROPOSTA DE REVISÃO ESTRATIGRÁFICA E ASPECTOS HIDROGEOLÓGICOS DO GRUPO URUCUIA NA BACIA SANFRANCISCANA. PROPOSTA DE REVISÃO ESTRATIGRÁFICA E ASPECTOS HIDROGEOLÓGICOS DO GRUPO URUCUIA NA BACIA SANFRANCISCANA. Paulo Henrique Prates Maia & Zoltan Romero Cavalcante Rodrigues 1- Introdução Ø Durante a evolução

Leia mais

IDENTIFICAÇÃO DE BASALTOS E DIABÁSIOS EM POÇOS EXPLORATÓRIOS DE PETRÓLEO UTILIZANDO PERFIS DE DENSIDADE E FATOR FOTOELÉTRICO

IDENTIFICAÇÃO DE BASALTOS E DIABÁSIOS EM POÇOS EXPLORATÓRIOS DE PETRÓLEO UTILIZANDO PERFIS DE DENSIDADE E FATOR FOTOELÉTRICO IDENTIFICAÇÃO DE BASALTOS E DIABÁSIOS EM POÇOS EXPLORATÓRIOS DE PETRÓLEO UTILIZANDO PERFIS DE DENSIDADE E FATOR FOTOELÉTRICO Filipe Vidal C. S. R. Soares de Oliveira Petrobras filipe.vidal@petrobras.com.br

Leia mais

4 Analise de Pressão de Poros

4 Analise de Pressão de Poros 4 Analise de Pressão de Poros Este capítulo visa apresentar a análise de pressão de poros dos poços DB-3, DB-4, DB-5 e DB-11. Os poços foram escolhidos para a determinação da tendência de compactação normal

Leia mais

1 INTRODUÇÃO 1.1. Motivação

1 INTRODUÇÃO 1.1. Motivação 1 INTRODUÇÃO 1.1. Motivação Entre as regiões afastadas da costa, as Bacias de Campos e de Santos (localizadas no Sudeste do Brasil) vêm recebendo uma considerável atenção pela indústria do petróleo por

Leia mais

CARACTERÍSTICAS DOS RESERVATÓRIOS

CARACTERÍSTICAS DOS RESERVATÓRIOS Escola Politécnica da Universidade de São Paulo Departamento de Engenharia de Minas e de Petróleo CARACTERÍSTICAS DOS RESERVATÓRIOS PMI 1673 - Mecânica de Fluidos Aplicada a Reservatórios Prof. Eduardo

Leia mais

CÁLCULO DA POROSIDADE DO RESERVATÓRIO DE NAMORADO UTILIZANDO A PERFILAGEM GEOFÍSICA. Claudia Benitez Logelo

CÁLCULO DA POROSIDADE DO RESERVATÓRIO DE NAMORADO UTILIZANDO A PERFILAGEM GEOFÍSICA. Claudia Benitez Logelo CÁLCULO DA POROSIDADE DO RESERVATÓRIO DE NAMORADO UTILIZANDO A PERFILAGEM GEOFÍSICA Claudia Benitez Logelo Dissertação de mestrado apresentada ao Programa de Pós-graduação em Engenharia Civil, COPPE, da

Leia mais

ZONEAMENTO ESTATÍSTICO APLICADO EM RESERVATÓRIOS PETROLÍFEROS, BACIA DE CAMPOS - RJ

ZONEAMENTO ESTATÍSTICO APLICADO EM RESERVATÓRIOS PETROLÍFEROS, BACIA DE CAMPOS - RJ ZONEAMENTO ESTATÍSTICO APLICADO EM RESERVATÓRIOS PETROLÍFEROS, BACIA DE CAMPOS - RJ Marcella Mayara C. A. Aragão 1 ; José Agnelo Soares 2 1 Universidade Federal de Campina Grande, Unidade Acadêmica de

Leia mais

Mapas de Amplitude Sísmica para Incidência Normal no Reservatório Namorado, Bacia de Campos

Mapas de Amplitude Sísmica para Incidência Normal no Reservatório Namorado, Bacia de Campos MINISTÉRIO DA CIÊNCIA E TECNOLOGIA OBSERVATÓRIO NACIONAL PROGRAMA DE PÓS-GRADUAÇÃO EM GEOFÍSICA Mapas de Amplitude Sísmica para Incidência Normal no Reservatório Namorado, Bacia de Campos Dissertação apresentada

Leia mais

AGG 209 INTRODUÇÃO À PETROFÍSICA AULA 1

AGG 209 INTRODUÇÃO À PETROFÍSICA AULA 1 AGG 209 INTRODUÇÃO À PETROFÍSICA AULA 1 O QUE É PETROFÍSICA? O termo petrofísica foi introduzido por Archie (1950) para descrever o estudo das propriedades físicas das rochas que dizem respeito à distribuição

Leia mais

CARACTERIZAÇÃO DA ARGILOSIDADE E POROSIDADE POR MÉTODOS DIRETOS E INDIRETOS

CARACTERIZAÇÃO DA ARGILOSIDADE E POROSIDADE POR MÉTODOS DIRETOS E INDIRETOS CRCTERIZÇÃO D RGILOSIDDE E POROSIDDE POR MÉTODOS DIRETOS E INDIRETOS Felipe Barreiros Gomes e Fernanda Silva Calixto; ntônio Jorge Vasconcellos Garcia. Universidade Federal de Sergipe, Centro de Ciências

Leia mais

2. METODOLOGIA DE PESQUISA

2. METODOLOGIA DE PESQUISA 2. METODOLOGIA DE PESQUISA O presente capítulo apresenta a metodologia de pesquisa proposta e procura-se dar uma visão geral do que será feito para atingir os objetivos. Está dividido em seis partes: i)

Leia mais

CARACTERIZAÇÃO DO AQUÍFERO SÃO SEBASTIÃO NO CAMPO PETROLÍFERO DE MIRANGA UTILIZANDO PERFIS DE POTENCIAL ESPONTÂNEO(SP) E RESISTIVIDADE

CARACTERIZAÇÃO DO AQUÍFERO SÃO SEBASTIÃO NO CAMPO PETROLÍFERO DE MIRANGA UTILIZANDO PERFIS DE POTENCIAL ESPONTÂNEO(SP) E RESISTIVIDADE CARACTERIZAÇÃO DO AQUÍFERO SÃO SEBASTIÃO NO CAMPO PETROLÍFERO DE MIRANGA UTILIZANDO PERFIS DE POTENCIAL ESPONTÂNEO(SP) E RESISTIVIDADE Por : Antônio Huoya Mariano Orientador: Drº Olivar Antônio de Lima

Leia mais

Potencial do Pré-Sal. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis Magda Chambriard

Potencial do Pré-Sal. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis Magda Chambriard Potencial do Pré-Sal Agência Nacional do Petróleo, Gás Natural e Biocombustíveis Magda Chambriard O Pré-Sal como o novo paradigma Evoluçã ção o Institucional Constituição de 1934 O Regime de concessões

Leia mais

6 Estudo de Casos Descrição do Campo para os Testes

6 Estudo de Casos Descrição do Campo para os Testes 6 Estudo de Casos O estudo de casos é realizado com perfis de poço do Campo de Namorado e divido, basicamente, em quatro seções: uma para a descrição do campo, duas seções para a previsão de perfis com

Leia mais

3. Descrição do Campo em estudo

3. Descrição do Campo em estudo 3. Descrição do Campo em estudo Este capítulo tem por finalidade descrever a área em estudo, além da contextualização do leitor nas principais propriedades do reservatório que foram utilizadas para o analise

Leia mais

Mapas de Amplitude Sísmica para Incidência Normal no Reservatório Namorado, Bacia de Campos

Mapas de Amplitude Sísmica para Incidência Normal no Reservatório Namorado, Bacia de Campos MINISTÉRIO DA CIÊNCIA E TECNOLOGIA OBSERVATÓRIO NACIONAL PROGRAMA DE PÓS-GRADUAÇÃO EM GEOFÍSICA Mapas de Amplitude Sísmica para Incidência Normal no Reservatório Namorado, Bacia de Campos Dissertação apresentada

Leia mais

METODOLOGIA PARA ASSENTAMENTO DE SAPATAS DE REVESTIMENTO, ESCOLHA DE PESO DE FLUIDO E TEMPO DE PERFURAÇÃO BASEADO NO MÉTODO DA JANELA OPERACIONAL

METODOLOGIA PARA ASSENTAMENTO DE SAPATAS DE REVESTIMENTO, ESCOLHA DE PESO DE FLUIDO E TEMPO DE PERFURAÇÃO BASEADO NO MÉTODO DA JANELA OPERACIONAL METODOLOGIA PARA ASSENTAMENTO DE SAPATAS DE REVESTIMENTO, ESCOLHA DE PESO DE FLUIDO E TEMPO DE PERFURAÇÃO BASEADO NO MÉTODO DA JANELA OPERACIONAL Victória Alles Santana de Jesus [1] ; Maria Fernanda Oliveira

Leia mais

AVALIAÇÃO DO POTENCIAL HIDROGEOLÓGICO NA ILHA DE ITAPARICA BAHIA

AVALIAÇÃO DO POTENCIAL HIDROGEOLÓGICO NA ILHA DE ITAPARICA BAHIA XVIII CONGRESSO BRASILEIRO DE ÁGUAS SUBTERRÂNEAS AVALIAÇÃO DO POTENCIAL HIDROGEOLÓGICO NA ILHA DE ITAPARICA BAHIA Autor 1 Antonio Ribeiro Mariano 1 ;Co-autor 1 - Renavan Andrade Sobrinho Resumo O presente

Leia mais

Bacia de Sergipe-Alagoas. Geólogos Marcos André Rodrigues Alves e Gustavo Santana Barbosa

Bacia de Sergipe-Alagoas. Geólogos Marcos André Rodrigues Alves e Gustavo Santana Barbosa Bacia de Sergipe-Alagoas Geólogos Marcos André Rodrigues Alves e Gustavo Santana Barbosa Roteiro Localização e Caracterização Infraestrutura e Condições de Operacionalidade Histórico Exploratório Evolução

Leia mais

INTERPRETAÇÃO E MODELAGEM DE PERFIS GEOFÍSICOS DE POÇO NOS CAMPOS MARGINAIS DE QUIAMBINA E FAZENDA MAMOEIRO

INTERPRETAÇÃO E MODELAGEM DE PERFIS GEOFÍSICOS DE POÇO NOS CAMPOS MARGINAIS DE QUIAMBINA E FAZENDA MAMOEIRO UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE GEOCIÊNCIAS CURSO DE GRADUAÇÃO EM GEOFÍSICA GEO213 TRABALHO DE GRADUAÇÃO INTERPRETAÇÃO E MODELAGEM DE PERFIS GEOFÍSICOS DE POÇO NOS CAMPOS MARGINAIS DE QUIAMBINA

Leia mais

A CADEIA PRODUTIVA DO PETRÓLEO

A CADEIA PRODUTIVA DO PETRÓLEO Escola Politécnica da Universidade de São Paulo Departamento de Engenharia de Minas e de Petróleo A CADEIA PRODUTIVA DO PETRÓLEO PMI 3101 - Introdução à Engenharia para a Indústria Mineral Prof. Eduardo

Leia mais

A CADEIA PRODUTIVA DO PETRÓLEO

A CADEIA PRODUTIVA DO PETRÓLEO Escola Politécnica da Universidade de São Paulo Departamento de Engenharia de Minas e de Petróleo A CADEIA PRODUTIVA DO PETRÓLEO PMI 3101 -Introdução à Engenharia para a Indústria Mineral Prof. Eduardo

Leia mais

CARACTERIZAÇÃO GEOFÍSICA DOS RESERVATÓRIOS DO GRUPO MACAÉ NO CAMPO DE GAROUPA BACIA DE CAMPOS

CARACTERIZAÇÃO GEOFÍSICA DOS RESERVATÓRIOS DO GRUPO MACAÉ NO CAMPO DE GAROUPA BACIA DE CAMPOS CARACTERIZAÇÃO GEOFÍSICA DOS RESERVATÓRIOS DO GRUPO MACAÉ NO CAMPO DE GAROUPA BACIA DE CAMPOS Luana Fernandes do NASCIMENTO 1 & Maria Gabriela Castillo VINCENTELLI 2 (1) Curso de Pós-Graduação em Geociências,

Leia mais

Aplicação dos métodos FZI e zoneamento estatístico no Campo de Namorado Marcella Mayara C. A. Aragão (UFCG), José Agnelo Soares* (UFCG)

Aplicação dos métodos FZI e zoneamento estatístico no Campo de Namorado Marcella Mayara C. A. Aragão (UFCG), José Agnelo Soares* (UFCG) Aplicação dos métodos FZI e zoneamento estatístico no Campo de Namorado Marcella Mayara C. A. Aragão (UFCG), José Agnelo Soares* (UFCG) Copyright 2016, SBGf - Sociedade Brasileira de Geofísica Este texto

Leia mais

DESCRIÇÃO DE AMOSTRAS DE CALHA DO POÇO 7-CLB-1-RN PERFURADO PELA EMPRESA PARTEX BRASIL NO CAMPO COLIBRI, BACIA POTIGUAR/RN

DESCRIÇÃO DE AMOSTRAS DE CALHA DO POÇO 7-CLB-1-RN PERFURADO PELA EMPRESA PARTEX BRASIL NO CAMPO COLIBRI, BACIA POTIGUAR/RN DESCRIÇÃO DE AMOSTRAS DE CALHA DO POÇO 7-CLB-1-RN PERFURADO PELA EMPRESA PARTEX BRASIL NO CAMPO COLIBRI, BACIA POTIGUAR/RN Ailton Pereira da Costa júnior 1 ; Jairo Rodrigues de Souza 2; Marcos Henrique

Leia mais

ESTIMATIVA DE POROSIDADE ATRAVÉS DE MEDIDAS DE LABORATÓRIO E PERFIS DE POÇOS TIAGO DE FREITAS TERÇO DIAS

ESTIMATIVA DE POROSIDADE ATRAVÉS DE MEDIDAS DE LABORATÓRIO E PERFIS DE POÇOS TIAGO DE FREITAS TERÇO DIAS ESTIMATIVA DE POROSIDADE ATRAVÉS DE MEDIDAS DE LABORATÓRIO E PERFIS DE POÇOS TIAGO DE FREITAS TERÇO DIAS UNIVERSIDADE ESTADUAL DO NORTE FLUMINENSE LABORATÓRIO DE ENGENHARIA E EXPLORAÇÃO DE PETRÓLEO MACAÉ

Leia mais

PARNAÍBA GÁS NATURAL. Fórum CONFAP. 19 de agosto de 2016

PARNAÍBA GÁS NATURAL. Fórum CONFAP. 19 de agosto de 2016 PARNAÍBA GÁS NATURAL Fórum CONFAP 19 de agosto de 2016 QUEM SOMOS A PGN é uma empresa independente de exploração e produção que opera na Bacia do Parnaíba, no Maranhão. Atualmente, opera 7 campos, 7 Planos

Leia mais

Funcionamento de um reservatório de petróleo visando introduzir a criação de uma maquete funcional de óleo

Funcionamento de um reservatório de petróleo visando introduzir a criação de uma maquete funcional de óleo Funcionamento de um reservatório de petróleo visando introduzir a criação de uma maquete funcional de óleo Elaborado por: Arthur Faerman Arthurfaerman@hotmail.com Paula Camargos Paulacamargos@id.uff.br

Leia mais

PALEOAMBIENTE DEPOSICIONAL DA FORMAÇÃO BARREIRAS NA PORÇÃO CENTRO-SUL DA ÁREA EMERSA DA BACIA DE CAMPOS (RIO DE JANEIRO)

PALEOAMBIENTE DEPOSICIONAL DA FORMAÇÃO BARREIRAS NA PORÇÃO CENTRO-SUL DA ÁREA EMERSA DA BACIA DE CAMPOS (RIO DE JANEIRO) PALEOAMBIENTE DEPOSICIONAL DA FORMAÇÃO BARREIRAS NA PORÇÃO CENTRO-SUL DA ÁREA EMERSA DA BACIA DE CAMPOS (RIO DE JANEIRO) Thaís Coelho BRÊDA 1 ; Claudio Limeira MELLO 1 ; Bruno Lopes GOMES 1 thaisbreda@geologia.ufrj.br

Leia mais

Petróleo Prof. Philipe Laboissière

Petróleo Prof. Philipe Laboissière Petróleo Prof. Philipe Laboissière Cap. 2-Prospecção de Petróleo Finalidade e métodos de prospecção Finalidade da prospecção de petróleo Visa fundamentalmente a dois objetivos: Localizar dentro de uma

Leia mais

2 Exploração e Produção de Petróleo

2 Exploração e Produção de Petróleo 2 Exploração e Produção de Petróleo 2.1 Engenharia de Reservatórios Segundo [5], a Engenharia de Reservatórios é um ramo da atividade petrolífera responsável por apresentar soluções eficientes para a retirada

Leia mais

Introdução. Aspectos Geológicos. Área de Carapitanga

Introdução. Aspectos Geológicos. Área de Carapitanga Aviso importante Área de Carapitanga 1) A utilização desses dados e informações é de responsabilidade exclusiva de cada usuário, não podendo ser imputada à Agência Nacional do Petróleo, Gás Natural e Biocombustíveis

Leia mais

4 Simulação de Fluxo em Reservatório Sintético

4 Simulação de Fluxo em Reservatório Sintético 4 Simulação de Fluxo em Reservatório Sintético Um aspecto importante da simulação de reservatórios associado ao estudo de viabilidade de sísmica time-lapse é que o objetivo é criar cenários de produção

Leia mais

BLOCO V ÁGUA COMO RECURSO NO MOMENTO ATUAL. Temas: Escassez. Perda de qualidade do recurso (água) Impacto ambiental

BLOCO V ÁGUA COMO RECURSO NO MOMENTO ATUAL. Temas: Escassez. Perda de qualidade do recurso (água) Impacto ambiental EXPOSIÇÃO ÁGUA BLOCO V ÁGUA COMO RECURSO NO MOMENTO ATUAL Temas: Escassez. Perda de qualidade do recurso (água) Impacto ambiental Prospecção de águas subterrâneas com o uso de métodos geofísicos Vagner

Leia mais

Projeto de Lei 6.904/13 Deputado Sarney Filho. Silvio Jablonski Chefe de Gabinete

Projeto de Lei 6.904/13 Deputado Sarney Filho. Silvio Jablonski Chefe de Gabinete Projeto de Lei 6.904/13 Deputado Sarney Filho Silvio Jablonski Chefe de Gabinete 2 de julho de 2015 Xisto betuminoso Folhelho pirobetuminoso: rocha sedimentar, com conteúdo de matéria orgânica na forma

Leia mais

Bacia do Paraná. Rodrigo Fernandez

Bacia do Paraná. Rodrigo Fernandez Bacia do Paraná Rodrigo Fernandez Roteiro Localização Infraestrutura e Condições Operacionais Histórico Exploratório Evolução Tectonoestratigráfica Sistemas Petrolíferos Plays Área em Oferta Considerações

Leia mais

4 Caraterização de pressões de poros na Bacia de Guajira - Colômbia.

4 Caraterização de pressões de poros na Bacia de Guajira - Colômbia. 4 Caraterização de pressões de poros na Bacia de Guajira - Colômbia. Neste capítulo, primeiramente serão descritas as caraterísticas geológicas gerais da Bacia de Guajira, em seguida apresentam-se a metodologia

Leia mais

CARACTERIZAÇAO DO RESERVATÓRIO DE HIDROCARBONETOS DO CAMPO DA ILHA DE CAÇUMBA (BACIA DO ESPÍRITO SANTO/MUCURI)

CARACTERIZAÇAO DO RESERVATÓRIO DE HIDROCARBONETOS DO CAMPO DA ILHA DE CAÇUMBA (BACIA DO ESPÍRITO SANTO/MUCURI) CARACTERIZAÇAO DO RESERVATÓRIO DE HIDROCARBONETOS DO CAMPO DA ILHA DE CAÇUMBA (BACIA DO ESPÍRITO SANTO/MUCURI) Ualas Magalhães Aguiar (CEUNES) 1, Carlos André Maximiano Silva (DCN/CEUNES)2, 1 Universi

Leia mais

5 Discussão de resultados

5 Discussão de resultados 5 Discussão de resultados Neste capítulo são apresentados os resultados da estimativa das pressões de poros pelas duas metodologias aplicadas nesta pesquisa. Primeiro se apresentam os resultados da metodologia

Leia mais

ESTUDO DA INJEÇÃO DE VAPOR E SOLVENTE EM RESERVATÓRIOS COM CARACTERÍSTICAS SEMELHANTE AO DO NORDESTE BRASILEIRO

ESTUDO DA INJEÇÃO DE VAPOR E SOLVENTE EM RESERVATÓRIOS COM CARACTERÍSTICAS SEMELHANTE AO DO NORDESTE BRASILEIRO ESTUDO DA INJEÇÃO DE VAPOR E SOLVENTE EM RESERVATÓRIOS COM CARACTERÍSTICAS SEMELHANTE AO DO NORDESTE BRASILEIRO D. A. R. Silva 1 e J. L. M. Barillas 2 12 Universidade Federal do Rio Grande do Norte, Centro

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE GEOCIÊNCIAS DEPARTAMENTO DE GEOLOGIA E GEOFÍSICA MARINHA CURSO DE GRADUAÇÃO EM GEOFÍSICA

UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE GEOCIÊNCIAS DEPARTAMENTO DE GEOLOGIA E GEOFÍSICA MARINHA CURSO DE GRADUAÇÃO EM GEOFÍSICA UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE GEOCIÊNCIAS DEPARTAMENTO DE GEOLOGIA E GEOFÍSICA MARINHA CURSO DE GRADUAÇÃO EM GEOFÍSICA SHAYANE PAES GONZALEZ ESTIMATIVA DE SATURAÇÃO DE ÁGUA CONATA EM RESERVATÓRIOS

Leia mais

BACIA DO PARNAÍBA: EVOLUÇÃO PALEOZÓICA

BACIA DO PARNAÍBA: EVOLUÇÃO PALEOZÓICA UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE GEOCIÊNCIAS FACULDADE DE GEOLOGIA PRÁTICA DE CAMPO EM GEOLOGIA GERAL DOCENTE DR. FRANCISCO DE ASSIS MATOS DE ABREU DISCENTE RAFAELA MARITHA ARAÚJO PARAENSE - 201608540013

Leia mais

Gás não convencional e perspectivas no Brasil

Gás não convencional e perspectivas no Brasil Gás não convencional e perspectivas no Brasil Laís Palazzo Almada ERPD/ANP Workshop Gás para Crescer São Paulo, 07 de junho de 2016 *Este trabalho reflete a opinião da autora, não necessariamente refletindo

Leia mais

3 Aspectos Geológicos e Geotécnicos

3 Aspectos Geológicos e Geotécnicos 3 Aspectos Geológicos e Geotécnicos Nos itens a seguir serão abordados os aspectos geológicos e geotécnicos de maior interesse na área da Barragem de Terra da Margem Esquerda. 3.1. Características Gerais

Leia mais

LEI DO PETRÓLEO - Nº 9.478, DE 6 DE AGOSTO DE Presidência da República - Subchefia para Assuntos Jurídicos

LEI DO PETRÓLEO - Nº 9.478, DE 6 DE AGOSTO DE Presidência da República - Subchefia para Assuntos Jurídicos LEI DO PETRÓLEO - Nº 9.478, DE 6 DE AGOSTO DE 1997 Presidência da República - Subchefia para Assuntos Jurídicos Dispõe sobre a política energética nacional, as atividades relativas ao monopólio do petróleo,

Leia mais

VII Simpósio Brasileiro de Geofísica. Copyright 2016, SBGf - Sociedade Brasileira de Geofísica

VII Simpósio Brasileiro de Geofísica. Copyright 2016, SBGf - Sociedade Brasileira de Geofísica Um novo modelo geológico conceitual do leste do Campo de Inhambu da Bacia do Espirito Santo Igor Andrade Neves*, Cowan João Batista Françolin, Georisk Wagner Moreira Lupinacci, UFF Copyright 2016, SBGf

Leia mais

OTIMIZAÇÃO DOS PARÂMETROS OPERACIONAIS PARA AUMENTAR A RENTABILIDADE DE PROJETOS DE INJEÇÃO DE ÁGUA APÓS O VAPOR EM RESERVATÓRIOS DE ÓLEO PESADO

OTIMIZAÇÃO DOS PARÂMETROS OPERACIONAIS PARA AUMENTAR A RENTABILIDADE DE PROJETOS DE INJEÇÃO DE ÁGUA APÓS O VAPOR EM RESERVATÓRIOS DE ÓLEO PESADO OTIMIZAÇÃO DOS PARÂMETROS OPERACIONAIS PARA AUMENTAR A RENTABILIDADE DE PROJETOS DE INJEÇÃO DE ÁGUA APÓS O VAPOR EM RESERVATÓRIOS DE ÓLEO PESADO M. A. F. RODRIGUES 1, E. R. V. P. GALVÃO 1 1 Universidade

Leia mais

Aplicações da RMN em baixo campo - Petrofísica

Aplicações da RMN em baixo campo - Petrofísica Aplicações da RMN em baixo campo - Petrofísica Rodrigo B. de V. Azeredo Instituto de Química - UFF Petrofísica 2 Termo cunhado por Archie em 950 De acordo com Peters 2, entende-se por petrofísica o estudo

Leia mais

MODELAGEM DE RESERVATÓRIOS

MODELAGEM DE RESERVATÓRIOS Reyes-Pérez, Y.A. Tese de Doutorado 72 MODELAGEM DE RESERVATÓRIOS 5.1- INTRODUÇÃO De ciência eminentemente descritiva em suas origens, a Geologia transita por novos caminhos que demandam do profissional

Leia mais

1 Introdução 1.1. Definição do problema

1 Introdução 1.1. Definição do problema 1 Introdução 1.1. Definição do problema As reservas de óleos pesados têm aumentado a sua importância devido à diminuição das reservas de óleos leves e ao aumento dos preços de petróleo. As maiores reservas

Leia mais

Projeto Bacia de Santos Atividades Exploratórias da Karoon

Projeto Bacia de Santos Atividades Exploratórias da Karoon Projeto Bacia de Santos Atividades Exploratórias da Karoon Federação das Indústrias do Estado de Santa Catarina Comitê de Petróleo e Gás Florianópolis, SC 11 de Abril 2014 Australia Brasil Peru Karoon

Leia mais

ANÁLISE DE PETRÓLEO NO MEIO AMBIENTE Prof. Marcelo da Rosa Alexandre

ANÁLISE DE PETRÓLEO NO MEIO AMBIENTE Prof. Marcelo da Rosa Alexandre ANÁLISE DE PETRÓLEO NO MEIO AMBIENTE Prof. Marcelo da Rosa Alexandre Histórico a) O petróleo no mundo a. Embora conhecido a milhares de anos, a pesquisa sistemática do petróleo foi iniciada na metade do

Leia mais

Estruturas geológicas e formas do relevo Brasileiro. Professora: Jordana Costa

Estruturas geológicas e formas do relevo Brasileiro. Professora: Jordana Costa Estruturas geológicas e formas do relevo Brasileiro Professora: Jordana Costa As marcas do tempo geológico A litosfera não é contínua, ela é formada por imensos blocos rochosos: - Placas tectônicas. -

Leia mais

Estrutura geológica e formas de relevo. Professora: Jordana Costa

Estrutura geológica e formas de relevo. Professora: Jordana Costa Estrutura geológica e formas de relevo Professora: Jordana Costa Estrutura Geológica O tipo de terreno de um lugar (sua origem e as rochas que o compõem) constitui a sua estrutura geológica. Sua importância

Leia mais

Difratometria por raios X

Difratometria por raios X 57 A amostra 06 foi coletada no fundo de um anfiteatro (Figura 23), em uma feição residual de um degrau no interior da voçoroca, este material, aparentemente mais coeso, também consiste em areia muito

Leia mais

ANÁLISE DA INJEÇÃO DE CO2 EM RESERVATÓRIOS DE ÓLEOS LEVES COM CARACTERÍSTICAS DO NORDESTE BRASILEIRO.

ANÁLISE DA INJEÇÃO DE CO2 EM RESERVATÓRIOS DE ÓLEOS LEVES COM CARACTERÍSTICAS DO NORDESTE BRASILEIRO. ANÁLISE DA INJEÇÃO DE CO2 EM RESERVATÓRIOS DE ÓLEOS LEVES COM CARACTERÍSTICAS DO NORDESTE BRASILEIRO. C. S. do N. GARCIA 1, J. L M. BARILLAS 2 1 Universidade Federal do Rio Grande do Norte, Departamento

Leia mais

Rogério José Ramos de Oliveira Magalhães

Rogério José Ramos de Oliveira Magalhães Rogério José Ramos de Oliveira Magalhães Avaliação do Impacto Econômico do Desenvolvimento da Produção Offshore Dissertação de Mestrado Dissertação apresentada como requisito parcial para obtenção do título

Leia mais

Capítulo 4 Caracterização da Área de Estudos. Capítulo 4

Capítulo 4 Caracterização da Área de Estudos. Capítulo 4 Capítulo 4 4.1 Aspectos gerais Visto que nossa pesquisa visava ao mapeamento do N.A. e à obtenção do teor de umidade do solo através do emprego integrado dos métodos geofísicos GPR e de sísmica de refração

Leia mais

ANÁLISE FACIOLÓGICA DE DEPÓSITOS DA FORMAÇÃO BARREIRAS(?) NA REGIÃO DOS LAGOS, ENTRE MARICÁ E SAQUAREMA (RIO DE JANEIRO)

ANÁLISE FACIOLÓGICA DE DEPÓSITOS DA FORMAÇÃO BARREIRAS(?) NA REGIÃO DOS LAGOS, ENTRE MARICÁ E SAQUAREMA (RIO DE JANEIRO) ANÁLISE FACIOLÓGICA DE DEPÓSITOS DA FORMAÇÃO BARREIRAS(?) NA REGIÃO DOS LAGOS, ENTRE MARICÁ E SAQUAREMA (RIO DE JANEIRO) Pedro Henrique Walter 1, Claudio Limeira Mello 1, João Victor Veiga Chrismann 1,

Leia mais

Exemplo de modelagem sísmica dos modos PP e PS a partir de dados de poço e perfil litológico

Exemplo de modelagem sísmica dos modos PP e PS a partir de dados de poço e perfil litológico Exemplo de modelagem sísmica dos modos PP e PS a partir de dados de poço e perfil litológico R. Leiderman 1, F. A. V. Artola 1, M. B. C. Silva 1, S. A. B. da Fontoura 1 1 LCG-GTEP/Puc-Rio-Grupo de Tecnologia

Leia mais

Quarta Rodada de Licitações Workshop Técnico

Quarta Rodada de Licitações Workshop Técnico Quarta Rodada de Licitações Workshop Técnico Bemvindos Quarta Rodada de Licitações Bacia do São Francisco João Clark Superintendência de Definição de Blocos Mapa de Localização Área Total: 354.800 km2

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA E DE PETRÓLEO CURSO DE ENGENHARIA DE PETRÓLEO

UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA E DE PETRÓLEO CURSO DE ENGENHARIA DE PETRÓLEO UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA E DE PETRÓLEO CURSO DE ENGENHARIA DE PETRÓLEO ANÁLISE DE CORRELAÇÃO LITOLÓGICA A PARTIR DE DADOS DE PERFIS DE POÇOS

Leia mais

Prática da Estratigrafia de Sequências: Interpretação Sísmica, Afloramentos e Testemunhos

Prática da Estratigrafia de Sequências: Interpretação Sísmica, Afloramentos e Testemunhos Prática da Estratigrafia de Sequências: Interpretação Sísmica, Afloramentos e Testemunhos Sismoestratigrafia: conceitos básicos Definição - Sismoestratigrafia, ou estratigrafia sísmica, é o estudo de sucessões

Leia mais

APLICAÇÃO DO MÉTODO GEOFÍSICO DE ELETRORRESISTIVIDADE NA PROSPECÇÃO DE ÁGUA SUBTERRÂNEA NO CAMPUS DA UFCG EM POMBAL-PB

APLICAÇÃO DO MÉTODO GEOFÍSICO DE ELETRORRESISTIVIDADE NA PROSPECÇÃO DE ÁGUA SUBTERRÂNEA NO CAMPUS DA UFCG EM POMBAL-PB APLICAÇÃO DO MÉTODO GEOFÍSICO DE ELETRORRESISTIVIDADE NA PROSPECÇÃO DE ÁGUA SUBTERRÂNEA NO CAMPUS DA UFCG EM POMBAL-PB Juliana T. Batista 1 ; Lucas E. B. Oliveira 1 ; Paula R. L. de Andrade 1 ; Francisco

Leia mais

A EXPLORAÇÃO PETROLÍFERA NAS BACIAS SEDIMENTARES (parte terrestre) de SE/AL e PE/PB sob jurisdição do DISTRITO DE EXPLORAÇÃO DO NORDESTE DENEST.

A EXPLORAÇÃO PETROLÍFERA NAS BACIAS SEDIMENTARES (parte terrestre) de SE/AL e PE/PB sob jurisdição do DISTRITO DE EXPLORAÇÃO DO NORDESTE DENEST. A EXPLORAÇÃO PETROLÍFERA NAS BACIAS SEDIMENTARES (parte terrestre) de SE/AL e PE/PB sob jurisdição do DISTRITO DE EXPLORAÇÃO DO NORDESTE DENEST. 1. INTRODUÇÃO Ivo Lúcio Santana Marcelino da Silva DENEST/DINTER/SETAB

Leia mais

Resumo. Figure 1. Albian carbonate reservoirs in Campos Basin (modify from Bruhn et al., 2003).

Resumo. Figure 1. Albian carbonate reservoirs in Campos Basin (modify from Bruhn et al., 2003). Determinação das propriedades petrofísicas que controlam o comportamento dinâmico de um reservatório carbonático Albiano do Campo A na Bacia de Campos Lucas Carvalho & Abel Carrasquilla, UENF, Macaé RJ,

Leia mais

1 Introdução Relevância e Motivação do estudo

1 Introdução Relevância e Motivação do estudo 28 1 Introdução 1.1. Relevância e Motivação do estudo A partir da exploração de petróleo em águas profundas, a indústria do petróleo tem descoberto diferentes campos de petróleo em águas profundas, e ultra-profundas,

Leia mais

GEOLOGIA E GEOMORFOLOGIA:ESTRUTURA GEOLÓGICA, TIPOS DE ROCHAS E RECURSOS MINERAIS. MÓDULO 04 GEOGRAFIA I

GEOLOGIA E GEOMORFOLOGIA:ESTRUTURA GEOLÓGICA, TIPOS DE ROCHAS E RECURSOS MINERAIS. MÓDULO 04 GEOGRAFIA I GEOLOGIA E GEOMORFOLOGIA:ESTRUTURA GEOLÓGICA, TIPOS DE ROCHAS E RECURSOS MINERAIS. MÓDULO 04 GEOGRAFIA I COMPOSIÇÃO INTERNA DO PLANETA COMPOSIÇÃO INTERNA DO PLANETA NÚCLEO temperaturas que ultrapassam

Leia mais

REPÚBLICA FEDERATIVA DO BRASIL

REPÚBLICA FEDERATIVA DO BRASIL RELATÓRIO em 31 DE DEZEMBRO DE 2010 acerca dos RECURSOS CONTINGENTES atribuíveis a CERTOS ATIVOS pertencentes à OGX PETRÓLEO e GÁS PARTICIPAÇÕES S.A. nas BACIAS DE CAMPOS e DO PARNAÍBA da REPÚBLICA FEDERATIVA

Leia mais

3 Estimativa da Resistência Não Confinada da Rocha (UCS) a partir de Perfis Geofísicos de Poço.

3 Estimativa da Resistência Não Confinada da Rocha (UCS) a partir de Perfis Geofísicos de Poço. Estimativa da Resistência Não Confinada da Rocha (UCS) a partir de Perfis Geofísicos de Poço. 46 Este capítulo visa apresentar a metodologia geralmente seguida para a estimativa da UCS a partir dos perfis

Leia mais

Geografia 1ª série E.M. - Estrutura geológica da Terra, tipos de rocha e recursos minerais

Geografia 1ª série E.M. - Estrutura geológica da Terra, tipos de rocha e recursos minerais Geografia 1ª série E.M. - Estrutura geológica da Terra, tipos de rocha e recursos minerais 1. Formação geológica da Terra Observando a densidade e a gravidade do globo terrestre, os cientistas chegaram

Leia mais

Introdução. Os compostos que não são classificados como hidrocarbonetos concentram-se nas frações mais pesadas do petróleo.

Introdução. Os compostos que não são classificados como hidrocarbonetos concentram-se nas frações mais pesadas do petróleo. REFINO DE PETRÓLEO O petróleo é encontrado em muitos lugares da crosta terrestre e em grandes quantidades, e desse modo o seu processo de formação deve ser espontâneo. Trata-se de uma mistura inflamável,

Leia mais

GEOLOGIA GERAL GEOGRAFIA

GEOLOGIA GERAL GEOGRAFIA GEOLOGIA GERAL GEOGRAFIA Segunda 18 às 20h Quarta 20 às 22h museu IC II Aula 6 Rochas Sedimentares Turma: 2016/01 Profª. Larissa Bertoldi larabertoldi@gmail.com Ciclo das Rochas Rochas Sedimentares Rochas

Leia mais

3 Influência da Distribuição do Fluido na Variação da Velocidade Compressional (Vp)

3 Influência da Distribuição do Fluido na Variação da Velocidade Compressional (Vp) 3 Influência da Distribuição do Fluido na Variação da Velocidade Compressional (Vp) 3.1. Introdução Com base nos modelos de saturação homogêneo e heterogêneo (patchy), é realizada uma análise do efeito

Leia mais

ANEXO I REGULAMENTO TÉCNICO DE ESTIMATIVA DE RECURSOS E RESERVAS DE PETRÓLEO E GÁS NATURAL ( RTR)

ANEXO I REGULAMENTO TÉCNICO DE ESTIMATIVA DE RECURSOS E RESERVAS DE PETRÓLEO E GÁS NATURAL ( RTR) ANEXO I REGULAMENTO TÉCNICO DE ESTIMATIVA DE RECURSOS E RESERVAS DE PETRÓLEO E GÁS NATURAL ( RTR) 1.OBJETIVOS 1.1 Este Regulamento trata da estimativa dos Recursos e Reservas de Petróleo e Gás Natural

Leia mais

Aplicação da Modelagem Sísmica 1D para a Caracterização do Campo de Namorado

Aplicação da Modelagem Sísmica 1D para a Caracterização do Campo de Namorado Aplicação da Modelagem Sísmica 1D para a Caracterização do Campo de Namorado Caetano Pontes Costanzo 1 (IG DGRN), Alexandre Campane Vidal 2 (IG DGRN) Armando Zaupa Remacre 3 (IG DGRN), Sérgio Sacani Sancevero

Leia mais

ABSTRACT. Copyright 2016, SBGf - Sociedade Brasileira de Geofísica.

ABSTRACT. Copyright 2016, SBGf - Sociedade Brasileira de Geofísica. Modelo petrofísico para estimativa de argilosidade: uma nova formulação Thais Mallet de Castro 1( ), Jorge Leonardo Martins 2 1 Departamento de Geologia e Geofísica, Instituto de Geociências, Universidade

Leia mais

Figura 07: Arenito Fluvial na baixa vertente formando lajeado Fonte: Corrêa, L. da S. L. trabalho de campo dia

Figura 07: Arenito Fluvial na baixa vertente formando lajeado Fonte: Corrêa, L. da S. L. trabalho de campo dia 40 Figura 07: Arenito Fluvial na baixa vertente formando lajeado Fonte: Corrêa, L. da S. L. trabalho de campo dia 11-10-2005. O arenito friável forma um pacote de maior espessura, com baixa cimentação

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA CURSO DE GRADUAÇÃO EM ENGENHARIA DE PETRÓLEO ENGENHARIA DE PETRÓLEO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA CURSO DE GRADUAÇÃO EM ENGENHARIA DE PETRÓLEO ENGENHARIA DE PETRÓLEO UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA CURSO DE GRADUAÇÃO EM ENGENHARIA DE PETRÓLEO ENGENHARIA DE PETRÓLEO EDILBERTO OLIVEIRA VIANA JUNIOR UTILIZAÇÃO DA PERFILAGEM DE POÇOS PARA

Leia mais

2 Ferramentas de Perfilagem LWD/MWD

2 Ferramentas de Perfilagem LWD/MWD 2 Ferramentas de Perfilagem LWD/MWD O crescente avanço da indústria de exploração de petróleo e gás tem impulsionado o desenvolvimento da técnica de perfilagem LWD (Logging-whiledrilling) / MWD (Measurement-while-drilling).

Leia mais

1 Introdução 1.1. Definição do problema

1 Introdução 1.1. Definição do problema 1 Introdução 1.1. Definição do problema Rochas salinas têm estado presentes no conjunto de atividades exploratórias, de desenvolvimento e comerciais do homem desde os primórdios da civilização. No entorno

Leia mais

FICHA (IN)FORMATIVA Nº 1 Biologia e Geologia Módulo 6

FICHA (IN)FORMATIVA Nº 1 Biologia e Geologia Módulo 6 Ensino Secundário Recorrente por Módulos Capitalizáveis FICHA (IN)FORMATIVA Nº 1 Biologia e Geologia Módulo 6 Minerais e Rochas sedimentares Professora Ana Cristina Andrade Página 1 de 10 As rochas sedimentares

Leia mais

Manifestações magmáticas na parte sul da Bacia de Campos (Área de Cabo Frio) e na Bacia de Jequitinhonha

Manifestações magmáticas na parte sul da Bacia de Campos (Área de Cabo Frio) e na Bacia de Jequitinhonha Manifestações magmáticas na parte sul da Bacia de Campos (Área de Cabo Frio) e na Bacia de Jequitinhonha Magmatic occurrences in the southern part of the Campos Basin (Cabo Frio Area) and in the Jequitinhonha

Leia mais

Divisão Ambiental Prazer em servir melhor!

Divisão Ambiental Prazer em servir melhor! Prazer em servir melhor! Caracterização hidrogeológica: Estudo ambiental em área de futuro aterro sanitário Este trabalho teve como objetivo realizar a caracterização geológica e hidrogeológica, assim

Leia mais

Ambientes tectônicos e sedimentação

Ambientes tectônicos e sedimentação Rochas Sedimentares Ambientes tectônicos e sedimentação Intemperismo físico e químico de rochas sedimentares, ígneas e metamórficas Erosão Transporte Deposição Diagênese e litificação (compactação ) =

Leia mais

GEOLOGIA DO PETRÓLEO

GEOLOGIA DO PETRÓLEO Escola Politécnica da Universidade de São Paulo Departamento de Engenharia de Minas e de Petróleo GEOLOGIA DO PETRÓLEO PMI 3101 -Introdução à Engenharia para a Indústria Mineral Prof. Eduardo César Sansone

Leia mais