Presente e Futuro das Redes de Transporte Ópticas



Documentos relacionados
Sistemas de Comunicação Óptica

Rede Telefónica Pública Comutada - Principais elementos -

Infraestrutura para Redes de 100 Gb/s. André Amaral Marketing Tel.:

Rede Telefónica Pública Comutada - Principais elementos -

WDM e suas Tecnologias

Redes de Computadores (RCOMP 2014/2015)

Redes de Telecomunicações

Largura de banda e Throughput (Tanenbaum,, 2.1.2)

Modos de Propagação. Tecnologia em Redes de Computadores 5º Período Disciplina: Sistemas e Redes Ópticas Prof. Maria de Fátima F.

1 Fibra Óptica e Sistemas de transmissão ópticos

Apostilas de Eletrônica e Informática SDH Hierarquia DigitaL Síncrona

1 Introdução Motivação

Davidson Rodrigo Boccardo

RCTS Lambda. Manual de utilização

Comunicação de Dados. Aula 9 Meios de Transmissão

Certificação de redes ópticas de 10GbE

Redes de Computadores

Tratamento do sinal Prof. Ricardo J. Pinheiro

Prof. Samuel Henrique Bucke Brito

NASCE A ERA DA COMUNICAÇÃO ELÉCTROMAGNÉTICA

Redes de Telecomunicações. Redes de acesso

Licenciatura em Eng.ª Electrónica (LEE) Licenciatura em Eng. a de Redes de Comunicações (LERC) Sistemas de Comunicações

III.2. CABLE MODEMS CARACTERÍSTICAS BÁSICAS UNIDADE III SISTEMAS HÍBRIDOS

:: Telefonia pela Internet

FREDY HENRIQUE BENITES NEUGEBAUER MEIOS DE TRASMISSÃO. CABEAMENTO DE FIBRA ÓTICA Monomodo

Camada Física. Bruno Silvério Costa

PON PASSIVE OPTICAL NETWORK

Generated by Foxit PDF Creator Foxit Software For evaluation only. Multiplexação e Frame Relay

2- Conceitos Básicos de Telecomunicações

Gestão de Redes e Sistemas Distribuídos

Ligação à Internet. Conceitos de Sistemas Informáticos. Grupo de Comunicações por Computador Departamento de Informática Universidade do Minho

INSTITUTO LABORO ESCOLA TECNICA

Evolução dos sistemas de comunicação óptica

Sistemas de Telecomunicações I

Enunciados de Problemas

Protocolos em Redes de Dados. Enquadramento histórico. Modo de funcionamento FEC. Antecedentes IP Switching Tag Switching. Exemplo de.

Aula 08 MPLS FCUL. Protocolos em Redes de Dados. Luís Rodrigues. Enquadramento. Modo de funcionamento. Antecedentes MPLS.

REDES DE COMPUTADORES II. Ricardo José Cabeça de Souza

Multiprotocol Label Switching. Protocolos em Redes de Dados- Aula 08 -MPLS p.4. Motivação: desempenho. Enquadramento histórico

Descobertas do electromagnetismo e a comunicação

Módulo 7 Tecnologia da Ethernet

10. GENERALIZED MPLS (GMPLS)

Redes de Comunicações Capítulo 6.1

Exercícios do livro: Tecnologias Informáticas Porto Editora

Módulo 8 Ethernet Switching

Considerações Finais. Capítulo Principais conclusões

Sistemas de Comunicação Óptica

Redes de Computadores

Redes e Telecomunicações

Redes WAN. Prof. Walter Cunha

Como em AM e FM, a portadora é um sinal senoidal com frequência relativamente alta;

REDES DE COMPUTADORES

802.11n + NV2 TDMA. Desempenho e Acesso Múltiplo em Redes Wireless com RouterOS

5 SIMULAÇÃO DE UM SISTEMA WDM DE DOIS CANAIS COM O SOFTWARE VPI

Módulo 5 Cablagem para LANs e WANs

CWDM DWDM tecnologias para alta capacidade.

MÓDULO 4 Meios físicos de transmissão

Claudivan C. Lopes

Tecnologias de Redes Informáticas (6620)

ICORLI. INSTALAÇÃO, CONFIGURAÇÃO e OPERAÇÃO EM REDES LOCAIS e INTERNET

Sinal analógico x sinal digital. Sinal analógico. Exemplos de variações nas grandezas básicas. Grandezas básicas em sinais periódicos

DWDM A Subcamada Física da Rede Kyatera

RELATÓRIO DE CONECTIVIDADE FIBRA OPTICA MULTIMODO

Descritivo Técnico AirMux-200

Comunicações por Computador

Vejamos, então, os vários tipos de cabos utilizados em redes de computadores:

REDES DE COMPUTADORES I 2007/2008 LEIC - Tagus-Park TPC Nº 1. Avaliação sumário da matéria do capítulo 1

Alguma das vantagens e desvantagens dos computadores ópticos é apresenta a seguir.

REDES DE TELECOMUNICAÇÕES

Agregação de enlace ethernet e balanceamento de carga

Descritivo Técnico AirMux-400

Redes de Dados e Comunicações. Prof.: Fernando Ascani

ICORLI. INSTALAÇÃO, CONFIGURAÇÃO e OPERAÇÃO EM REDES LOCAIS e INTERNET

Redes de Comunicações. Redes de Comunicações

Introdução. Escola Superior de Tecnologia e Gestão Instituto Politécnico de Bragança Março de 2006

AKARI Uma pequena luz na direção do futuro

REDES DE TELECOMUNICAÇÕES

1 Problemas de transmissão

Topologias e abrangência das redes de computadores. Nataniel Vieira nataniel.vieira@gmail.com

2 Conceitos de transmissão de dados

Sistema de comunicação óptica. Keylly Eyglys Orientador: Adrião Duarte

Administração de Sistemas de Informação I

TÉCNICAS DE ACESSO MÚLTIPLO NO DOMINIO ÓPTICO. José Valdemir dos Reis Junior

Capítulo 2: Camada Física. Capítulo 2. A camada física

PASSIVE OPTICAL NETWORK - PON

Sistemas Multimédia. Instituto Superior Miguel Torga. Francisco Maia Redes e Comunicações

05 - Camada de Física. 10 de novembro de 2014

Comunicações a longas distâncias

Há dois tipos de configurações bidirecionais usados na comunicação em uma rede Ethernet:

Redes de Computadores

Fundamentos de Redes de Computadores. Elementos de Redes Locais

Centro Tecnológico de Eletroeletrônica César Rodrigues. Atividade Avaliativa

Arquitetura de Redes: Camadas de Protocolos (Parte II)

Antenas Parabólicas -- Apostila Básica

Multiplexador. Permitem que vários equipamentos compartilhem um único canal de comunicação

Apostila Básica sobre transmissão de TV Digital Padrão Brasileiro

Curso: Tec. Em Sistemas Para Internet 1 semestre Redes de Computadores Memória de Aula 10. Prof. Moises P. Renjiffo

Conceito de Rede e seus Elementos. Prof. Marciano dos Santos Dionizio

Transmissão de Dados

Prof. Wilton O. Ferreira Universidade Federal Rural de Pernambuco UFRPE 1º Semestre / 2012

Transcrição:

Presente e Futuro das Redes de Transporte Ópticas Seminário The Road Towards Packet Optical Transport Networks ISCTE, 9 Abril 2013 João Pires (jpires@lx.it.pt) Departamento de Engenharia Electrotécnica e Computadores, IST & Instituto de Telecomunicações

Agenda Aspectos introdutórios Evolução e realidade actual O desafio de 400 Gb/s e 1 Tb/s por canal Redes de transporte e comutação Conclusões @João Pires ISCTE, 9Abril 2013 2

Aspectos introdutórios Evolução e realidade actual O desafio de 400 Gb/s e 1 Tb/s por canal Redes de transporte e comutação Conclusões @João Pires ISCTE, 9Abril 2013 3

O que é uma Rede Óptica? Uma rede de transporte óptica é uma de rede de transporte de telecomunicações em que a transmissão de dados é feita no domínio óptico, usando fibras ópticas. As redes ópticas podem ser classificadas em Opacas, Transparentes ou Translúcidas de acordo com o tipo de comutação/processamento de sinal usado nos nós. Nas redes opacas os nós operam no domínio eléctrico e por isso todos requerem conversões OEO (Ex: Redes SDH). Nas redes transparentes os nós operam totalmente no domínio óptico (Redes DWDM). Foco principal desta apresentação As redes translúcidas são redes híbridas, com alguns nós transparentes e outros opacos (Redes OTN). @João Pires ISCTE, 9Abril 2013 4

A Fibra Óptica Um fibra óptica é um guia de ondas cilíndrico que guia as ondas luminosas ao longo do seu eixo. As fibras ópticas usadas nas telecomunicações são fabricadas usando vidro de sílica (SiO 2 ). Estrutura genérica de uma fibra óptica Fibra Convencional (monomodal) Fibra Multi-núcleo Núcleo (GeO 2 / SiO 2 ) Núcleo Bainha (SiO 2 ) ~10μm Bainha (SiO 2 ) 6-8μm Revestimento primário (polímeros) Revestimento primário (polímeros) O diâmetro da bainha nas fibras convencionais é da ordem dos 125 μm e nas fibras multi-núcleo de 130-150 μm. @João Pires ISCTE, 9Abril 2013 5

Aplicações As aplicações das fibras ópticas são muito variadas: medicina, telecomunicações, indústria, aviónica, decoração, moda, etc. @João Pires ISCTE, 9Abril 2013 6

Fibra Óptica & Telecomunicações Charles Kuen Kao 高 錕 Propôs em 1966 a utilização das fibras de vidro (S i O 2 ) nas telecomunicações. A atenuação do vidro nessa altura era de 200 db/km. 1 W 1 km Fibra vidro (200 db/km) 10-20 W Potência (w) 1 10-20 Nível de ruído Prémio Nobel da Física 2009 por contribuições relevantes relativamente à transmissão da luz na fibra para comunicações ópticas 0 Comprimento (km) Demonstrou que a atenuação era devida a impurezas e que se podiam reduzir por purificação. Hoje tem-se ~0.2 db/km (@ 1.55 μm). 1 @João Pires ISCTE, 9Abril 2013 7

Espectro Óptico e Bandas Os sistemas de comunicação óptica operam na banda do espectro electromagnético com comprimentos de onda entre os 800 e os 1600 nm, ou seja na região do infra-vermelho (não visível pelo olho humano). Blu-ray CD (780 nm) (405 nm) DVD ( 640 nm) Sistemas de comunicação óptica νλ = c Ultravioleta Vísível Infravermelho 0.05 0.4 0.7 100 λ (μm) O ITU (International Telecommunications Union) definiu seis bandas passíveis de serem usadas pelos sistemas de comunicação sobre fibra óptica. Banda O Banda E Banda S Banda C Banda L Banda U 1260 1360 1460 1530 1565 1625 1675 λ(nm) As bandas mais usadas pelos sistemas comerciais são as bandas O e C. @João Pires ISCTE, 9Abril 2013 8

Sistema de Comunicação Óptico Estrutura de uma ligação óptica Fibra óptica Conector Sinal Eléctrico Emissor Óptico Sinal óptico Repetidor Sinal óptico Receptor Óptico Sinal Eléctrico t t t t Emissor óptico: consiste numa fonte óptica e em circuitos electrónicos; a fonte óptica é normalmente um díodo laser; faz a conversão dos sinais eléctricos em ópticos. Receptor óptico: consiste num fotodíodo, que é responsável por converter o sinal do domínio óptico para o domínio eléctrico, e por circuitos electrónicos apropriados para amplificar o sinal. Repetidor: pode ser um amplificador óptico, ou um regenerador; o primeiro amplifica o sinal óptico e o segundo dá ao sinal o formato original. Fibra óptica: consiste numa guia cilíndrico geralmente de vidro que permite a transmissão dos sinais ópticos à distância. @João Pires ISCTE, 9Abril 2013 9

Sistemas Monocanal & Multicanal Os sistemas monocanal usam multiplexagem por divisão no tempo ou TDM (Time-Division Multiplexing). Os repetidores podem ser regeneradores ou amplificadores ópticos. Emissor Receptor Laser + modulador externo Amplificador óptico Fibra óptica monomodal Os sistemas multicanal usam multiplexagem por divisão no comprimento de onda ou WDM (Wavelength Division Multiplexing). Os multiplexers agregam vários canais ópticos, cada um operando no seu comprimento de onda. Laser 1 Sinal multiplex λ1,λ 2,λ 3,..., λ N Receptor Óptico 1 Laser 2 λ 2 MUX DMUX λ 2 Receptor Óptico 2 Laser N λ N Fibra óptica monomodal (1.55 μm) Amplificador óptico λ N Receptor Óptico N @João Pires ISCTE, 9Abril 2013 10

Aspectos introdutórios Evolução e realidade actual O desafio de 400 Gb/s e 1 Tb/s por canal Redes de transporte e comutação Conclusões @João Pires ISCTE, 9Abril 2013 11

Paradigmas de Evolução 10 15 b/s 10 12 b/s 10 9 b/s 10 6 b/s Fonte: P. Morin, The New Economy, Global Megatrends Driving Optical Inovation, Nortel, OFC 09 1 Tb/s corresponde à transmissão simultânea de 100 000 canais de HDTV (@ 10 Mb/s) @João Pires ISCTE, 9Abril 2013 12

Capacidade dos Sistemas TDM vs WDM Fonte: R. Essiambre et al., Capacity Limits of Optical Fibre Networks, JLT, p. 662-701, Fev.2010 O débito binário dos sistemas TDM (eléctricos) aumentou 10x durante duas décadas (10Gb/s 100 Gb/s). O débito binário dos sistemas WDM aumentou cerca de 100x numa década. Esse aumento é devido ao aumento da banda dos amplificadores ópticos e sobretudo devido ao aumento da eficiência espectral. @João Pires ISCTE, 9Abril 2013 13

Hierarquias TDM Hierarquia Digital Síncrona (SDH) Hierarquia Sinal SDH Débito (Mbit/s) 1ª STM-1 155.52 2ª STM-4 622.08 3ª STM-16 2488.32 4ª STM-64 9953.28 Hierarquia de Transporte Óptica (OTH) Hierarquia Sinal OTH Débito (Gbit/s) 1ª OTU-1 2.666 2ª OTU-2 10.709 3ª OTU-3 43.018 4ª OTU-4 111.809 5º OUT-5 449.219? STM: Synchronous Transport Module OTU: Optical Transport Unit A Hierarquia de Transporte Óptica ou OTH (Optical Transport Hierarchy) corresponde à camada eléctrica da rede OTN (Optical Transport Network). A OTN foi normalizada em 2001 (ITU G.872) tendo em vista aplicações na rede de transporte de longa distância, operando a débitos entre 2.5 e 100 Gb/s. Entre outras, introduz na rede a funcionalidade FEC (Forward Error Correction) de modo a aumentar a distancia entre regeneradores. João Pires ISCTE, 9Abril 2013 14

Normas Ethernet e de Transporte OTU-5? STM-16, STM-64, As próximas interfaces de cliente Ethernet a definir pelo IEEE serão provavelmente as interfaces 400 GbE e 1 TbE. STM-4 STM-1 Como é que esses fluxos serão acomodados na rede de transporte? Normalização do OTU-5 e OTU-6? Fonte: S. Gringeri el al, Technical Considerations for Supporting Data Rates Beyond 100 Gb/s IEEE Com. Magazine, p. 521-530, Fev. 2012 @João Pires ISCTE, 9Abril 2013 15

Evolução da Eficiência Espectral A eficiência espectral (ε) é a medida do débito binário de informação que pode ser transmitido numa certa largura de banda e é expressa em bit/s/hz. Eficiência espectral (bit/s/hz) Fonte: R. Essiambre et al., Capacity Limits of Optical Fibre Networks, JLT, p. 662-701, Fev.2010 Os sistemas de comunicação óptica convencionais são baseados na modulação de intensidade ou OOK (On/Off Keying ) e apresentam uma eficiência < 1bit/s/Hz. Para aumentar a eficiência é necessário recorrer a técnicas de modulação mais sofisticadas. @João Pires ISCTE, 9Abril 2013 16

Técnicas de Detecção e Eficiência Nos sistemas ópticos convencionais usa-se detecção directa, já que a informação é transmitida na intensidade do sinal. Para aumentar a eficiência espectral a informação terá de ser também transmitida na fase o que requer o uso de detecção coerente. Na detecção coerente o sinal recebido é misturado com o sinal gerado por um oscilador local. Este funcionamento permite preservar a informação de fase e por isso suporta técnicas de modulação tais como o QPSK (quadrature phaseshift-keying) ou 16-QAM (quadrature amplitude modulation). Para operar a 100 Gb/s foi normalizada a modulação PM-QPSK (polarization multiplexed quadrature phase-shift-keying). Sinal na entradaa Laser Acopladorr Local Oscillator Photodiode Estrutura simplificada de um receptor coerente Constelações/eficiências para diferentes esquemas de modulação Q Q OOK BPSK QPSK 10 Q 00 16-QAM 0 1 0 1 0 I I I ε <1bit/s/Hz ε =1bit/s/Hz ε = 2 bit/s/hz 11 01 ε = 4 bit/s/hz @João Pires ISCTE, 9Abril 2013 17

Sistemas Multicanal:Alvo 1Tb/s por Fibra Características chave: Operação a 10 Gb/s por canal Modulação OOK e detecção directa Multiplexagem DWDM (Dense WDM) Grelha (ITU-T G.692) 50 GHZ O número de canais é limitado pela largura de banda dos amplificadores ópticos EDFA que apresenta um valor típico de cerca de 5 THz. Laser 1 Sinal multiplex,λ 2,λ 3,..., λ N Receptor Óptico 1 Laser 2 λ 2 MUX EDFA EDFA EDFA DMUX λ 2 Receptor Óptico 2 Laser N λ N Largura de banda de 5THz λ N Receptor Óptico N Grelha ITU-T 193.1 THz 50 GHz 50 GHz 50 GHz 50 GHz ν 1 ν 2 ν 100 Frequência Frequência Débito binário= 100 canais 10 Gb/s= 1 Tb/s @João Pires ISCTE, 9Abril 2013 18

Sistemas Multicanal: Alvo 10 Tb/s por Fibra Características chave: Operação a 100 Gb/s Modulação PM-QPSK e detecção coerente Multiplexagem DWDM 2 polarizações (X e Y) Grelha de 50 GHz PM-QPSK ε = 2 2bit/s/Hz 111.8 Gb/s 28 Gbaud ~ 40 GHz< 50 GHz Débito binário= 100 canais 100 Gb/s= 10 Tb/s Plataformas de transporte DWDM comercias (2012) Actualmente uma realidade Fabricante Equipamento Capacidade Número de λs Ciena 6500 Packet Optical Platform 8.8 Tb/s 88 λs 100 Gb/s Alcatel-Lucent 1830 Photonic Services Switch 4.4Tb/s 8.8Tb/s 44 λs 100 Gb/s 88 λs 100 Gb/s Nokia Siemens Networks hit7300 9.6 Tb/s 96λs 100Gb/s Ericsson Marconi MHL 3000 Core 3.2Tb/s 80 λs 40 Gb/s @João Pires ISCTE, 9Abril 2013 19

Aspectos introdutórios Evolução e realidade actual O desafio de 400 Gb/s e 1 Tb/s por canal Redes de transporte e comutação Conclusões @João Pires ISCTE, 9Abril 2013 20

O Desafio dos 400G/1Tb/s por Canal Há várias estratégias que podem ser seguidas para dar resposta a esse desafio: Utilização de modulações com eficiência espectral elevada ; Utilização de supercanais (múltiplas portadoras); Utilização de multiplexagem por divisão espacial. As técnicas de modulação a usar podem ser por exemplo PM 16- QAM, PM 32-QAM, etc. Um supercanal é um canal que usa várias portadores ópticas que funcionam como uma entidade única e são encaminhadas em grupo. A multiplexagem por divisão espacial ou SDM (Space-Division Multiplexing) é uma nova tecnologia que usa as fibras multi-núcleo como solução para aumentar a capacidade da fibra. @João Pires ISCTE, 9Abril 2013 21

Soluções para 400 Gb/s por Canal 1) Modulação PM-16 QAM PM-16QAM ε = 2 4 bit/s/hz 449.2 Gb/s 56 Gbaud ~ 80 GHz > 50 GHz 2) Supercanais (4 x100 Gb/s) PM-QPSK 28 Gbaud ~30.8 GHz por canal Banda do supercanal = 30.8 4 =123.2 GHz > 50 GHz 3) Fibra óptica com 4 núcleos Maior alcance que a 1ª solução PM-QPSK 111.8 Gb/s 28 Gbaud ~ 40 GHz< 50 GHz por núcleo As soluções 1 e 2 não são suportadas pela grelha de 50 GHz tradicional. Tal facto implica o desenvolvimento de redes de grelha flexível, em que banda de cada canal depende do seu débito binário e do tipo de modulação usada. @João Pires ISCTE, 9Abril 2013 22

Resultados Experimentais para 100Tb/s 102.3 Tb/s ( 224 548 Gb/s) na distância de 240 km Operação a 540 Gb/s por canal WDM Banda C+L suportando 224 comprimentos de onda (grelha de 50 GHz) Supercanais (OFDM) cada canal com modulação PM-64QAM Fibra óptica de núcleo único de muita baixa atenuação (0.17 db/km) e baixas não-linearidades Fonte: A. Sano et al. 102.3-Tb/s (224x548-Gb/s) C- and Extended L-band.. artigo PDP5C.3, OFC/NFOEC 2012 109 Tb/s (7 97 x 172 Gb/s) na distância de 16.8 km Operação a 172 Gb/s por canal Sinal WDM com 97 comprimentos de onda Modulação PM-QPSK de canal único Multiplexagem SDM baseada numa fibra óptica multi-núcleo com 7 núcleos Fonte: J. Sakaguchi et al. 109-Tb/s (7x97x172-Gb/s SDM/WDM/PDM) QPSK. artigo PDPB6, OFC/NFOEC 2011 @João Pires ISCTE, 9Abril 2013 23

Detalhes sobre a transmissão SDM 109 Tb/s Fibra Multi-núcleo Angled physical contact (APC) conector Fonte: T. Morioka et al. Enhancing Optical Communications with Brand New Fibres, IEEE Com. Magazine, p. S31-S44, Fev. 2012 @João Pires ISCTE, 9Abril 2013 24

Sumário Aspectos introdutórios Evolução e realidade actual O desafio dos 400 Gb/s e 1 Tb/s por canal Redes de transporte e comutação Conclusões @João Pires ISCTE, 9Abril 2013 25

A Rede detransporte Óptica Router B Rede IP /MPLS) Router E Router F Router A Router C Router D ODU Switch 1 Rede de Transporte OTN (eléctrica) ODU Switch 4 ODU Switch 2 ODU ADM4 ODU Switch 3 ROADM: multiplexador de inserção/extracção óptico reconfigurável ODU Switch: comutador OTN a nível de ODU (optical data unit) Caminho Óptico (Switch4 Switch2) ROADM ROADM ROADM ROADM OADM ROADM ROADM OADM ROADM Rede de Transporte DWDM (OTN óptica) ROADM Caminho Óptico ( Router D Router F) @João Pires ISCTE, 9Abril 2013 26

Tipos de OADMs Num OADM o sinal WDM é desmultiplexado e os comprimentos de onda que requerem processamento local são extraídos e posteriormente inseridos. Os restantes comprimentos passam directamente do DMUX para o MUX. Os OADMs podem ser fixos ou reconfiguráveis. Nos primeiros o conjunto dos comprimentos de onda extraídos/inseridos é fixo, enquanto nos segundos pode ser alterado em resposta a mudanças nos padrões de tráfego. OADM fixo AWG (Arrayed Waveguide Grating) OADM reconfigurável λ N λ N, λ 2,.. λ N DMUX λ 2 λ 2 MUX, λ 2,.. λ N, λ 2,.. λ N DMUX MUX λ 2 λ1 Extracção Transponders(O/E/O) Inserção Transponders (O/E/O) Comutador óptico @João Pires ISCTE, 9Abril 2013 27

Configurações dos Nós da Rede Os ROADMs necessitam de apresentar um grau superior a 2 de modo a poderem ser usados em redes em malha e usam comutação óptica. A comutação de canais por ser feita com granularidade a nível do comprimento de onda (rede DWDM), ou com granularidade inferior usando comutação eléctrica a nível de ODUs (rede OTN/DWM) ROADM (Rede DWDM) ROADMs + Comutador ODU (Rede OTN/DWDM) OTM OTM λ, λ 2, 3 λ DMUX 2 λ 3 C Comutador óptico (λs) λ 2 λ 3 MUX, λ 2, λ 3 λ, λ 2, 3 λ DMUX 2 λ 3 C Comutador óptico (λs) λ 2 λ 3 MUX, λ 2, λ 3, λ 2, λ 3 DMUX λ 2 λ 3 Comutador λ 2 λ 3 MUX, λ 2, λ 3, λ 2, λ 3 DMUX λ 2 λ 3 Comutador λ 2 λ 3 MUX, λ 2, λ 3 Interfaces de linha + cliente OTN, Ethernet, MPLS, etc OTN, Ethernet, MPLS Interfaces de linha Comutador de ODUs Interfaces de cliente OTN, Ethernet, MPLS @João Pires ISCTE, 9Abril 2013 28

Estrutrura Avançada de um Nó de Transporte Òptico A estrutura do nó representada abaixo suporta capacidades de canal de 100 Gb/s e superiores. Os sinais dos clientes são mapeados em canais usando uma matriz de comutação óptica, são depois convertidos em supercanais, comutados usando um ROADM para diferentes direcções e mapeados em fibras ópticas. Cabo com várias fibras ópticas Fibra òptica multinucleo Fonte: T. J. Xia et al. High-Capacity Optical Transport Networks, IEEE Com. Magazine, p. 170-177, Nov. 2012 @João Pires ISCTE, 9Abril 2013 29

Soluções de Comutação Optica A comutação óptica é o processo de direccionar o tráfego da entrada para a saída de um determinado nó no domínio óptico sem qualquer conversão O/E/O. Têm-se diferentes soluções: Comutação de circuitos: É uma técnica de comutação analógica e é baseada no estabelecimento de ligações físicas (circuitos). Comutação de pacotes óptica: A informação é estruturada em pacotes ópticos que são comutados no domínio óptico sem qualquer conversão para o domínio eléctrico. Devido a limitações tecnológicas não é possível ser implementada actualmente Comutação de rajadas óptica ou OBS( optical burst switching): É uma solução híbrida entre as duas anteriores. Os pacotes são agregados em bursts no domínio eléctrico e o sinal de controlo (cabeçalho) é processado no domínio eléctrico. @João Pires ISCTE, 9Abril 2013 30

Comutação de Circuitos Há muitas soluções tecnológicas para implementar comutação óptica de circuitos. Um das soluções mais usadas é baseada em MEMS (micro-electromechanical systems) Os MEMS são dispositivos mecânicos em miniatura fabricados usando substratos de silício. Os comutadores MEMS consistem em espelhos miniatura movíveis com dimensões da ordem das centenas de micrómetro. Os micro-espelhos são deflectidos de uma posição para outra usando técnicas electromagnéticas, electro-ópticas ou piezoeléctricas. A estrutura mais simples é a do espelho 2D. Num estado o espelho está paralelo com o substrato não deflectindo o feixe de luz. No outro estado o espelho move-se para uma posição vertical e o feixe de luz é deflectido. O tempo de comutação de um estado para outro é de cerca de 10 ms em ambas as estruturas. @João Pires ISCTE, 9Abril 2013 31

Comutadores Ópticos com MEMS Comutadores com espelhos 2D O comutador baseado em espelhos 2D usa uma arquitectura barra-cruzada. Na configuração com fibras ópticas nas entradas e nas saídas é necessário colimar os feixes na saída e na entrada das fibras para reduzir a sua divergência. A dimensão máxima dos comutadores deste tipo que é possível fabricar num único substrato está limitada a dimensões entre 32x32 a 64x64. Princípio de funcionamento tem algumas semelhanças com a dos comutadores electromecânicos crossbar usados na comutação telefónica analógica dos anos 1960/70. Comutador electromecânico crossbar de 100 pointos usados na comutação telefónica analógica fabricado pela Western Electriic em Abril de 1970 Fonte: Wikipedia @João Pires ISCTE, 9Abril 2013 32

Comutação de Pacotes Óptica A estrutura de um comutador de pacotes óptico inclui mux & demux DWDM, interfaces de entrada e de saída, matriz de comutação de pacotes óptica, buffers ópticos, conversores de comprimentos de onda, etc. Actualmente não é realizável devido à inexistência de buffers ópticos, comutadores ópticos ultra-rápidos (ns) e processadores ópticos (cabeçalho). Cabeçalho Campo de Informação DMUX Fibra óptica DMUX Desmultiplexer DWDM Interface de entrada Unidade de controlo Matriz C de comutação de pacotes Comutador Buffer Óptico Interface de saída OTM Fibra óptica MUX MUX Multiplexer DWDM Os pacotes ao chegarem nas fibras de entrada são em primeiro lugar desmultiplexados no domínio do comprimento de onda. Cada pacote inclui o cabeçalho e o campo de informação. A interface de entrada é responsável por extrair o cabeçalho, e enviá-lo para ser processado na unidade de controlo. De acordo com essa informação a unidade de controlo determina o porto e o comprimento de onda de saída do pacote e instrui a matriz de comutação para realizar essas operações. No processo de encaminhamento o campo de informação poderá ter se der armazenada no buffer óptico e o seu comprimento de onda alterado. Conversor de λs @João Pires ISCTE, 9Abril 2013 33

Optical Burst Switching (OBS) Nas redes OBS usam-se buffers eléctricos na entrada da rede de modo a armazenar um certos número de pacotes que são depois agregados de modo a formar uma rajada (burst). Associado a cada burst existe um sinal de controlo (cabeçalho) que é transmitido num canal de controlo (com um comprimento de onda próprio) e é processado no domínio eléctrico. Canal de controlo DMUX Cabeçalho Burst DMUX Fibra óptica Desmultiplexer DWDM Unidade de controlo OBS Matriz C de comutação de burts Comutador OTM MUX MUX Multiplexer DWDM O sinal de controlo é enviado antes do burst de modo a criar um circuito dinâmico. Quando o burst chega ao comutador, este já esta configurado evitando a utilização de buffers ópticos. A comutação é feita a nível de burst e não de pacotes. Isto permite usar uma matriz de comutação óptica menos rápida do que na comutação de pacotes: tempos de comutação da ordem dos μs, enquanto o segundo caso requeria ns. Conversor de λs A análise do cabeçalho é feita no domínio eléctrico e não no domínio óptico como no caso dos pacotes. @João Pires ISCTE, 9Abril 2013 34

Conclusões As redes ópticas com capacidades de 10 Tb/s por fibra são já uma realidade. As soluções mais apropriadas para 400 Gb/s e 1 Tb/s por canal ainda não claras, mas é provável que a tecnologia dos supercanais venha a ter um papel importante. Há ainda um longo caminho a percorrer até que seja possível ter redes ópticas baseadas em comutação de pacotes a nível óptico. @João Pires ISCTE, 9Abril 2013 35

Obrigado pela atenção @João Pires ISCTE, 9Abril 2013 36