EPO Eletrônica de Potência COMPONENTES SEMICONDUTORES EM ELETRÔNICA DE POTÊNCIA

Documentos relacionados
EPO Eletrônica de Potência COMPONENTES SEMICONDUTORES EM ELETRÔNICA DE POTÊNCIA

EPO Eletrônica de Potência COMPONENTES SEMICONDUTORES EM ELETRÔNICA DE POTÊNCIA

ELETRÔNICA DE POTÊNCIA I Aula 04 Dispositivos e dimensionamento

Diodos de potência e cálculo térmico. Prof. Alceu André Badin

Prof. Amauri Assef. UTFPR Campus Curitiba 1

Eletrônica Analógica e de. Potência. Tiristores. Prof.: Welbert Rodrigues

Prof. Amauri Assef. UTFPR Campus Curitiba 1

Semicondutores e Circuitos Periféricos

Estágio de Potência da Fonte Chaveada

Semicondutores e Circuitos Periféricos

Semicondutores, Perdas e Cálculo Térmico

Dimensionamento e Especificação de Semicondutores

Acionamentos Elétricos ACIJ6

Cálculo e Projeto de Dissipadores de Calor para Diodos e Tiristores. Guilherme de Azevedo e Melo

Eletrônica de Potência II Capítulo 1. Prof. Janderson Duarte

Semicondutores de Potência

Prof. Amauri Assef. UTFPR Campus Curitiba 1

Eletrônica de Potência

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Departamento de Engenharia Electrotécnica e de Computadores

CAPÍTULO - 1 ESTUDO DOS COMPONENTES EMPREGADOS EM ELETRÔNICA DE POTÊNCIA (DIODOS E TIRISTORES)

Chaveamento dos Dispositivos Semicondutores de Potência

Semicondutores de Potência Diodos e Tiristores

Capítulo 4 Tiristores

FACULDADE SANTO AGOSTINHO - FSA ENGENHARIA ELÉTRICA ELETRÔNICA DE POTÊNCIA TIRISTORES

EPO Eletrônica de Potência COMPONENTES SEMICONDUTORES EM ELETRÔNICA DE POTÊNCIA

Dimensionamento de interruptores. PCE Projeto de Conversores Estáticos 13/09/2017

Semicondutores de Potência Diodos e Tiristores

Disciplina: Eletrônica de Potência (ENGC48)

Aula 8. Disciplina Eletrônica de Potência (ENGC48) Tema: Comutação e Perdas Térmicas. Eduardo Simas

Introdução aos Conversores CA-CC Semicondutores de Potência (diodos e tiristores)

Eletrônica de Potência I

Introdução aos Conversores CA-CC Semicondutores de Potência (diodos e tiristores)

TIRISTORES ROGÉRIO WEYMAR

INTRODUÇÃO À ELETRÔNICA INDUSTRIAL (Unidade 1)

Eletrônica de Potência II Capítulo 1. Prof. Cassiano Rech

1.3. Dispositivos Características dos Semicondutores de Potência. Fundamentos de Eletrônica de Potência 56

Disciplina de Eletrônica de Potência ET66B

Tiristores. Prof. Jonathan Pereira

Prof. Amauri Assef. UTFPR Campus Curitiba 1

Eletrônica de Potência II Capítulo 4: Inversor meia-ponte Prof. Alessandro Batschauer

Eletrônica de Potência I

Retificadores com tiristores

Introdução à Eletrônica de Potência

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7011 Eletricidade Básica AULA 09 DIODOS SEMICONDUTORES E RETIFICADORES

Eletrônica de Potência. Centro de Formação Profissional Orlando Chiarini - CFP / OC Pouso Alegre MG Inst.: Anderson

PCE Projeto de Conversores Estáticos. Aula 2

Aplicações de Conversores Estáticos de Potência

Introdução à Eletrônica de Potência

II Seminário da Pós-graduação em Engenharia Elétrica

Interruptores Semicondutores

Índice. Agradecimentos Prefácios Sobre o livro Sobre os autores

Aula 01 Introdução. TEL: +55 (31)

ELETRÔNICA Aluno turma ELETRÔNICA ANALÓGICA AULA 03

ESTUDO DE PERDAS NO INVERSOR HB/ANPC DE CINCO NÍVEIS UTILIZANDO A MODULAÇÃO DERIVADA DA CSV-PWM

Cálculo Térmico. Nikolas Libert. Aula 3C Eletrônica de Potência ET53B Tecnologia em Automação Industrial

Revisão de Fontes Lineares

Eletrônica de Potência II Capítulo 3. Prof. Cassiano Rech

Eletrônica de Potência II Capítulo 4: Inversor meia-ponte

CONVERSOR CC-CA NÃO ISOLADO COM ALTO GANHO DE TENSÃO PARA APLICAÇÃO EM SISTEMAS AUTÔNOMOS DE ENERGIA ELÉTRICA

EPO Eletrônica de Potência. Capítulo 2 - Retificadores não controlados 2.1-Retificador monofásico de meia onda

Disciplina de Eletrônica de Potência ET66B

PLANO DE ENSINO/SEMESTRE 2016/01

Partida de motores elétricos

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA ELETRÔNICA 1 - ET74C Prof.ª Elisabete Nakoneczny Moraes

Aula 02 Diodos de Potência

Inversores. Alexandre A. Kida, Msc.

Introdução à Eletrônica de Potência

Semicondutores de Potência em Corrente Alternada

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7051 Materiais Elétricos - Laboratório

PCE Projeto de Conversores Estáticos. Revisão sobre retificadores: Comutação em retificadores

Aplicações de Conversores Estáticos de Potência

TEORIA DE CIRCUITOS CHAVEADOS (Unidade 2)

ELETRÔNICA DE POTÊNCIA I Aula 02 Teoria básica b

Lista de Exercícios de Eletrônica de Potência (08/08/2014)

Parte 1 Fontes Lineares Semicondutores e Componentes Retificadores e Filtros Capacitivos Reguladores Lineares Partida e Inrush

AS VANTAGENS DO IGBT SOBRE O GTO NA TRAÇÃO METROFERROVIARIA O GTO

ANÁLISE DO CONVERSOR CC-CC BOOST - ELEVADOR DE TENSÃO. RESUMO

Prof. Amauri Assef. UTFPR Campus Curitiba 1

Introdução à Eletrônica de Potência

20%: 01 Mini-teste / Pesquisa Dirigida 30%: 03 atividades experimentais (no mínimo) 50%: 01 Prova

Setembro, UDESC - Universidade Estadual de Santa Catarina. Eletrônica de Potência II. Prof. Yales R. De Novaes.

Aplicações de Conversores Estáticos de Potência

Universidade Federal de São João del-rei. Material Teórico de Suporte para as Práticas

FALHAS NOS CONVERSORES (RETIFICADORES E INVERSORES)

PCE Projeto de Conversores Estáticos. Aula 2

Cap. 6 Conversores DC-DC

ELETRÔNICA DE POTÊNCIA I Aula 01 - Introdução. à Eletrônica de Potência

Eletrônica Industrial para Automação

Retificadores Monofásicos de Onda Completa com Carga Resistiva-Indutiva

ELETRÔNICA DE POTÊNCIA I

Disciplina: Eletrônica de Potência (ENGC48) Tema: Dispositivos para Eletrônica de Potência

Retificadores Monofásicos de Meia Onda com Carga Resistiva

Disciplina de Eletrônica de Potência ET66B

PCE Projeto de Conversores Estáticos (Graduação em Engenharia Elétrica) Snubbers passivos dissipativos

Circuito de Comando com UJT

Aula 05 Transitores de Potência

Transcrição:

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA EPO Eletrônica de Potência COMPONENTES SEMICONDUTORES EM ELETRÔNICA DE POTÊNCIA

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA INTRODUÇÃO Introdução Classificação dos semicondutores Diodos Características estáticas reais Idealizações Características dinâmicas reais Idealizações Classificação dos diodos Tiristores Características estáticas reais Idealizações Características dinâmicas reais Idealizações Classificação dos diodos Cálculo de perdas Cálculo de perdas Exemplo Cálculo térmico 2

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA INTRODUÇÃO Eletrônica de Potência: Ciência dedicada ao estudo de conversores estáticos. É uma ciência aplicada que aborda a conversão e o controle de fluxo de energia elétrica entre dois ou mais sistemas distintos, através de conversores estáticos de potência 3

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA INTRODUÇÃO Conversor Estático: Composto por elementos passivos (R, L, C) e interruptores (semicondutores), combinados de tal maneira a realizar o tratamento ou transformação de energia elétrica. Adicionado à carga e/ou fonte forma(m) um sistema. Basicamente, utiliza semicondutores operando na região de corte ou saturação, evitando perdas excessivas. Dispositivos que controlam o fluxo de potência: semicondutores 4

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA INTRODUÇÃO Aplicações: Controle de motores Fontes de alimentação Retificador (telecomunicações, computadores) No-breaks, UPS Energia fotovoltaica, eólica, fontes alternativas Condicionadores de energia Conversor CC-CC E 2 Conversor indireto de tensão Inversor Conversor indireto de freqüência (v 2, f 2 ) Conversor direto de freqüência... Fonte:Rech 5

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA Classificação dos semicondutores (interruptores) em EP Não controláveis: diodos (entrada em condução e bloqueio espontâneo dependentes do circuito) Semi-controláveis: tiristores (entrada em condução controlada, bloqueio espontâneo que depende do circuito) Controláveis: GTO, BJT, MOSFET, IGBT, IGCT (entrada em condução e bloqueio controlados) 6

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA DIODOS Característica estática real A + i F v F - C Em condução (diretamente polarizado), possui baixa queda de tensão. i F Bloqueado (inversamente polarizado), circula somente corrente de fuga, até atingir VRRM. 1 rt V RRM I R V (TO) v F Modelo durante condução i F A C + V (TO) vf r T - 7

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA DIODOS Idealizações Em condução (diretamente polarizado), possui baixa queda de Interruptor fechado, baixa resistência. tensão. Bloqueado (inversamente polarizado), circula somente corrente de fuga, até atingir VRRM. Interruptor aberto, alta resistência (MΩ) 8

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA DIODOS Idealizações A C + i F v F - i F VF>0, resistência nula (s/ perdas condução) VF<0, resistência infinita (corrente nula) Lembrar: Entra em condução quando polarizado pela tensão v F Bloqueia-se espontaneamente quando a corrente passa por zero Pode haver corrente negativa durante o bloqueio devido a recuperação reversa (dinâmica) 9

DIODOS Características dinâmicas Entrada em condução: recuperação direta, elevada derivada de corrente pode provocar sobretensão. Normalmente este fenômeno pode ser desconsiderado. Tempo de recuperação direta. Bloqueio: a corrente se torna negativa por um tempo antes de o diodo se bloquear (Silício). Durante esse tempo, os portadores de carga são armazenados na junção são removidos. Tempo de recuperação reversa tr, trr. 10 Fonte: Williams2006

DIODOS Classificação quanto a velocidade Convencionais: comumente utilizados em retificadores, frequências de comutação típicas: 16 2/3 Hz, 50 Hz, 60 Hz. Tempo de recuperação reversa não especificado, trr: 400ns @ 60 A, 1600V. Rápidos e ultra-rápidos: tempo de recuperação direta muitas vezes não especificado, tempo de recuperação reversa e carga armazenada normalmente encontrado nos datasheets, trr: 8,5-70ns @ 60 A, 400-600V Diodos tipo Schottky: tempo de recuperação reversa e carga armazenada quase nula, queda de tensão direta baixa, tensão de bloqueio baixa (~100V), trr: 20 ns @ 60 A, 45V 11

DIODOS Perdas Perdas podem ser separadas em: Perdas de condução Perdas de comutação bloqueio entrada em condução Perdas de condução i F A + V (TO) vf r T - C P cond=v T0 I AVG I 2 RMS r T 12

DIODOS Perdas Perdas de comutação: P com =P on P off Bloqueio (idealizado): P off =Q rr E f P off = 1 2 V RRM i RRM t ri f s 13

DIODOS Perdas Perdas de comutação entrada em condução P on = 1 2 V FP V F I o t rf f s 14

DIODOS Perdas Perdas totais P tot =P com P cond Considerações de acordo com a frequência de operação Retificadores 50, 60Hz tipicamente considera-se somente as perdas por condução Conversores em geral, (fs > 400 Hz) : No cálculo de perdas em condução pode-se muitas vezes desprezar rt cálculo de perdas de comutação pode-se geralmente desprezar entrada em condução (fs < 1 khz) 15

DIODOS exercício Retificador meia onda, a 60 Hz (220 RMS, R=10 Ohms) id med =10 A id ef =15,5 A Diodo SKN20/04 V T0 =0,85V r T =11m Calcule a potência dissipada no diodo, considerando-se as perdas de maior relevância (condução). 16

Tiristores característica estática real A C G 1 Polarização reversa bloqueio 2 Polarização direta bloqueio 3 Polarização direta curto-circuito circuito (disparo) 4 Polarização direta curto-circuito circuito 17

Tiristores característica estática real 18

Tiristores idealização da característica estática i k 3 esp. bloqueia conduz com. 1 2 bloqueia esp. v k 1 2 Polarização reversa circuito aberto Polarização direta circuito aberto (sem disparo) 3 Polarização direta circuito fechado (disparo) 19

G A C Tiristores características dinâmicas 20

Tiristores características dinâmicas Bloqueio tq: mínimo intervalo de tempo em que a tensão deva ser mantida reversa sobre o tiristor garantindo assim o bloqueio 21

Tiristores datasheet (folha de dados) Fonte:Michels 22

Tiristores datasheet (folha de dados) Latching current (IL) ou corrente de retenção: para que o tiristor permaneça no estado de condução depois que o sinal de gatilho é removido, é necessário que a corrente principal (anodo) esteja acima do valor de IL determinado pelo fabricante. Holding current (IH) ou corrente de manutenção: para que o tiristor possa bloquear, a corrente principal deve estar abaixo do valor da corrente de Latching (IL). O nível de corrente em que o tiristor bloqueia é chamado Holding current. Este nível de corrente é afetado pela temperatura e impedância de gate. Valores negativos de tensão de gate aumentam significativamente os valores de IL e IH 23

Tiristores perdas Perdas podem ser separadas em: Perdas de condução Perdas de comutação bloqueio entrada em condução Perdas de condução i F A + V (TO) vf r T - C P cond =V T0 I AVG I RMS 2 r T 24

Tiristores perdas Assim como para os diodos, em conversores comutados pela linha (50-60 Hz), as perdas de comutação podem ser desprezadas. Nos casos em que as perdas de comutação devam ser consideradas, as equações são as mesmas obtidas para os diodos de silício. 25

Cálculo térmico A corrente que circula no componente provoca perdas que geram calor. O calor gerado deve ser transferido para o ambiente. A temperatura de junção não pode se elevar acima dos limites máximo permitidos pois provocaria a inutilização do componente. Por isso a determinação correta das perdas e o dimensionamento do dissipador de calor são de importância prática fundamental. 26

Cálculo térmico Exemplos de encapsulamentos 1 27

Cálculo térmico Modelo para regime permanente T j T c P R jc R cd R da Ta T d T j Junção (semicondutor) T c Case (Encapsulamento) T d Dissipador (Alumínio/ Cobre/Água/etc) Fonte: Heldwein2009 T a Ambiente 28

Cálculo térmico Procedimento: 1. Calcular as perdas (P) através das características do componente e do circuito no qual está inserido. 2. Tj máximo valor é fornecido pelo fabricante do componente. 3. Ta valor adotado pelo projetista. 4. Calcular Rja. 5. Determinar a resistência térmica do dissipador. 29

Cálculo térmico Exercício: A partir das perdas de condução calculadas no exercício anterior e utilizando-se dos parâmetros abaixo informados, calcular a temperatura na junção considerando-se a utilização de um dissipador comercial com resistência térmica de 8 0 C/W. Ta=40 o C Rthda=8 0 C Rthjc=2 0 C Rthcd =1 0 C T j T c P R jc R cd R da Ta T d 30

Cálculo térmico Exercício: Considere um sistema de resfriamento com dois componentes distintos montados sobre o mesmo dissipador de calor. Calcule a máxima resistência térmica do dissipador a fim de manter a temperatura na junção em ambos componentes dentro de valores aceitáveis. Considere a temperatura ambiente Ta = 40 o C. Componente 1 Componente 2 P P 1 =10W 2 =14W Rthjc=1 0 Rthjc=1,5 0 C C Rthcd =0,5 0 Rthcd =0,5 0 C C Tj max =150 0 Tj C max =125 0 C 31

Referências Algumas das figuras/texto têm como fonte as seguintes referências: Barbi, I.do autor, E. (Ed.), 2001. Projetos de Fontes Chaveadas. Barbi, I., 2006. Eletrônica de Potência, 6 ed.. Edição do Autor. Heldwein, M. L. (2009). Apresentação em powerpoint (parte de minicurso COBEP2009). Michels, L. Apresentação em powerpoint da disciplina EPO I (UDESC). Rech, C. Apresentação em powerpoint da disciplina EPO II (UDESC). Williams, B. W.Williams, B. W. (Ed.), 2006. Principles and Elements of Power Electronics. Barry W. Williams, ISBN 978-0-9553384-0-3. 32