Resolução numérica da equação de Richards aplicada à análise das variações do teor de umidade de solos saturados e não saturados

Documentos relacionados
Modelagem matemática do crescimento e absorção da água do solo pela raiz vegetal

Resolução paralela de métodos computacionais aplicados na análise das variações de umidade de solos

EVAPORAÇÃO NA SUPERFÍCIE DO SOLO PROPOSTA POR MODELOS MATEMÁTICOS

MODELAGEM MATEMÁTICA DA EVAPORAÇÃO ATRAVÉS DE DADOS EXPERIMENTAIS DO TEOR DE ÁGUA DO SOLO

Paralelização de métodos computacionais aplicados à análise das variações do teor de umidade de solos saturados e não saturados *

3 MINICURSO ESPECÍFICO

Capítulo 5 Validação Numérica. 5 Validação Numérica

VIII. FÍSICA DO SOLO NOTA

4 Exemplos de verificação

AJUSTE DAS FUNÇÕES DA RETENÇÃO DE UMIDADE PARA O LATOSSOLO AMARELO TEXTURA ARGILOSA DA AMAZÔNIA CENTRAL

INFLUÊNCIA DA TEXTURA DO SOLO SOBRE OS PARÂMETROS DOS MODELOS DE VAN GENUCHTEN E BROOCKS E COREY. Donizete dos Reis Pereira, Danilo Pereira Ribeiro

DETERMINAÇÃO DO VOLUME DE ÁGUA NO SOLO EM FUNÇÃO DA POSIÇÃO DO LENÇOL FREÁTICO, UTILIZANDO MODELOS NUMÉRICOS

4 Resultados e discussões

CALIBRAÇÃO DE TDR PARA DOIS SOLOS DE IMPORTÂNCIA AGRÍCOLA NO RS

ANÁLISE DE PARAMÊTROS PARA DETERMINAÇÃO DE CURVAS DE CALIBRAÇÃO DE TRANSDUTORES TÉRMICOS PARA MEDIDA DO TEOR DE ÁGUA DE SOLOS 1

CONDUÇÃO DE CALOR APLICADO AO ESTUDO DE CONCEITOS MATEMÁTICOS DO ENSINO MÉDIO. Douglas Gonçalves Moçato*** Luiz Roberto Walesko*** Sumário

Estudo analítico e numérico do espalhamento acústico

DESENVOLVIMENTO MATEMÁTICO DE UMA EQUAÇÃO PARA ESTIMATIVA DA CAPACIDADE DE CAMPO 1

Trabalho executado com recursos da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES. (2)

4 Os Experimentos de Túnel de Vento e o Método Numérico

3 Revisão da literatura II: Fluxo em meios porosos

MODELAGEM MATEMÁTICA DO CRESCIMENTO E ABSORÇÃO DE ÁGUA DO SOLO POR SISTEMAS RADICIAIS DE ESPÉCIES ARBÓREAS

3 Modelos matemáticos e formulação numérica

Estimativa da infiltração de água no solo através de pedofunções em área de floresta plantada

Um Estudo Preliminar Sobre a Infiltrabilidade Vertical de Alguns Solos da Cidade de Salvador-BA

5 Metodologia de Solução Numérica

DETERMINAÇÃO DA VELOCIDADE DE INFILTRAÇÃO BÁSICA EM ÁREAS CULTIVADAS SOB REGIME DE IRRIGAÇÃO

Fundamentos da Mecânica dos Fluidos

Universidade Tecnológica Federal do Paraná. CC54Z - Hidrologia. Infiltração e água no solo. Prof. Fernando Andrade Curitiba, 2014

UM MODELO COMPUTACIONAL PARA SIMULAÇÃO DA PERCOLAÇÃO DO CHORUME EM UM ATERRO SANITÁRIO

INFILTRAÇÃO DE ÁGUA NO SOLO EM AGROECOSSISTEMAS NA PROPRIEDADE PIRACICABA, UPANEMA-RN

Modelagem computacional aplicada à análise do gradiente de tensões superficiais

4) Movimento da Água no solo - Bibliografia. 4) Movimento da Água no solo

6 Modelagem bidimensional do processo de corte em rocha

ANÁLISES DE FLUXO E ESTABILIDADE EM BARRAGEM DE TERRA E COMPARAÇÃO ENTRE DADOS PIEZOMÉTRICOS DE CAMPO E PRESSÕES OBTIDAS EM MODELAGEM NUMÉRICA

6 Análise de Aterros Via MEF

3 Fluxo Saturado e não Saturado

4 Fluxo na barragem de terra de Macusani - Peru

FISICA DO SOLO FISICA DO SOLO E CONSERVAÇAO DO DISCIPLINA GCS 104. Prof. Geraldo César de Oliveira 6 ª AULA TEÓRICA SOLO E AGUA II SEMESTRE/2016

Var. Mar. Mar = massa de ar Var = volume de ar Ma = massa de água Va = volume de água Ms = massa de sólidos Vv = volume de poros (vazios) = Var + Va

APOSTILA DE EXERCÍCIOS PARTE I

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

ANÁLISE COMPARATIVA DA CARACTERIZAÇÃO FÍSICO HÍDRICA DE UM LATOSSOLO VERMELHO DISTRÓFICO IN SITU E EM LABORATÓRIO

ESTIMATIVA DA CAPACIDADE DE ARMAZENAMENTO DE ÁGUA NO SOLO NO ESTADO DO CEARÁ RESUMO

DETERMINAÇÃO DA PERMEABILIDADE DO SOLO

5 CURVAS CARACTERÍSTICAS OU DE SUCÇÃO

4 Modelagem Numérica. 4.1 Método das Diferenças Finitas

Transferência de Calor

5 Análise para antenas em espiras inclinadas em relação ao eixo da ferramenta

6 Modelo 3D = (6.1) W

RELATÓRIO DE PRÁTICA EXPERIMENTAL FIS Física Experimental II ONDAS DA CORDA AO SOM

ADAPTAÇÃO E AVALIAÇÃO DE PROCEDIMENTO SIMPLIFICADO PARA DETERMINAÇÃO DA UMIDADE DO SOLO PARA FINS DE IRRIGAÇÃO DE HORTALIÇAS

6 Exemplos. 6.1 Exemplo de validação

2 Propagação de ondas elásticas em cilindros

5 Regime de Fluxo Programa Flow 3D

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13

Fenômeno de Transportes A PROFª. PRISCILA ALVES

Condições variam com o tempo. 1 ) Temperatura na superfície de um sólido é alterada e a temperatura no interior do sólido começa a variar

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2015/16

6 Exemplos de Aplicação

3 o Trabalho de Algoritmos Numéricos II /1 Algoritmos de Avanço no Tempo para problemas Parabólicos Data de entrega:

5 Análise experimental e numérica de membranas cilíndricas hiperelásticas

Utilização de Métodos de Cálculo Numérico em Aerodinâmica

Experimento 3 Rolamento

21/11/2011. Interrelação fatores físicos ÁGUA NO SOLO. Propriedades do solo, fatores de crescimento & produção de plantas.

4 Validação do uso do programa ABAQUS

ESCOAMENTOS UNIFORMES EM CANAIS

Laboratório 5 Geoestatística Linear. Disciplina. Introdução ao Geoprocessamento SER 300. Prof. Antonio Miguel Vieira Monteiro

Projeto: Modelagem de Coberturas Secas em Rejeitos de Carvão Grupo 25

(c) Figura 4.33: Isote rmicas (a), campo vetorial (b) e linhas de corrente (c) para Ra = 105 e. η = 2, 0.

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2015/16

AUTORA: Letícia Xavier Corbini. ORIENTADOR: Nilson Romeu Marcílio

SOLUÇÃO NUMÉRICA PARA O PROBLEMA DE FILTRAÇÃO TANGENCIAL COM MALHAS NÃO- UNIFORMES

3 Fluxo Permanente Não Confinado 3.1. Introdução

CARACTERIZAÇÃO FÍSICO-HÍDRICA DE UM LATOSSOLO VERMELHO PERFÉRRICO SUBMETIDO A DOIS SISTEMAS DE MANEJO DO SOLO 1

Tabela 1 Características gerais dos corpos de prova escolhidos. RI=Rocha intacta; ZD=Zona de dano; NF=Núcleo da falha

CAMPUS DE BOTUCATU CURSO DE PÓS-GRADUAÇÃO EM AGRONOMIA PLANO DE ENSINO

Roberto Juan Quevedo Quispe. Implementação Numérica para Análise de Fluxo Transiente 3D em Barragens

ESTE Aula 2- Introdução à convecção. As equações de camada limite

IT AGRICULTURA IRRIGADA. 1 Água e solo

SIMULAÇÃO DE UM ESCOAMENTO BIFÁSICO ÓLEO- ÁGUA EM RESERVATÓRIO DE PETRÓLEO

Capítulo 4 Condução Bidimensional em Regime Estacionário. Prof. Dr. Santiago del Rio Oliveira

Capítulo 96 Aqüíferos isotrópico e não isotrópico

Escoamento potencial

Capítulo 96 Aqüíferos isotrópico e não isotrópico

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DE SERRA TALHADA PROGRAMA PÓS-GRADUAÇÃO EM PRODUÇÃO VEGETAL

( ) ( ) 2. C = 0, ,1242 log Re+ 0,1558 log Re para

Escoamento completamente desenvolvido

5 MODELAGEM NUMÉRICA E RESULTADOS DO ENSAIO DE LEAK-OFF

7 Simulação numérica de prova de carga em placa sobre solo residual

Monografia de Conclusão do Curso de Graduação em Ciência da Computação. 2

Bacharelado Engenharia Civil

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL GEOTECNIA III

4 Simulação de Fluxo em Reservatório Sintético

USO DO SOFTWARE MAPLE NO ENSINO DE TRANSFERÊNCIA DE CALOR

EFEITOS DO MÉTODO DE DETERMINAÇÃO DA ÁGUA DISPONÍVEL DO SOLO NO CRESCIMENTO INICIAL DO CAFEEIRO CONILON

AVALIAÇÃO DA IMPORTÂNCIA DA ZONA NÃO-SATURADA EM MODELOS DE ÁGUA SUBTERRÂNEA

UFPR - Setor de Tecnologia Departamento de Engenharia Mecânica TM Laboratório de Engenharia Térmica Data : / / Aluno :

Transcrição:

Resolução numérica da equação de Richards aplicada à análise das variações do teor de umidade de solos saturados e não saturados Pedro A. P. Borges, Silvana L. Buligon Depto de Física, Estatística e Matemática, DeFEM,UNIJUÍ Rua São Francisco, 5, Bairro São Geraldo 98 7-, Ijuí, RS e-mail: pborges@unijui.tche.br, sbuligon@gmail.com Geraldo C. Coelho Depto de Biologia e Química, DBQ, UNIJUÍ e-mail: coelho@unijui.tche.br Resumo: O estudo das variações do teor de umidade do solo é de grande interesse para as pesquisas em sistemas agroflorestais e agrícolas. A equação de Richards relaciona o teor de umidade do solo com o potencial total (soma dos potenciais matricial, gravitacional, pressão e osmótico). Neste trabalho esta equação foi resolvida em uma e duas dimensões. Em duas dimensões, foi considerado um problema cilíndrico. Nos dois casos foram implementadas soluções numéricas. Foi simulada a irrigação na fronteira superior, considerando diferentes fluxos de entrada de água durante um tempo inicial e suspensão da irrigação nos instantes posteriores. As outras fronteiras foram consideradas com fluxo nulo. Foi usado o método das diferenças finitas com diferenças centrais devido à característica difusiva do fenômeno. O esquema explícito foi usado para a resolução do problema. Como a equação de Richards envolve o potencial total, o teor de umidade foi calculado com base na curva característica do solo, determinada experimentalmente. Foram realizados experimentos de irrigação de volumes cilíndricos de solo, nos quais foram feitas medidas do teor de umidade. Os resultados obtidos com a resolução numérica do problema descrevem a tendência do deslocamento da água no solo indicada pelos dados experimentais.. Introdução O estudo do comportamento da água no solo é de grande interesse para as pesquisas em sistemas agroflorestais e agrícolas, já que o movimento dos nutrientes depende do movimento da água no solo [7]. Nos projetos de irrigação, principalmente por gotejamento, a descrição de como a água se desloca é fundamental para saber a quantidade de água disponível para as plantas em cada profundidade do solo. A pesquisa do movimento da água no solo utiliza elementos da teoria sobre o comportamento de fluídos em meios porosos. Richards, em 98, utilizou o princípio de conservação de massa e a equação de Darcy para relacionar as variações do teor de umidade com os potenciais gravitacional, matricial, osmótico e de pressão para solos saturados e não saturados, cuja demonstração é encontrada em vários trabalhos, tais como [], [4], [7]. [9] propôs uma equação que relaciona o potencial matricial e o teor de umidade, conhecida como curva característica do solo. Neste trabalho, a equação de Richards em coordenadas cilíndricas, a definição dos potenciais e a equação característica obtida com ajuste de dados experimentais foram utilizadas para calcular o campo de distribuição da umidade em um tubo cilíndrico de solo. O problema é não linear devido à variabilidade da condutividade hidráulica em relação ao teor de umidade em cada ponto, inviabilizando uma solução analítica. Por isso, foi utilizado o método numérico das diferenças finitas para a solução do problema.. Descrição do problema, equipamentos e experimentos O problema proposto é a determinação do teor de umidade em cada ponto e instante de tempo, de um cilindro de solo, submetido à irrigação na superfície. Os experimentos foram realizados nos Laboratórios de Botânica e Física do Solo da Unijuí. O solo utilizado foi o solo predominante na região noroeste do RS, o latossolo, formado a partir da intemperização do basalto. Predomina o Latossolo Vermelho Distroférrico típico, unidade de mapeamento Santo Ângelo, RS, que se caracterizam pela coloração vermelha escura, pelo perfil Professor do DeFEM da UNIJUI. Aluna do Mestrado em modelagem Matemática da UNIJUÍ Professor do DBQ da UNIJUI.

profundo e pela boa drenagem natural. Texturalmente classificam-se como solos argilosos com predominância de argilas : e sesquióxidos de ferro e alumínio [8]. O solo foi homogeneizado e através da medida do potencial matricial em função da variação do teor de umidade em laboratório, foi determinada sua curva característica, mostrada na Figura, cujo ajuste é feito determinando os parâmetros da equação de Van Genuchten / n / m Ψ m = () a Θ onde: Θ é o teor de umidade volumétrico do solo (adimensional); Ψ m é o potencial total matricial (Pa); a, m e n são parâmetros de ajuste. Potencial Matricial log (cmh) 4,5,5,5,5 exper calc,,4,6,8 Teor de umidade adimensional (ad) Figura - Gráfico da curva característica do solo, com os dados experimentais e ajuste da curva característica. de solo foi marcado na superfície segundo quatro raios perpendiculares e nos planos definidos pelo deslocamento vertical de cada um deles, foram realizadas as coletas de solo em tempos diferentes e nos pontos indicados na Fig.. As amostras de solo foram coletadas com um tubo oco de vidro e foi usado o método gravimétrico para medição do teor de umidade.. Modelo Matemático O movimento da água no solo ocorre devido à existência de gradientes de potencial total (ψ). Este potencial é a soma dos potenciais matricial (ψ m ) e gravitacional (ψ g ), para solos não saturados, e gravitacional e de pressão (ψ p ) para os solos saturados. O potencial osmótico também interfere no movimento da água, mas não será considerado neste trabalho, pois está associado à presença de películas (por exemplo, raízes). A equação de Richards relaciona as variações do teor de umidade com as variações do potencial total em um solo isotrópico e homogêneo. A dedução desta equação é encontrada em [],[4] e [7] com base na Lei de Darcy e no princípio de conservação de massa. Em coordenadas cilíndricas esta equação tem a forma. Ψ Ψ Ψ = kr( Θ )r + k ( ) + k ( ) t r r r φ Θ z Θ r φ φ z onde: Θ é o teor de umidade volumétrico do solo (adimensional) Ψ é o potencial total (Pa) r e z são as variáveis espaciais (m) φ é o ângulo polar (rad) t é tempo (s) K r e K z são as condutividades hidráulicas nas direções r e z, respectivamente (m /spa) () Para um problema de eixo simétrico a variação do potencial em relação a φ é nula e a equação () torna-se. Ψ Ψ = kr ( Θ )r + k z ( Θ ) () t r r r z Para o problema unidimensional, somente na direção vertical, a equação () torna-se. Figura Cilindros de solo submetidos à irrigação com pontos de coleta de amostras. (a) Problema unidimensional. (b) Problema bidimensional. Foram realizados dois experimentos de irrigação e monitoramento do teor de umidade em colunas de solo (Fig. ). No primeiro (Fig. a), foram feitas medidas somente na direção vertical e no segundo (Fig. b) na direção vertical e horizontal. O cilindro = k t z Ψ ( Θ (4) z ) As condições de fronteira para o caso bi-dimensional utilizadas neste trabalho, são: ( r,,t ) = Φ i para < r < r i e t < t i (5)

( r,,t ) = para <r<r se t>t e <r<r se t> i i ( r,h,t ) = para < r < R e t > ( R,z,t ) = para < z < H e t > r Θ ( r,z, ) = Θo para < r < R e < z < H. Onde: Φ é o fluxo de água na fronteira (m /s) r i raio de irrigação (m) t i tempo de irrigação (s) R é o raio do tubo (m) H é a altura do tubo (m) Para o caso unidimensional as condições de fronteira utilizadas neste trabalho, são: (,t ) = Φi para < t <t i (6) (,t ) = para t > ( H,t ) = para e t > Θ ( z,) = Θ o para < z < H. A condutividade hidráulica varia em função do teor de umidade do solo. De acordo com [9] ela pode ser calculada pela equação K( m ( Θ / ) m l Θ ) = KoΘ (7) onde K o é a condutividade hidráulica do solo saturado, m é o parâmetro da curva característica e o parâmetro l é considerado por [5] igual a. A dependência entre condutividade hidráulica e teor de umidade do solo torna a equação de Richards não linear, o que inviabiliza o uso de soluções analíticas. Neste trabalho, foram implementadas soluções numéricas dos problemas uni e bidimensionais descrita pelas equações () e (4), com condições de fronteira (5) e (6), respectivamente. 4. Solução Numérica Foi usado o Método das Diferenças Finitas com diferenças centrais, por se tratar de um problema praticamente difusivo, devido à reduzida velocidade com que a água se desloca no solo. Como é um problema de eixo simétrico, o domínio de integração foi definido somente em função de r e z, sendo que os volumes considerados em cada célula correspondem a anéis de raio r i, espessura r e altura z. Para o problema unidimensional a simulação da irrigação foi realizada considerando um fluxo de água na superfície do tubo cilíndrico, como uma condição de fronteira de segunda espécie. Para o problema bidimensional, a simulação da irrigação foi realizada considerando um fluxo de água na região central da superfície até r <,6 m. Foi utilizada uma malha de pontos, nas direções r e z e um intervalo de tempo de s, obtendo-se pequena variação nos valores das variáveis para malhas mais refinadas. 5. Análise dos Resultados O método utilizado neste trabalho para a medição do teor de umidade do solo dificilmente repete os mesmos resultados para execuções múltiplas dos procedimentos experimentais, devido a impossibilidade de homogeneização perfeita do solo; a existência de canais definidos aleatoriamente como trajetória da água; a imprecisão espacial na coleta das amostras e a interferência da retirada de solo na distribuição do campo de umidade. Mesmo assim os dados são coerentes com a distribuição de umidade, característica dos processos de irrigação: pontos na superfície e/ou próximos da zona de irrigação tem maiores teores de umidade do que os pontos localizados nas paredes laterais e no fundo. Essa observação é importante porque os valores de θ não devem ser entendidos, neste trabalho, como valores precisos, mas como uma orientação para analisar a validação do modelo. Teor de umudade (ad),9,8,7,6,5,4,,, 4 6 8 Tempo (h) Figura Distribuição do teor de umidade em diferentes profundidades do solo -problema unidimensional. A Figura mostra os resultados dos experimentos e da aplicação do modelo para o caso unidimensional. O volume de água da irrigação foi suficiente para a saturação do solo, como mostram os dados do modelo. Quando o solo atinge a saturação o teor de umidade é considerado igual a (teor de umidade volumétrico adimensional). Apesar dos dados experimentais não mostrarem, a saturação certamente ocorreu experimentalmente, porém, para os primeiros instantes de tempo de irrigação, não foram realizadas medidas. m,m,m,m m,m,m,m

A Figura 4 mostra a comparação entre os dados calculados e medidos, do problema bidimensional, em função do tempo. Observa-se a forte influência do período de irrigação, tanto nas camadas da superfície como nas camadas abaixo. O decréscimo repentino da curva referente a z=m após o tempo de irrigação, deve-se a interrupção do fluxo de água na superfície e a continuação da perda de água, ocasionada pelo gradiente de umidade existente em relação às células vizinhas. As curvas calculadas reproduzem a tendência dos dados experimentais, pois, na medida que o tempo aumenta, tendem aproximadamente para o mesmo valor do teor de umidade. Isto ilustra a influência do potencial matricial na homogeneização da distribuição da umidade no solo, caracterizando um estado estacionário, quando o teor de umidade praticamente não varia significativamente em relação ao tempo. Considerando que a diferença de teor de umidade para t=h no modelo é mínima e nos dados experimentais é de ordem de,, pode-se considerar a hipótese de que o modelo superestima o valor do potencial matricial na homogeneização da umidade do solo. teor de umidade (ad).9.8.7.6.5.4... m, m, m, m m, exp, m, exp, m, exp, m, exp.5.5.5 tempo (h) Figura 4 - Dados experimentais e resultados da aplicação do modelo para r =,6 m. Figura 6 Simulação da distribuição da umidade em uma seção longitudinal: tempo = s. As Figuras 5 e 6 apresentam simulações (superfícies de umidade) para t = s e t = s, com os mesmos parâmetros e volume de irrigação da fig. 4. A comparação das duas superfícies de umidade evidencia o deslocamento da água nas direções r e z e ilustra uma utilidade do modelo para descrever os estados de umidade do solo irrigado em diferentes tempos. 6.Conclusão Foi desenvolvido um modelo matemático para calcular o teor de umidade de um solo submetido à irrigação. Foram realizados experimentos de medição do teor de umidade em diferentes pontos do solo e diferentes instantes de tempo. A incerteza existente nos dados experimentais não permite uma análise da precisão dos resultados do modelo, porém, servem como referência para a validação deste. Os resultados do modelo reproduzem as tendências gerais do deslocamento da água no solo, indicadas pelos dados experimentais, confirmando a viabilidade de utilizar a equação de Richars para o cálculo do teor de umidade do solo, assim como dos métodos utilizados nesse trabalho para simular as condições de contorno. As simulações realizadas mostram o deslocamento da frente de umidade em uma seção longitudinal do cilindro para diferentes instantes de tempo e evidenciam a utilidade do modelo para estudar o comportamento da água no solo, considerando as influências das condições de fronteira. 6. Referências bibliográficas Figura 5 Simulação da distribuição da umidade em uma seção longitudinal: tempo = s. [] W. A. Jury; W. R Gardner, W. H Gardner, Soil Physies. New York: J.Willey, 99. p.8. [] P.L. Libardi, Dinâmica da água no solo. Piracicaba 995, 497p. [] P.L. Libardi, Dinâmica da água no sistema Solo/Planta/Atmosfera. Piracicaba: Gráfica CENA/USP, 984, 5p 4

[4] T. Miyazaki, S. Hasegawa and T. Kasubuchi, Water Flow in Soils. New York, Marcel Dekker, Inc., 99. [5] Y. Mualen, A new model for predicting the hydraulic conductivity of unsaturated prous media. Water Resour. Res.;Washington. v., p. 5-5, 976. [6] K. Reichardt, Processos de transferência no sistema solo-planta-atmosfera. 4. ed. Campinas: Fundação Cargill, 445p, 985. [7] K. Reichardt,. A água em sistemas agrícolas. São Paulo: Editora Manoele Ltda, 99. [8] N.L.Seibt Filho, Características físicas e capacidade de retenção do latossolo vermelho distroférrico típico com e sem trabalho mecânico do solo. Monografia do Curso de Agronomia, Unijuí, Ijuí, RS,. [9] M. T. Van Genuchten, Closed-form equation for predicting the hydraulic conductivity of unsaturated soils In: Soil Sci. Soc. Am. J.; Madison, v.44, p.89-898, 98. 5