AS ENERGIAS DO FUTURO

Documentos relacionados
FUSÃO NUCLEAR: UMA OPÇÃO ENERGÉTICA PARA O FUTURO

NOVAS SOLUÇÕES PARA A ENERGIA NUCLEAR. por. Carlos Varandas

Geração de Energia Elétrica

20/Maio/2013 Aula 24. Reacções nucleares Fissão (ou cisão); reactores de fissão; constante de reprodução. Fusão; reactores de fusão.

26/Maio/2017 Aula 22. Reacções nucleares Fissão (ou cisão); reactores de fissão; constante de reprodução. Fusão; reactores de fusão.

10º ANO FÍSICA - Módulo Inicial Situação energética Mundial e degradação de energia

A FUSÃO NUCLEAR E A BUSCA POR UMA FONTE DE ENERGIA MAIS LIMPA

Fusão e Fissão Nuclear: uma breve introdução

Capítulo 43: Energia Nuclear

Aula 5 A energia não é o começo de tudo, mas já é um início

MINERAIS HIDROGEOLÓGICOS ENERGÉTICOS. de acordo com a finalidade

A FUSÃO NUCLEAR NA PRODUÇÃO DE ENERGIA

Qual a porcentagem da energia usada em todo o mundo que provém de combustíveis fósseis? De que é feito o carvão?

Desafios na metrologia de nêutrons

O combustível nuclear usado é óxido de urânio, enriquecido em Urânio-235, na forma de pastilhas sólidas, empilhadas dentro de varetas de zircónio.

Renato Carlos Tonin Ghiotto. Carlos Alberto Fonzar Pintão Américo Seitiro Tabata. Momotaro Imaizumi Carlos Alberto Soufen Geraldo Luis Palma.

ENERGIA SOLAR FOTOVOLTAICA 2379EE2

A economia do hidrogénio Uma visão sucinta

A energia alternativa é uma energia sustentável que deriva do meio ambiente natural

Fontes de Energias Renováveis e Não Renováveis. Aluna : Ana Cardoso

Energia Solar Térmica. Prof. Ramón Eduardo Pereira Silva Engenharia de Energia Universidade Federal da Grande Dourados Dourados MS 2014

PARTICIPAÇÃO DO CENTRO DE FUSÃO NUCLEAR-LABORATÓRIO ASSOCIADO EM PROJECTOS INTERNACIONAIS DE GRANDE DIMENSÃO E LONGA DURAÇÃO. por.

QUÍMICA. Transformações Químicas e Energia. Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos - Parte 13

Energia. Fontes e formas de energia

Unidade 5 Recursos naturais: utilização e consequências. Planeta Terra 8.º ano

QUÍMICA ENSINO MÉDIO PROF.ª DARLINDA MONTEIRO 3 ANO PROF.ª YARA GRAÇA

Origens históricas dos raios-x. Tubos de Crookes

12.1 Campo magnético criado por uma corrente rectilínea

ENERGIA. Em busca da sustentabilidade

Fontes de energia - Usinas PROF.: JAQUELINE PIRES

Fonte Características Vantagens Desvantagens

ENERGIA SOLAR FOTOVOLTAICA 2379EE2

Fontes renováveis e não-renováveis de energia. Amanda Vieira dos Santos Giovanni Souza

RADIOATIVIDADE E FÍSICA NUCLEAR

A descoberta da radioatividade

18/Maio/2016 Aula 21. Introdução à Física Nuclear. Estrutura e propriedades do núcleo. 20/Maio/2016 Aula 22

FUSÃO NUCLEAR. A energia nuclear tem, fundamentalmente, três vantagens principais:

rotulagem de energia eléctrica

O que é uma Energia Renovável?

A exploração e distribuição dos recursos energéticos

1. Qual das seguintes grandezas NÃO é vectorial? A Aceleração B Força C Temperatura D Velocidade

Arquitectura do Universo. Espectros, radiações e energia

Escola Básica e Secundária Gonçalves Zarco Física e Química A, 10º ano Ano lectivo 2007 / 2008

Se tudo é Energia, qual é o problema da Energia? Manuel Collares Pereira

A aplicação da Engenharia Mecânica nas Energias não Renováveis

GERAÇÃO, TRANSMISSÃO E DISTRIBUIÇÃO DE ENERGIA DE ELÉTRICA

TÉCNICAS DE DIAGNÓSTICO E MEDIDA AULA - 1

= f u Ae. Aula 3

Componente de Física

INVESTIGAÇÃO EM FUSÃO

Geração de energia elétrica por fusão nuclear controlada

Conceitos, fontes de energia, a questão energética no futuro e o caso brasileiro

GEOTERMIA SISTEMAS GEOTÉRMICOS DE BAIXA ENTALPIA E SUA APLICAÇÃO

Bases Conceituais da Energia Q1/2017. Professor: Sergio Brochsztain. (sites.google.com/site/sergiodisciplinasufabc)

Poupe entre 50% a 70% na sua factura

Átomos. Retrospectiva do átomo de hidrogênio Estrutura eletrônica do átomo neutro Estrutura nuclear do átomo RMN

Fontes e formas de energia

ROTULAGEM DE ENERGIA ELÉCTRICA

Matriz energética. O que é a Energia. A Energia na Cidade: A conversão necessária e suficiente. Conversão e eficiência. A energia e a cidade

Recursos energéticos. Recursos renováveis e não renováveis

Eletricidade CAP2. Centro de Formação Profissional Orlando Chiarini - CFP / OC Pouso Alegre MG Inst.: Anderson

UNIVERSIDADE FEDERAL DE UBERLÂNDIA

Tipos de Usinas Elétricas

É uma representação quantitativa da oferta de energia, ou seja, da quantidade de recursos energéticos oferecidos por um país ou por uma região.

DE ONDE VEM A ENERGIA? Energia eletromagnética, Energia Mecânica e Energia térmica

Arquitetura do Universo Origem dos elementos químicos

Sumário. Módulo Inicial. Das Fontes de Energia ao Utilizador 25/02/2015

Energia. A sustentabilidade dos recursos essenciais

Fusão termonuclear controlada

Estrelas. Carlos Alberto Bielert Neto Felipe Matheus da S. Silva

A QUESTÃO ENERGÉTICA E SUAS SOLUÇÕES FUTURAS. Ricardo M.O. Galvão CBPF

Ficha de Trabalho n.º 4

Revisão de Conceitos e Fundamentos de Física das Radiações (B)

Tokamak. A vida na Terra e todas as outras formas de energia têm origem na fusão.

Universidade da Madeira. O Sol. (c) 2009/2014 Grupo de Astronomia da Universidade da Madeira. 1Grupo de Astronomia SOHO, NASA, ESA

As transformações de Lorenz fazem com que certas expressões percam validade. -Uma massa efectiva que depende da velocidade (via factor γ)

MÁQUINAS TÉRMICAS AT-101

Sol. Gastão B. Lima Neto Vera Jatenco-Pereira IAG/USP.

[Ano] Energias renováveis e não-renováveis. Universidade Cruzeiro do Sul

COLÉGIO SANTA CRISTINA - DAMAS AULÃO. ENERGIA Do fogo a energia elétrica. Prof. Márcio Marinho

ENERGIAS RENOVAVEIS. Biocombustiveis - biomassa sólida; - biocombustíveis gasosos; - biocombustíveis líquidos Energia Solar ENERGIA EÓLICA

A Eficiência Energética Portugal

ENERGIA RENOVÁVEIS ÍVISSON REIS

Escola Secundária de Lagoa. Ficha de Trabalho 4. Física e Química A

Ficha formativa 10ªano-Química-unidade1 Nome: Nº Turma:

Energia: Fontes de energia e transferências de energia

Ganhe eficiência nas soluções de energia.

Classificação Periódica Folha 01 Prof.: João Roberto Mazzei

Balanço radioativo terra-sol

5. Fusão Nuclear. Hinrichs, R.A.; Kleinbach, M. Energia e Meio Ambiente, Pioneira Thomson Learning, SP, 2003.

Professora Sikandra Silveira

Recursos naturais: utilização e consequências. Planeta Terra 8.º ano. Hélder Giroto Paiva - EPL

INSTALAÇÕES ELÉTRICAS DE BAIXA TENSÃO Prof. Jean Galdino Campus São Paulo do Potengi

Geração de Energia Elétrica

Alunos: Guilherme F. Alves Paulo Henrique de Melo Toledo. Professor: Dr. Rafael A. Souza. Juiz de Fora 27 de Junho de 2018

OLAVO AMORIM SANTOS VITOR LORDELLO

Fontes Alternativas de Energia Enfoque no Biogás

ESCOLA SECUNDÁRIA/3 MORGADO MATEUS

Energia e Ambiente. Desenvolvimento sustentável; Limitação e redução dos gases de efeito de estufa; Estímulo da eficiência energética;

Transcrição:

AS ENERGIAS DO FUTURO por Carlos Varandas Professor Catedrático do Instituto Superior Técnico Presidente do Centro de Fusão Nuclear Presidente do Steering Committee do European Fusion Development Agreement Museu da Ciência IST, 18 de Novembro de 2004 1

SUMÁRIO 1. Política energética actual 2. Necessidade de uma nova política energética 3. Caracterização de uma política energética para o futuro 4. A energia de fusão Museu da Ciência IST, 18 de Novembro de 2004 2

1. Política energética actual A política energética dos últimos anos tem sido baseada na queima de combustíveis fósseis, com especial relevo no petróleo Algumas justificações: - O preço é (ou era) baixo; - Os combustíveis fósseis podem ser usados quer na produção de energia de base (electricidade) quer no importante sector dos transportes; - A energia nuclear tradicional não é fácilmente aceite pela opinião pública Consumo de Energia [GJ] 180000 160000 140000 120000 100000 80000 60000 40000 20000 0 2002 2003 Oil Natural Gas Coal Nuclear Energy Hydro electric Recurso Sector Portugal Reino Unido Indústria 32% 21% Transportes 38% 35% Doméstico 13% 30% Serviços 9% 14% Outros 8% - Museu da Ciência IST, 18 de Novembro de 2004 3

2. Necessidade de uma nova política energética A queima dos combustíveis fósseis liberta para a atmosfera grandes quantidades de CO e CO 2, provocando perturbações graves no ambiente e no clima. Museu da Ciência IST, 18 de Novembro de 2004 4

O consumo de energia vai aumentar: - Aumento da população; - Desenvolvimento dos países do chamado terceiro mundo; - Melhoria da qualidade de vida nos países industrializados Os recursos naturais são limitados Petróleo [GJ] Gás Natural [GJ] Combustível Anos Carvão 300 Petróleo 40 Gás natural 50 Energia [GJ] 7E+12 6E+12 5E+12 4E+12 3E+12 2E+12 1E+12 0 1980 1985 1990 1995 2000 Ano Museu da Ciência IST, 18 de Novembro de 2004 5

Os combustíveis fósseis, especialmente o petróleo e o gás natural, estão concentrados em certas regiões da Terra, o que pode criar problemas políticos e económicos África 9% Ásia Pacifico 4% Petróleo América do Norte 6% América Central e do Sul 9% Ásia Pacifico 32% Carvão América do Norte 25% América Central e do Sul 2% Europa e EurAsia 9% África 8% Gás natural Ásia Pacifico 8% África e Médio Oriente 8% América do Norte 4% América Central e do Sul 4% Europa e EurAsia 33% Médio Oriente 63% Europa e EurAsia 35% Médio Oriente 41% Museu da Ciência IST, 18 de Novembro de 2004 6

3. Caracterização de uma política energética para o futuro As políticas energéticas a médio-longo prazo devem obedecer aos seguintes conceitos: Eficiência Flexibilidade Diversidade e Inovação Eficiência - No consumo, através de programas de poupança de energia - Na produção, através da melhoria dos rendimentos das fontes energéticas Flexibilidade - As políticas energéticas devem poder adaptar-se com facilidade ao impacto de factores externos Museu da Ciência IST, 18 de Novembro de 2004 7

Diversidade e Inovação - Devemos recorrer a várias formas de energia, de modo a garantir o fornecimento barato, seguro e eficiente Incremento do peso das energias renováveis na oferta global de energia Solar Marés Eólica Biomassa Desenvolvimento de novas fontes de energia Células de hidrogénio Fusão Nuclear Hidratos de metano Recurso a energias alternativas Energia nuclear convencional Carvão (Estados Unidos, Europa, Ásia) Biocombustíveis Areias Betuminosas (Canadá) Óleos pesados (Venezuela) Museu da Ciência IST, 18 de Novembro de 2004 8

4. Energia nuclear Existem dois tipos de reacções nucleares que conduzem à libertação de quantidades significativas de energia: - Fissão Desagregação de átomos de um elemento pesado: urânio, plutónio - Fusão Fusão de átomos de dois elementos leves: isótopos do hidrogénio: Deutério, Hélio, Trítio. Museu da Ciência IST, 18 de Novembro de 2004 9

Estas reacções libertam energia porque há redução da massa dos reagentes D + T He 4 + n As reacções de fissão são usadas nas actuais centrais nucleares para produzir energia eléctrica As reacções de fusão ocorrem no Sol e nas outras estrelas. O Homem tenta utilizá-las, de uma forma controlada, nos laboratórios para a produção de energia de fusão, que possa ser utilizada na geração de energia eléctrica. Museu da Ciência IST, 18 de Novembro de 2004 10

5. Fusão Nuclear Principais reacções de fusão nuclear D + T He 4 + n + 17.6 MeV D + D He 4 + n + 3.27 MeV D + D T + H + 4.03 MeV D+ He 3 He 4 + H + 18.3 MeV A análise destas reacções e da Figura permite tirar as seguintes conclusões: -A melhor reacção é sem dúvida a que envolve D+He 3 porque: (i) liberta a maior quantidade de energia, e (ii) não produz neutrões. - Contudo, esta reacção não pode ser conseguida num laboratório: (i) os átomos têm de possuir uma energia muito elevada; e (ii) o He 3 é um elemento que não existe na Terra. -A reacção mais fácil de obter num laboratório é a que envolve D-T. Mesmo assim, os reagentes devem estar a temperaturas da ordem dos 10-20 kev. Museu da Ciência IST, 18 de Novembro de 2004 11

Às temperaturas de 10-20 kev necessárias para que os núcleos de D e T se possam fundir, vencendo a força de repulsão dos seus núcleos, o Deutério e o Trítio estão ionizados (átomos divididos em iões e electrões), no estado de plasma (quarto estado da matéria). Um plasma é um meio ionizado, quase neutro, com comportamento colectivo - Quase neutro significa que, em qualquer volume do plasma, as cargas positivas e negativas são praticamente iguais. - Comportamento colectivo significa que o movimento das partículas carregadas é influenciado por forças de longo alcance, do tipo da Lei de Coulomb. Há três processos principais para obrigar os átomos de D e T a fundirem-se: - Confinamento gravitacional - Confinamento magnético - Confinamento inercial Museu da Ciência IST, 18 de Novembro de 2004 12

6. Vantagens da fusão nuclear Não há libertação de gases para a atmosfera criadores do efeito de estufa e das chuvas ácidas Os combustíveis (D e T) podem ser facilmente obtidos em qualquer parte da Terra: - O Deutério pode ser extraído da água - O Trítio, elemento radiocativo com uma vida média da ordem de 12.4 anos, pode ser produzido no interior do reactor, usando a reacção de um neutrão com uma camada fértil de Lítio. Combustível Anos Deutério 3x10 11 Lítio Terra 30 000 Oceanos 30x10 6 Li 6 + n T + He 4 + 4.8 MeV A operação de routina de uma central eléctrica de fusão não requer o transporte de material radioactivo fora do reactor. Museu da Ciência IST, 18 de Novembro de 2004 13

Uma central eléctrica de fusão será inerentemente segura devido a duas razões principais: - Não é possível gerar grandes quantidades de energia incontrolada, dado que há pouco combustível no interior do reactor; - As reacções de fusão podem ser quase instantaneamente interrompidas, dado que os combustíveis entram para o reactor à medida que vão sendo utilizados Os produtos das reacções de fusão são cinzas (He 4 ) e neutrões, pelo que não se criam lixos radioactivos, como ocorre numa central de fissão A existência de neutrões conduz à activação das paredes de um reactor de fusão. Uma escolha criteriosa dos materiais usados na construção de um reactor permite prever que esta actividade desapareça ao fim de cerca de 100 anos, um tempo muito curto comparado com os milhares de anos necessários para a descontaminação dos lixos radioactivos de uma central de fissão. Com o desenvolvimento de novos materiais é de esperar que os componentes de um reactor de fusão percam a sua actividade num máximo de 30 a 40 anos. Museu da Ciência IST, 18 de Novembro de 2004 14

7. Dificuldades em realizar na Terra reacções de fusão - Como aquecer os combustíveis até às temperaturas necessárias? Aquecimento Óhmico (efeito de Joule Experiências toroidais (circuito fechado) Aquecimento Auxiliar Feixes de partículas neutras Feixes de ondas electromagnéticas - Como manter o meio tão quente isolado do recipiente onde está contido? Como meio está no estado de plasma (meio constituído por iões e electrões), podemos usar um campo magnético v m r L = qb Para que o confinamento magnético seja eficiente, devemos usar campos magnéticas muito intensos (5 a 7 Tesla), criados por bobinas supercondutoras Museu da Ciência IST, 18 de Novembro de 2004 15

- Que características deve ter o recipiente onde o plasma está contido? O recipiente deve ser feito de um material adequado às condições exigentes da operação da experiência: - Grandes cargas térmicas - Enormes esforços mecânicos - Bombardeamento por neutrões de energia elevada - Circuito permutador de calor - Como garantir que o meio existe durante o tempo necessário? Numa primeira fase, o plasma deve durar o tempo necessário para garantir a ocorrência de um número significativo de reacções de fusão Estudo de Física dos Plasmas Numa segunda fase, a experiência deve funcionar em regime estacionário Museu da Ciência IST, 18 de Novembro de 2004 16

- Como retirar as impurezas do plasma? As impurezas têm raios de geração maiores que os iões de Deutério e Trítio) Podem ser capturadas usando limitadores ou diversores - Como saber o que acontece no dispositivo experimental? Diagnósticos Participação remota Siatema de Controlo e Aquisição de Dados - Como fazer a manutenção e o aperfeiçoamento do dispositivo experimental? A intervenção humana, directa, não é possível após o início da operação com D-T Utilização de braços robotizados Museu da Ciência IST, 18 de Novembro de 2004 17

8. Configurações magnéticas Tokamak Stellarator Museu da Ciência IST, 18 de Novembro de 2004 18

9. Tokamak Os melhores resultados da I&D em fusão nuclear foram obtidos na configuração tokamak. Um tokamak é constituído por: - Uma câmara toroidal, construída numa liga metálica: inconnel, vanádio. - Um campo magnético toroidal criado por um magneto adequado à intensidade do campo a obter. - Um sistema de vácuo, constituído por vários conjuntos de bombas turbomoleculares e bombas rotativas. Museu da Ciência IST, 18 de Novembro de 2004 19

- Um sistema de injecção de gás; - Um sistema de ionização do gás, o qual conduz à formação de um plasma frio; - Um transformador cujo secundário é o próprio plasma; - Um sistema de pre-magnetização do núcleo de ferro do transformador; - Espiras dos campos vertical e horizontal; - Sistema de aquecimento óhmico (Bancos de condensadores); - Sistemas de aquecimento auxiliar Feixes de partículas neutras Feixes de micro-ondas - Diagnósticos do plasma - Sistemas de controlo e aquisição de dados Museu da Ciência IST, 18 de Novembro de 2004 20

10. Principais Tokamaks 30 years Tokamak ISTTOK Museu da Ciência IST, 18 de Novembro de 2004 21

Tokamak JET Tokamak ITER Museu da Ciência IST, 18 de Novembro de 2004 22

11. Central eléctrica de fusão Museu da Ciência IST, 18 de Novembro de 2004 23