SISTEMA DE CONTROLE DE TURBINA EÓLICA DE BAIXA POTÊNCIA UTILIZANDO TÉCNICA DE RASTREAMENTO DO PONTO DE MÁXIMA POTÊNCIA



Documentos relacionados
Eletrônica Analógica e de Potência

ACIONAMENTOS ELETRÔNICOS (INVERSOR DE FREQUÊNCIA)

Caracterização temporal de circuitos: análise de transientes e regime permanente. Condições iniciais e finais e resolução de exercícios.

Estabilizada de. PdP. Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006

RESULTADOS PARCIAIS DE PESQUISA E DESENVOLVIMENTO DE CONVERSOR CC-CC PARA APLICAÇÃO EM PAINÉIS FOTOVOLTAICOS

MANUAL DE INSTRUÇÕES EFA72C35-A/00

Tutorial de Eletrônica Aplicações com 555 v

Energia Eólica. História

Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006. PdP. Pesquisa e Desenvolvimento de Produtos

IW10. Rev.: 02. Especificações Técnicas

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais

Palavras-chave: turbina eólica, gerador eólico, energia sustentável.

CAPÍTULO 2 - TIPOS DE MÁQUINAS ASSÍNCRONAS TRIFÁSICAS

Técnico em Eletrotécnica

Os capacitores são componentes largamente empregados nos circuitos eletrônicos. Eles podem cumprir funções tais como o armazenamento de cargas

Teoria Princípio do Capacitor

Associação Paralelo Ativo e Passivo Vantagens e Benefícios

Sitec Power Soluções em Energia ENERGIA REATIVA E FATOR DE POTÊNCIA

Transformador. Índice. Estrutura

Funções de Posicionamento para Controle de Eixos

Capítulo 1: Eletricidade. Corrente continua: (CC ou, em inglês, DC - direct current), também chamada de

Temática Circuitos Eléctricos Capítulo Teoria dos Circuitos COMPONENTES INTRODUÇÃO

Eletrônica Industrial Apostila sobre Modulação PWM página 1 de 6 INTRODUÇÃO

Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática

dv dt Fig.19 Pulso de tensão típico nos terminais do motor

Equipamentos Elétricos e Eletrônicos de Potência Ltda.

Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL. Introdução

Analisando graficamente o exemplo das lâmpadas coloridas de 100 W no período de três horas temos: Demanda (W) a

Laboratório de Conversão Eletromecânica de Energia B

DECODIFICADOR DE DISPLAY DE 7 SEGMENTOS COM LATCH

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ

Bloco 3 do Projeto: Comparador com Histerese para Circuito PWM

Universidade do Vale do Paraíba Faculdade de Engenharias Urbanismo e Arquitetura Curso de Engenharia Elétrica/Eletrônica JANELA SENSORIAL

Controle de Múltiplos Pivôs Centrais com um único Conjunto Motor-Bomba

CAPÍTULO 5. INTERFACES PARA PERIFÉRICOS DE ARMAZENAMENTO INTERFACES DIVERSAS: FIREWIRE, SPI e I 2 C INTERFACES COM O MUNDO ANALÓGICO

Circuitos Elétricos 1º parte. Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento

Eletrônica Aula 07 CIN-UPPE

INVERSOR DE FREQUÊNCIA ESCALAR DE BAIXO CUSTO PARA MOTORES MONOFÁSICOS

Boletim Te cnico. Tema: BT002 Fontes para lâmpadas UV

Circuitos de Comando para MOSFETs e IGBTs de Potência

Energia Solar Fotovoltaica

Capacidade = 512 x 300 x x 2 x 5 = ,72 GB

Prof. Antonio Carlos Santos. Aula 7: Polarização de Transistores

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4

GUIA DE APLICAÇÃO DE CAPACITORES BT

DIODO SEMICONDUTOR. Conceitos Básicos. Prof. Marcelo Wendling Ago/2011

Proposta de Trabalho para a Disciplina de Introdução à Engenharia de Computação PESQUISADOR DE ENERGIA

Copyright 2013 VW Soluções

CIRCUITO PARA MEDIÇÃO DE CORRENTES ELEVADAS

Unidade 13: Paralelismo:

São componentes formados por espiras de fio esmaltado numa forma dentro da qual pode ou não existir um núcleo de material ferroso.

Levantamento da Característica de Magnetização do Gerador de Corrente Contínua

Introdução. Criar um sistema capaz de interagir com o ambiente. Um transdutor é um componente que transforma um tipo de energia em outro.

4. Estudo da Curva de Carga

Miguel C. Branchtein, Delegacia Regional do Trabalho no Rio Grande do Sul

Capítulo 04. Geradores Elétricos. 1. Definição. 2. Força Eletromotriz (fem) de um Gerador. 3. Resistência interna do gerador

Projeto de controle e Automação de Antena

ESTUDO SOBRE CONTROLE DE MOTORES DE INDUÇÃO TRIFÁSICOS

3. Arquitetura Básica do Computador

ARQUITETURA DE COMPUTADORES

TRANSFORMADORES ADRIELLE C. SANTANA

Os motores de CA podem ser monofásicos ou polifásicos. Nesta unidade, estudaremos os motores monofásicos alimentados por uma única fase de CA.

UNIVERSIDADE FEDERAL DA PARAÍBA DEPARTAMENTO DE INFORMÁTICA CURSO DE ENGENHARIA DA COMPUTAÇÃO INTRODUÇÃO À MICROELETRÔNICA RELATÓRIO PARCIAL 1

CENTRO TECNOLÓGICO ESTADUAL PAROBÉ CURSO DE ELETRÔNICA

Os termômetros de resistência podem ser isolados de altas tensões. Todavia, na prática, o espaço de instalação disponível é frequentemente pequeno

PROJETO DE REDES

Disciplina: Eletrônica de Potência (ENGC48)

Filtros de sinais. Conhecendo os filtros de sinais.

TRANSFORMADORES. P = enrolamento do primário S = enrolamento do secundário


Aplicações com OpAmp. 1) Amplificadores básicos. Amplificador Inversor

Receptores elétricos

Na primeira aula, conhecemos um pouco sobre o projeto Arduino, sua família de placas, os Shields e diversos exemplos de aplicações.

A metodologia proposta pela WEG para realizar este tipo de ação será apresentada a seguir.

Introdução ao GED Simone de Abreu

DESENVOLVIMENTO DE CIRCUITOS CONVERSORES DIGITAL-ANALÓGICOS PARA CONTROLE DE POLARIZAÇÃO

3. Cite o nome e características do ponto mais alto e do ponto mais baixo de uma onda?

Tais operações podem utilizar um (operações unárias) ou dois (operações binárias) valores.

Unidade 12 - Capacitores

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL

Conceitos Fundamentais de Eletrônica

2. Representação Numérica

Capítulo IV. Aterramento de sistemas elétricos industriais de média tensão com a presença de cogeração. Aterramento do neutro

Uma Fonte de Alimentação para a Bancada de Eletronica

Concurso Público para Cargos Técnico-Administrativos em Educação UNIFEI 13/06/2010

CAMINHOS DA ENERGIA. Google. Pesquisa Escolar ENERSUL. Texto adaptado.

GE Digital Energy Power Quality. Energy Commander TM. Conjunto de Manobra em Paralelo

MANUTENÇÃO ELÉTRICA INDUSTRIAL * ENROLAMENTOS P/ MOTORES CA *

FICHA TÉCNICA Energia Solar Painéis Fotovoltaicos

Afinal, o que Gerenciamento de Energia tem a ver com Automação Industrial?

1.3 Conectando a rede de alimentação das válvulas solenóides

AULA LÂMPADA SÉRIE - VOLTÍMETRO E AMPERÍMETRO REVISÃO DOS CONCEITOS DE TENSÃO E CORRENTE APOSTILA ELÉTRICA PARA ELETRÔNICA

DIAGRAMA DE BLOCOS DE UMA FONTE DE TENSÃO

Capítulo 02. Resistores. 1. Conceito. 2. Resistência Elétrica

UPS. Unidades de Alimentação Ininterrupta

Novo Medidor Eletrônico

Introdução à Eletrônica de Potência

Assunto: Redes Com Menos Gastos

GERADOR EÓLICO 1 INTRODUÇÃO

Transcrição:

SISTEMA DE CONTROLE DE TURBINA EÓLICA DE BAIXA POTÊNCIA UTILIZANDO TÉCNICA DE RASTREAMENTO DO PONTO DE MÁXIMA POTÊNCIA Roberto Augusto Freitas Dias Projeto de Graduação apresentado ao Curso de Engenharia Eletrônica e de Computação da Escola Politécnica, Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Engenheiro. Orientador: Carlos Fernando Teodósio Soares Rio de Janeiro Março de 2015

SISTEMA DE CONTROLE DE TURBINA EÓLICA DE BAIXA POTÊNCIA UTILIZANDO TÉCNICA DE RASTREAMENTO DO PONTO DE MÁXIMA POTÊNCIA Roberto Augusto Freitas Dias PROJETO DE GRADUAÇÃO SUBMETIDO AO CORPO DOCENTE DO CURSO DE ENGENHARIA ELETRÔNICA E DE COMPUTAÇÃO DA ESCOLA POLITÉCNICA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE ENGENHEIRO ELETRÔNICO E DE COMPUTAÇÃO Autor: Orientador: Examinador: Examinador: Roberto Augusto Freitas Dias Prof. Carlos Fernando Teodósio Soares, D. Sc. Prof Joarez Bastos Monteiro, D. Sc. Prof. Maurício Cardoso Arouca, D. Sc. Rio de Janeiro RJ, Brasil Março de 2015 ii

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Escola Politécnica Departamento de Eletrônica e de Computação Centro de Tecnologia, bloco H, sala H-217, Cidade Universitária Rio de Janeiro RJ CEP 21949-900 Este exemplar é de propriedade da Universidade Federal do Rio de Janeiro, que poderá incluí-lo em base de dados, armazenar em computador, microfilmar ou adotar qualquer forma de arquivamento. É permitida a menção, reprodução parcial ou integral e a transmissão entre bibliotecas deste trabalho, sem modificação de seu texto, em qualquer meio que esteja ou venha a ser fixado, para pesquisa acadêmica, comentários e citações, desde3 que sem finalidade comercial e que seja feita a referência bibliográfica completa. Os conceitos expressos neste trabalho são de responsabilidade do(s) autor(es) e do(s) orientador(es). iii

DEDICATÓRIA Dedico este trabalho aos meus pais que investiram em mim durante um longo tempo para que eu pudesse alcançar este momento e sempre me ensinaram a nunca desistir dos meus objetivos. A Lívia Rocha Abreu, que sempre me apoiou nos momentos mais difíceis da minha vida, por ser uma mulher incrível a quem eu amo. A toda a minha família por confiar na minha capacidade de fazer a diferença. Ao grande amigo Pedro Henrique Castello Branco Dágola, a quem eu tive o imenso prazer de conhecer ao abraçar esta jornada. A todas as forças espirituais que me protegeram e me orientaram para que eu fizesse as melhores escolhas até este momento. iv

AGRADECIMENTO Agradeço ao Professor Carlos Fernando Teodósio pela orientação durante a confecção deste trabalho, pelo seu exemplo de profissionalismo e por ter sido um dos melhores professores que tive durante esta graduação. Ao Professor Carlos José Ribas D avilla, coordenador do curso de Engenharia Eletrônica e de Computação, por toda a sua dedicação no cargo público que exerce, pelo carinho e respeito para com todos os alunos e pelo exemplo de profissionalismo. Ao Professor Joarez Bastos Monteiro por todo o conhecimento transmitido de forma clara e objetiva e por todas as orientações profissionais. Ao Professor Maurício Cardoso Arouca por todo o apoio dado desde o momento que nos conhecemos. A Luiz Cezar Sampaio, diretor executivo da Enersud, por disponibilizar os materiais necessários para a execução dos testes deste projeto e por toda a sua cordialidade. A PRV TECH Soluções Eletrônicas, por disponibilizar as suas instalações e fornecer todos os materiais necessários para o desenvolvimento deste projeto. v

RESUMO Este trabalho tem como objetivo desenvolver um controlador para turbina eólica de baixa potência (350 W), com baixo custo e que seja capaz de otimizar a eficiência energética, através do rastreamento do ponto de máxima potência fazendo uso do método perturba e observa. Para tal, o controlador será dotado de um conversor CC-CC do tipo buck, para que através da mudança do seu regime de trabalho possa ser controlado o fluxo de energia entre a turbina eólica e a carga. Serão apresentados os principais tipos de conversores CC-CC e os principais métodos de rastreamento do ponto de máxima potência, que têm sido amplamente adotados em sistemas de geração fotovoltaicos. Ao final será apresentado o circuito eletrônico resultante deste trabalho e os resultados alcançados utilizando o método perturba e observa em uma turbina eólica. Por ter sido concebido utilizando componentes de baixo custo, este projeto facilitará o acesso à geração de energia renovável para os consumidores comuns. Palavras-Chave: Turbina eólica, ponto de máxima potência, eficiência energética, energia renovável, conversor buck. vi

ABSTRACT This work aims to develop a controller for low power wind turbine (350 W) with low cost and is able to optimize the energy efficiency by tracking the maximum power point making use of the method disturbs and observes. To this end, the controller will have a dc-dc buck converter type, so by changing their system of work can be controlled the flow of energy between the wind turbine and the load. The main types of DC-DC converters and the main methods of tracking the maximum power point, which have been widely adopted in photovoltaic generation systems will be presented. At the end of the electronic circuit resulting from this work will be presented and the results obtained using the method disturbs and observes on a wind turbine. Having been designed using low-cost components, this project will facilitate access to renewable energy generation for ordinary consumers. Key-words: Wind turbine, maximum power point, energy efficiency, renewable energy, buck converter. vii

SIGLAS A/D Analógico Digital AFPMSG Axial Flux Permanent Magnetic Synchronous Generator ANEEL Agência Nacional de Energia Elétrica CA Corrente Alternada CC Corrente Contínua MPPT Maximum Power Point Tracking PWM Pulse Width Modulation viii

Sumário 1 Introdução 1 1.1 - Tema........................................... 1 1.2 - Delimitação...................................... 1 1.3 - Justificativa...................................... 1 1.4 - Objetivos........................................ 2 1.5 - Metodologia...................................... 2 1.6 - Descrição........................................ 3 2 Energia Eólica 4 2.1 - Histórico......................................... 4 2.2 - Aerogeradores.................................... 5 2.3 - Potência Eólica.................................... 6 2.4 - Turbina Eólica Escolhida para este Trabalho............ 7 3 Conversores CC-CC 8 3.1 - Conceito......................................... 8 3.2 - O Conversor CC-CC Abaixador ou Buck............... 9 3.3 - O Conversor CC-CC Elevador ou Boost............... 10 3.4 - O Conversor CC-CC Abaixador-Elevador ou Buck-Boost.. 11 4 Técnicas de Rastreamento do Ponto de Máxima Potência 13 4.1 - O que é o ponto de Máxima Potência.................. 13 ix

4.2 - Técnica da Tensão Constante........................ 14 4.3 - Técnica Perturba e Observa......................... 15 4.4 - Técnica da Condutância Incremental.................. 17 5 Projeto do Conversor Buck 18 5.1 - Escolha do Conversor CC-CC....................... 18 5.2 - Características do Projeto do Conversor CC-CC......... 19 5.3 - Determinação do Regime de Trabalho................. 19 5.4 - Determinação do Indutor........................... 19 5.5 - Cálculo Físico do Indutor........................... 20 5.5.1 - Escolha do Núcleo............................... 21 5.5.2 - Número de Espiras............................... 21 5.5.3 - Cálculo da Bitola dos Condutores................... 22 5.6 - Dimensionamento do Capacitor de Entrada............. 22 5.7 - Dimensionamento do Capacitor de Saída............... 23 5.8 - Escolha do MOSFET............................... 24 6 Implementação da Técnica MPPT 25 6.1 - Escolha do Microcontrolador......................... 25 6.2 - Sensor de Corrente................................. 27 6.3 - Sensor de Tensão.................................. 29 6.4 - Fluxograma do Algoritmo.......................... 29 7 Placa de Controle 31 7.1 - Visão Geral...................................... 31 x

7.2 - Esquemático Eletrônico............................ 31 7.3 - Layout da Placa de Controle......................... 32 7.4 - Circuito de Acionamento das Chaves.................. 32 8 Placa de Potência 34 8.1 - Visão Geral...................................... 34 8.2 - Esquemático Eletrônico............................. 34 8.3 - Layout da Placa de Controle......................... 35 9 Resultados Experimentais 36 9.1 - Teste do Conversor Buck........................... 36 9.2 - Testes do Algoritmo MPPT Realizados na Bancada Experimental.......................................... 37 9.3 - Testes do Algoritmo MPPT Realizados em Túnel de Vento.. 38 10 Conclusão e Trabalhos Futuros 40 Bibliografia 41 A Esquemático da Placa de Controle 43 B Esquemático da Placa de Controle 44 xi

Lista de Figuras 2.1 Linha do tempo do desenvolvimento da energia eólica no período do século XI ao século XIX 2.2 Antigo moinho de vento utilizado na região nordeste do Brasil em uma salina entre as décadas de 1960 e 1970 4 5 2.3 Fazenda eólica para a produção de eletricidade....................... 6 2.4 Turbina eólica Notus........................................... 7 3.1 Modulação PWM.............................................. 8 3.2 Conversor Buck............................................... 9 3.3 Conversor Boost............................................... 10 3.4 Conversor Buck-Boost.......................................... 11 4.1 Sistemas interconectados........................................ 13 4.2 Gráficos do ponto de máxima transferência de potência................ 14 4.3 Fluxograma do algoritmo perturba e observa........................ 16 5.1 Conversor Proposto............................................ 18 5.2 Núcleo de ferrite, carretel e seus parâmetros......................... 20 6.1 Proposta de arranjo para a implementação do sistema................. 25 6.2 Estrutura interna do microcontrolador PIC16F876A.................. 26 6.3 Microcontrolador PIC16F876A com encapsulamento DIP-28........... 26 6.4 Cristal utilizado para a geração do sinal de clock do microcotrolador..... 27 6.5 Estrutura interna do circuito integrado sensor de corrente.............. 27 6.6 Aplicação típica sugerida pelo fabricante........................... 28 6.7 Placa comercial com sensor já montado............................ 28 6.8 Sensor de tensão.............................................. 29 6.9 Fluxograma do algoritmo perturba e observa implementado............ 30 7.1 Esquemático eletrônico da placa de controle........................ 31 7.2 Layout do circuito impresso da placa de controle..................... 32 xii

7.3 Sugestão de aplicação do driver IR2104............................ 33 7.4 Arquitetura interna do driver IR2104.............................. 33 8.1 Esquemático eletrônico da placa de potência........................ 34 8.2 Layout da placa de potência..................................... 35 9.1 Forma de onda da corrente no indutor do conversor Buck.............. 36 9.2 Forma de onda da tensão na saída do conversor Buck................. 37 9.3 Gráfico da transferência de potência para diferentes resistências de entrada 37 9.4 Evolução da potência no tempo para uma carga de 13,6 Ohms.......... 38 9.5 Evolução da potência no tempo para uma carga de 2,6 Ohms........... 38 9.6 Resultado dos testes realizados em túnel de vento.................... 39 xiii

Capítulo 1 Introdução 1.1 Tema O tema do trabalho está centrado no controle de turbinas eólicas de baixa potência utilizando técnica de rastreamento do ponto de máxima potência, implementada em um conversor CC-CC do tipo buck. As turbinas eólicas de baixa potência não possuem sistemas de controle mecânicos avançados a fim de mantê-las na região de máxima eficiência aerodinâmica, como ocorre em turbinas de alta potência. Isto ocorre porque a implementação de tais controles neste tipo de turbina inviabilizaria o seu comércio. Este trabalho visa desenvolver um sistema de controle, baseado na técnica perturba e observa, aplicado a um conversor buck para que se possa manter a turbina eólica com a sua velocidade angular dentro da faixa de máxima geração de potência. 1.2 Delimitação O objeto de estudo são turbinas eólicas de baixa potência, na faixa de 0,35 kw a 1,5 kw que fazem uso de alternadores do tipo máquina de tórus (AFPMSG Axial Flux Permanent Magnet Synchronous Generator) e que possuem tensão de trabalho de 24V ou 48 V. Será implementado um algoritmo de controle baseado na técnica Perturba e observa, com o objetivo de extrair o maior rendimento da turbina. Os sistemas de frenagem eletromecânica não será abordado neste trabalho. 1.3 Justificativa A energia elétrica é uma das energias mais fáceis de ser transmitida e transformada. Devido a isso, ela é amplamente utilizada em nossa sociedade. Nos últimos anos, a demanda por eletricidade cresceu acentuadamente, principalmente pelos avanços e pelo barateamento dos equipamentos eletro-eletrônicos. Tal crescimento gerou a necessidade de novas fontes de energia elétrica ligadas ao sistema elétrico 1

nacional, a fim de não sobrecarregá-lo e, consequentemente, causar apagões que geram transtornos e prejuízos a toda sociedade. A microgeração tem sido uma solução amplamente explorada para solucionar o problema do aumento da demanda por eletricidade. Fontes alternativas, como a eólica e a solar, têm sido empregadas em sistemas de microgeração. Em 17 de Abril de 2012 a ANEEL aprovou a resolução normativa nº 482 que define as regras para a microgeração em nosso país. Com esta iniciativa governamental, abre-se um novo mercado na área das energias renováveis, as quais se apresentam com inúmeros desafios a serem vencidos. Este trabalho visa solucionar alguns destes desafios. 1.4 Objetivos O objetivo deste trabalho é implementar um algoritmo de rastreamento do ponto de máxima potência para o controle da energia fornecida por uma turbina eólica de baixa potência, de modo que se possa extrair a maior quantidade de energia possível do vento. Este algoritmo deverá ser gravado em um microcontrolador que ficará responsável por controlar um conversor CC-CC do tipo buck. 1.5 Metodologia Este trabalho irá utilizar um aerogerador dotado de um alternador do tipo AFPMSG (Axial Flux Permanent Magnetic Sinchronous Generator) montado com enrolamentos toroidais e sendo, por isso, conhecido como Máquina de Tórus. A energia elétrica gerada por alternadores do tipo citado acima é, por essência, alternada (CA) e neste trabalho ela deverá ser retificada por uma ponte de diodos trifásica antes de ser injetada no estágio de entrada do conversor buck. O conversor buck será controlado por um microcontrolador, onde estarão gravados os algoritmos responsáveis pela aquisição e cálculo das grandezas elétricas tensão, corrente e potência, e, a partir dessas, ser capaz de rastrear o ponto de máxima potência através da técnica perturba e observa. O arranjo proposto pode ser observado na Figura 6.1. 2

1.6 Descrição No capítulo 2 serão apresentados os principais usos da energia eólica pela sociedade ao longo da sua história e a importância desta energia para o desenvolvimento de cidades e atividades econômicas. Também serão apresentadas neste capítulo as modernas turbinas usadas para a geração de energia elétrica, a Teoria de Betz sobre a máxima extração de energia do vento e a turbina eólica escolhida para o desenvolvimento deste trabalho. O capítulo 3 introduz a técnica de modulação PWM, os principais tipos de conversores CC-CC, suas relações matemáticas de transferência de energia e seus respectivos esquemáticos eletrônicos. O conceito de máxima transferência de potência e os principais métodos para rastreamento do ponto de máxima potência, comumente usados em sistemas fotovoltaicos, são apresentados no capítulo 4. Nele serão explicitadas as vantagens e as desvantagens do emprego de cada método e apresentado o fluxograma do algoritmo proposto para este projeto. No capítulo 5 são desenvolvidos os cálculos do projeto do conversor Buck. A implementação da técnica perturba e observa em um microcontrolador é explicada no capítulo 6. Também são apresentados nesse capítulo os sensores de tensão e corrente, fundamentais para o funcionamento da técnica de rastreamento de máxima potência. No capítulo 7 é apresentada a placa de controle desenvolvida neste trabalho e responsável por receber os sinais dos sensores, processá-los e controlar o ciclo de trabalho do conversor CC-CC. A placa que comportará o conversor Buck bem como o seu esquemático eletrônico será mostrado no capítulo 8. No capítulo 9 são apresentados os resultados experimentais obtidos no laboratório e em testes realizados em túnel de vento. Finalmente no capítulo 10 são evidenciadas as conclusões obtidas com o trabalho e propostos futuros estudos. 3

Capítulo 2 Energia Eólica 2.1 Histórico Com a expansão da agricultura, o homem passou a ter a necessidade de beneficiar os produtos agrícolas em uma escala cada vez maior e, para isso, criou inicialmente processos de moagem e bombeamento de água para a irrigação de lavouras, utilizando tração animal ou até mesmo humana. Porém, com o aumento da produção, este tipo de tração passava a ser cada vez mais insuficiente. Então, em locais onde havia a disponibilidade de rio ou córregos foi implantada um novo tipo de tração através da utilização de rodas d água. No entanto, havia regiões onde não existiam cursos de água que poderiam ser aproveitados para este fim. Nestas regiões houve a percepção da utilização do vento como fonte de energia para a execução dos processos já citados anteriormente. Os primeiro moinhos de vento datam de 200 A.C. na região da Pérsia. Este tipo de energia foi amplamente difundida nos séculos seguintes no mundo islâmico. Porém, acredita-se que a invenção do cata-vento se deu em um momento bem anterior a esse, na China por volta de 2000 A.C. e no Império Babilônico em 1700 A.C., onde eram utilizados para o bombeamento de água usada na irrigação de lavouras (CHESF- BRASCEP, 1987) [1]. Figura 2.1 Linha do tempo do desenvolvimento da energia eólica no período do Século XI ao Século XIX (Fonte: Dutra, 2001)[2] 4

Já na Europa, os moinhos de vento tiveram a sua introdução com o retorno das Cruzadas há 900 anos, onde o tipo predominante usado foi o de eixo horizontal. Nesta época a Europa possuía o sistema de governo Feudal e os camponeses eram obrigados a usar o moinho de vento dos senhores feudais e, para isso, tinham que pagar tributos. No Brasil, os moinhos também foram utilizados na moagem de grãos e, mais recentemente, foram usados para bombear água do mar para as salinas, principalmente da Região dos Lagos, no Rio de Janeiro, e na Região Nordeste do país. Atualmente, com a disponibilidade de energia elétrica nessas regiões, faz-se uso de bombas elétricas convencionais para a retirada de água do mar, não ficando mais dependente das condições do vento para realizar esta tarefa. Figura 2.2 Antigo moinho de vento utilizado na Região Nordeste do Brasil em uma salina entre as décadas de 1960 e 1970 (Fonte: Museu virtual UERN) [ 3] 2.2 Aerogeradores Com a invenção da lâmpada incandescente por Thomas Edson em 1880 [4], a energia elétrica, que até então somente era usada em experiências de laboratório, passou a fazer parte da vida cotidiana das pessoas comuns. A partir desta época até a data atual, a demanda por eletricidade vem crescendo a cada ano em um ritmo acelerado. A primeira adaptação de cata-ventos para a geração de eletricidade foi feita oito anos após a descoberta de Thomas Edson pelo industrial Charles F. Bruch, onde o catavento adaptado tinha a capacidade de fornecer 12 kw na forma de corrente contínua. Esta energia gerada era usada, principalmente, para a iluminação através de lâmpadas incandescentes (SCIENTIFIC AMERICAN, 1890 apud SHEFHERD, 1994) [5]. 5

Esta primeira adaptação criou as bases tecnológicas para a construção dos atuais aerogeradores que conhecemos. Figura 2.3 Fazenda eólica para a produção de eletricidade (Autor: Desconhecido) 2.3 Potência Eólica A função de um aerogerador é extrair a energia contida no ar em movimento na forma de energia cinética. A quantidade de energia que um aerogerador é capaz de extrair do vento é diretamente proporcional à área varrida por suas pás e a massa de ar que as atravessa de forma perpendicular. A potência contida no ar em movimento é dada por: Onde: ρ Densidade do ar (kg/m 3 ) Pdisp A Área varrida pelas pás da turbina eólica (m 2 ) V Velocidade do vento (m/s) 1 2 3 = ρ AV (2.1) A equação (2.1) representa a potência disponível no vento na ausência da turbina eólica. No entanto, esta potência não pode ser totalmente convertida em energia rotacional pela turbina eólica, uma vez que, ao atravessar o plano das pás, o vento deverá sair com velocidade não nula. Caso o vento, após atravessar o plano das pás, tivesse velocidade nula, uma nova massa de ar não conseguiria ultrapassar o plano das 6

pás. No outro extremo, se, ao ultrapassar o planos das pás, o vento mantivesse a sua velocidade, nenhuma energia seria extraída. Segundo [6], existe um máximo teórico para a conversão eólica-mecânica, conhecido como Limite de Betz e este possui o valor de 59,3%. Desta forma, podemos reescrever a equação (2.1) de modo a considerarmos a presença da turbina eólica. P mec 1 ρ 2 = (2.2) 3 AV Cp Onde: C p Coeficiente de rendimento da turbina eólica Limite de Betz. Concluímos, então, que o máximo rendimento de uma turbina eólica é de 59,3%, 2.4 Turbina Eólica Escolhida para este Trabalho Este trabalho tem como foco a turbina eólica Notus cuja fábrica está localizada no município de Maricá no Rio de Janeiro. A escolha deste modelo de turbina se deve ao fato de ser um equipamento de baixo custo, cerca de R$ 3.500,00, sendo acessível a um número maior de consumidores. Tendo uma potência de 350 W, tensão de trabalho de 24 V e um tamanho compacto, essa turbina é uma ótima opção para ser instalada em residências. Figura 2.4 Turbina Eólica Notus (Cortesia Enersud) 7

Capítulo 3 Conversores CC-CC 3.1 Conceito Os conversores CC-CC são dispositivos que recebem um determinado nível de tensão ou de corrente contínua em seus terminais de entrada e o transforma em outro nível de tensão ou de corrente contínua de acordo com o tipo de conversor que está sendo utilizado e o seu respectivo regime de trabalho. Os principais conversores CC-CC não isolados são: o conversor abaixador de tensão, conhecido como buck, o conversor elevador de tensão, conhecido como boost e o conversor abaixador-elevador de tensão, conhecido como buck-boost. [7] Os conversores CC-CC possuem dois modos de funcionamento de acordo com a corrente que circula pelo indutor L, que são: modo de condução contínua, onde a corrente que circula o indutor L é sempre maior que zero durante um período completo de chaveamento, e o modo de condução descontínua, onde a corrente que circula pelo indutor L assume valor nulo em um determinado momento durante o período de chaveamento. Estes tipos de conversores são também conhecidos como conversores chaveados, pois possuem uma chave eletrônica responsável por dosar o quanto o indutor é carregado e que é controlada através da modulação por largura de pulso, PWM (Pulse Width Modulation). Figura 3.1 Modulação PWM 8

3.2 O Conversor CC-CC Abaixador ou Buck O conversor Buck tem como característica fornecer um valor médio de tensão em sua saída menor do que o da entrada, e um valor médio de corrente de saída maior que o da entrada, isso devido à alta eficiência destes conversores e ao princípio da conservação da energia. Por exemplo, se existe na entrada uma tensão de 12 Volts, e uma corrente de 1 Ampère, totalizando 12 Watts, enquanto que na saída temos um valor de tensão igual a 6 Volts, é natural que, para termos na saída os mesmos 12 Watts da entrada, tenhamos que ter a corrente de saída com valor de 2 Ampères, pois P = V x I. Este tipo de conversor permite que tenhamos na saída tensões que vão de 0 Volts até o valor da tensão de entrada do conversor, apenas variando o ciclo de trabalho, duty cycle, do seu PWM. Na Figura 3.2 é apresentado o diagrama de um conversor do tipo Buck. Figura 3.2 Conversor Buck A relação entre a tensão de saída e a tensão de entrada neste tipo de conversor operando no modo de condução contínua é dada pela seguinte equação [7]: Onde: V o Tensão de saída do conversor V i Tensão de entrada do conversor D Ciclo de trabalho (duty cycle) V o = V D (3.1) i Através da equação (3.1), podemos comprovar que a tensão de saída pode assumir valores que vão desde o valor zero até o valor da tensão de entrada, uma vez que a razão cíclica pode variar de 0% a 100%. 9

3.3 O Conversor CC-CC Elevador ou Boost O conversor Boost, ao contrário do conversor Buck, tem como característica a entrega de um valor de tensão em sua saída maior ou igual ao valor da tensão de entrada e, sendo assim, baseado novamente no princípio da conservação da energia, temos que o valor da corrente de entrada sempre será igual ou superior ao valor da corrente de saída. A Figura 3.3 mostra um arranjo padrão usado na construção de um conversor do tipo Boost. Figura 3.3 Conversor Boost A relação entre a tensão de entrada e a tensão de saída para o conversor Boost operando no modo de condução contínua, em função do ciclo de trabalho é dada pela equação abaixo [7]: V o Vi = (3.2) 1 D Onde: V i Tensão de entrada do conversor V o Tensão de saída do conversor D Ciclo de trabalho (duty cycle) 10

3.4 O Conversor CC-CC Abaixador-Elevador ou Buck-Boost O conversor do tipo Buck é utilizado em situações onde desejamos conectar uma fonte de energia com características de fonte de tensão a uma carga que possui características de fonte de corrente. Já o conversor do tipo Boost é utilizado quando desejamos conectar uma fonte de energia com características de fonte de corrente a uma carga com características de fonte de tensão. Todavia, existem casos em que necessitamos conectar uma fonte de tensão a outra fonte de tensão e controlar o fluxo de energia entre as duas. Nestes casos utilizamos o conversor do tipo Buck-Boost. A principal característica deste tipo de conversor está no fato de que a tensão entregue a carga pode ter um valor maior, menor ou igual ao valor da tensão na entrada deste conversor. A Figura 3.4 mostra o arranjo básico para a confecção deste tipo de conversor. Figura 3.4 Conversor Buck-Boost A relação entre a tensão de entrada e a tensão de saída para o conversor Buck- Boost operando no modo de condução contínua, em função do ciclo de trabalho, é dada pela seguinte equação [7]: Onde: V i Tensão na entrada do conversor V o Tensão na saída do conversor D Ciclo de trabalho (duty cycle) 11 V o Vi D = (3.3) 1 D

Observando a equação (3.3) notamos que quando a razão cíclica tende a zero, a tensão na saída do conversor também tende a zero e quando a razão cíclica tende a um, a tensão na saída do conversor tende a infinito, pois teríamos uma divisão por zero. Na prática, a tensão nunca alcançará um valor infinito, pois se a razão cíclica atingir o valor unitário, o núcleo do indutor presente no conversor saturaria, curto-circuitando a fonte de entrada e não transferindo nenhuma energia para a carga. Valores cuja a razão cíclica são da ordem de 70% são frequentemente utilizados na prática. 12

Capítulo 4 Técnicas de Rastreamento do Ponto de Máxima Potência 4.1 O que é o ponto de máxima potência Em sistemas eletrônicos interconectados, a transferência de potência entre eles obedece à relação existente entre as impedâncias de entrada e saída desses sistemas [8]. Na maioria dos sistemas, em que suas características não variam, existe um único ponto de máxima transferência de potência entre dois ou mais sistemas interconectados. Esse ponto de máxima transferência de potência ocorre quando a impedância de saída do primeiro sistema é igual ao complexo conjugado da impedância de entrada do segundo. A Figura 4.1 mostra um exemplo de sistemas interconectados. Neste exemplo a máxima transferência de potência entre eles ocorre quando o valor da impedância Z 2 é igual ao complexo conjugado da impedância Z 1. Figura 4.1 Sistemas interconectados No entanto, existem casos onde as características dos sistemas mudam em função de outras variáveis internas ou externas e, consequentemente, não maximizamos a transferência de potência entre eles. Para solucionar esse problema, algumas técnicas de rastreamento do ponto de máxima potência foram criadas. Essas técnicas são comumente conhecidas como Técnicas de MPPT (MPPT Maximum Power Point Tracking). A Figura 4.2 mostra o deslocamento do ponto de máxima potência em função da variação das características do sistema. 13

Figura 4.2 Gráficos do ponto de máxima transferência de potência. Comparando as principais técnicas de rastreamento do ponto de máxima potência podemos citar que os principais métodos usados atualmente são: Tensão Constante (CV Constant Voltage), Perturba e Observa (P&O Pertubation & Observation) e Condutância Incremental (IncCond Incremental Conductance) [9] [10] [11] [12]. As técnicas de rastreamento do ponto de máxima potência são utilizadas, atualmente e principalmente, em sistemas fotovoltaicos. 4.2 Técnica da tensão constante Esta técnica é muito utilizada em arranjos fotovoltaicos devido à sua simplicidade de implementação, a não necessidade de utilização de sensores de corrente e não necessitar de processamentos complexos por parte do microcontrolador. Este método se baseia no fato de existir uma relação constante entre a tensão de circuito aberto (V oc ) e a tensão do ponto de máxima potência (V mppt ), independentemente das variações de temperatura e irradiação [9] [10] [11] [12]. A equação (4.1) mostra a relação existente entre a tensão de circuito aberto e a tensão do ponto de máxima potência. V mppt Onde: V mppt Tensão do ponto de máxima potência. k Constante de proporcionalidade. V oc Tensão de circuito aberto. = kv (4.1) oc 14

Em arranjos fotovoltaicos o valor da constante k assume valores da ordem de 0,7 a 0,8. Esta técnica, apesar de possuir as vantagens já citadas, possui uma série de desvantagens, como por exemplo, o uso adicionais de chaves para a desconexão momentânea do conversor eletrônico, para que a tensão de circuito aberto possa ser medida; a falta momentânea de geração, devido à desconexão do sistema para a medição da tensão de circuito aberto, e também o fato da constante k, que é definida empiricamente, não garantir que o sistema opere exatamente sobre o ponto de máxima potência. 4.3 Técnica perturba e observa A técnica de rastreamento perturba e observa, assim como a técnica da tensão constante, também é muito utilizada devido a não requerer um grande poder computacional por parte do microcontrolador. Este método de rastreamento perturba frequentemente o sistema de geração, através do incremento ou do decremento do ciclo de trabalho do conversor eletrônico (duty cycle), e após essa ação observa se a potência gerada aumentou ou diminuiu. Caso a potência tenha aumentado, por exemplo, o algoritmo irá perturbar o sistema novamente na mesma direção e, caso a potência tenha diminuído após a perturbação, o sistema adotará a ação contrária. A Figura 4.3 mostra o fluxograma do algoritmo da técnica perturba e observa [26]. 15

Figura 4.3 Fluxograma do algoritmo perturba e observa. Para a implementação desta técnica é necessária, além da utilização de um sensor de tensão, a utilização de um sensor de corrente. Temos como principal vantagem, em relação a técnica anterior, não termos que interromper a geração para rastrearmos o ponto de máxima potência. Outra vantagem está no fato desta técnica estar sempre buscando o real ponto de máxima potência, uma vez que a mesma se baseia nos valores de tensão e correntes advindos do sistema de geração. Podemos citar como sendo a principal desvantagem desta técnica o fato de que nunca obtermos o ponto de máxima, pelo menos durante todo o tempo, pois o resultado deste tipo de rastreamento faz com que o sistema oscile ao redor do ponto, mas nunca permaneça sobre ele, resultando assim em um erro de regime permanente. Para o bom funcionamento deste algoritmo, duas variáveis têm que ser bem definidas, são elas: o tamanho da perturbação aplicada ao sistema e o tempo de aquisição da tensão e da corrente. 16

4.4 Técnica da Condutância Incremental Esta técnica está baseada na busca do ponto de máxima potência através do cálculo da derivada da curva potência x tensão. Podemos escrever a derivada da potência do sistema de geração da seguinte forma. dp dv d( VI ) dv = (4.2) Realizando algumas manipulações em (4.2), obtemos: 1 dp I di = + (4.3) V dv V dv Através da equação (4.3), e sabendo que V sempre assumirá valores positivos, temos como resultado que o sinal da derivada da potência em relação à tensão é dado por (I / V + di / dv), sendo a condutância instantânea (I / V) e a condutância incremental (di / dv). Com esses resultados torna-se fácil determinar se estamos no ponto de máxima potência, já que a derivada da potência em relação a tensão será igual a zero no ponto de máxima potência[10]. A vantagem desta técnica em relação as anteriores encontra-se no fato de conseguirmos determinar com exatidão o ponto de máxima potência do sistema de geração e, uma vez sendo este encontrado, torna-se desnecessária a mudança do ciclo de trabalho do conversor, evitando, assim, oscilações no sistema como acontece com a técnica perturba e observa. Todavia, para a realização dos cálculos da derivada, é necessário um maior poder de processamento por parte do microcontrolador. 17

Capítulo 5 Projeto do Conversor Buck 5.1 Escolha do Conversor CC-CC Para este trabalho, foi escolhida a topologia de conversor CC-CC do tipo Buck, com o intuito de reduzir a corrente demandada da turbina eólica, a fim de reduzir as perdas nos enrolamentos, diminuindo a densidade de corrente. A fim de reduzir as perdas durante a conversão CC-CC, o arranjo escolhido para o conversor foi o Buck síncrono. Neste tipo de arranjo, o diodo schottky é substituído por um transistor do tipo MOSFET, sendo que este segundo transistor recebe o comando de acionamento complementar em relação ao outro transistor, ou seja, quando um transistor recebe o comando para ligar o outro está recebendo o comando para desligar e assim sucessivamente. As equações necessárias para o projeto do conversor foram retiradas de [7] e [16]. Os componentes que deverão ter seus valores calculados são apresentados na Figura 5.1. Figura 5.1 Conversor proposto. 18

5.2 Características do Projeto do Conversor CC-CC O modelo de turbina eólica escolhido foi o Notus 138 24 V, do fabricante Enersud. Esta turbina tem uma capacidade de geração de 350 W. A partir destas informações, as características do conversor foram definidas como se segue. Por medida de segurança, o conversor foi dimensionado para fornecer uma potência de 500 W. Tensão nominal de entrada do conversor: 24 Volts Tensão máxima de entrada: 28 V Potência do conversor: 500 W Corrente nominal de entrada: 21 A Tensão nominal de saída: 13,8 V ± 0,05 V (Tensão de flutuação de baterias do tipo Chumbo-Ácidas) [21]. Potência nominal de saída: 500 W perdas Corrente máxima de saída: 48 A ± 9,6 A (A corrente máxima ocorre quando a bateria encontra-se descarregada, ou seja, com uma tensão de 10,5 V). 5.3 Determinação do regime de trabalho. D V 10,5 Onde: D mín Mínimo ciclo de trabalho (duty cycle). V omín Tensão mínima de saída. V imáx Tensão máxima de entrada. o mí n min = = = 0,375 = 38% (5.1) Vimáx 28 5.4 Determinação do Indutor 1 ( V 1 imáx Vo mí n ) Dmín ( ) (28 10,5) 0,375 ( ) fs L = = 18000 = 37.98µ H I 9,6 Lmáx Onde: f s Frequência de chaveamento. I Lmáx Variação máxima da corrente no indutor. (5.2) 19

5.5 Cálculo Físico do Indutor Para este projeto foi escolhido o modelo de núcleo em formato de duplo E, tendo como composição o material conhecido como ferrite ou ferrita. Para que possamos fazer a escolha de um modelo de núcleo comercial devemos calcular alguns parâmetros que são mostrados na Figura 5.2. Figura 5.2 Núcleo de ferrite, carretel e seus parâmetros [16]. Os seguintes cálculos podem ser realizados para a determinação dos parâmetros do núcleo e do carretel [16]. A e A = w L I I 10 Lpico LRMS B J F máx máx u Onde: A e Área da seção central do núcleo. A w Área da janela do carretel. I Lpico Corrente de pico no indutor. I LRMS Corrente média quadrática no indutor. B máx Densidade de fluxo magnético máximo. J máx Densidade de corrente nos condutores do enrolamento. F u Taxa de ocupação dos condutores. 4 (5.3) Temos: Para o ferrite: B máx = 0,25T Densidade de corrente usual: J máx = 450 A/cm 2 Taxa de ocupação típica: F u = 0,7 (70%) 20

Temos também: I L 9,6 I Lpico = Io + = 48 + = 52,8A (5.4) 2 2 1 I 1 9,6 L 2 2 I LRMS = Io 1 + ( ) = 48 1 + ( ) 48A 3 2Io 3 2 48 (5.5) Aplicando os resultados (5.4) e (5.5) em (5.3) temos: 6 4 37,98 10 52,8 48 10 Ae Aw = = 12, 22cm = 122200mm 0,25 450 0,7 4 4 (5.6) 5.5.1 Escolha do Núcleo Agora que já obtivemos o valor do produto da área da seção central do núcleo pela área da janela do carretel estamos aptos a selecionar um núcleo comercial. Para este projeto foi selecionado o fabricante nacional de núcleos de ferrite, THORNTON. Esse fabricante possui um núcleo com A e = 532 mm 2 e um carretel com A w = 370 mm 2. Sendo assim, o núcleo selecionado foi o NEE-65/33/26 e o carretel escolhido foi CE- 65/33/26-1/0-POM. 5.5.2 Número de Espiras Considerando que o valor mínimo do indutor para o conversor operar no modo de condução contínua é de 37,98 µh e tendo em vista que o núcleo selecionado possui um considerável espaço vago no carretel, vamos considerar, por precaução, o valor de 50 µh para o indutor a fim de garantir que ele estará sempre operando no modo de condução contínua. Foi verificado em (5.6) que o núcleo escolhido comporta este valor de indutor. Calculando o número de espiras temos [16]: 6 L I Lpico 4 50 10 52,8 4 N = 10 = 10 = 19,85 B A 0, 25 5,32 máx e (5.7) Vamos considerar N = 20 espiras. 21

5.5.3 Cálculo da Bitola dos Condutores Levando-se em consideração o efeito pelicular devemos colocar um certo número de condutores em paralelo para não aumentarmos as perdas no indutor, ou até mesmo danificá-lo devido à elevação da densidade de corrente. Sendo assim, aplicamos a equação do efeito pelicular [16], que evidencia até que profundidade a corrente penetrará no condutor. 7,5 7,5 = = = 0, 0559cm (5.8) f 18000 s O diâmetro do condutor não deverá ser menor do que 2 = 0,112 cm. A área mínima que o condutor deverá ter é [16]: A cond I J 48 450 LRMS 2 = = = 0,1067cm (5.9) máx Dados os resultados anteriores, o condutor escolhido foi o AWG19, que possui um diâmetro d = 0,091 cm e uma área de cobre igual a A = 0,006527 cm 2. Através da equação (5.10) podemos calcular o número de condutores que devem ser postos em paralelo. n condutores Acond 0,1067 = = = 16,34 (5.10) A 0, 006527 Considerar que o número de condutores a serem colocados em paralelo é igual a 17. 5.6 Dimensionamento do Capacitor de Entrada A corrente na entrada do conversor é de característica pulsada [7], possuindo elevado conteúdo harmônico que pode causar interferência em outros equipamentos. O fato importante a ser levado em consideração é que a indutância parasita existente entre a turbina eólica e o conversor, causada pelas grandes distâncias de cabos utilizadas, pode acarretar na geração de sobretensões que poderão danificar o circuito. 22

Para evitar esses problemas durante a operação do sistema, será utilizado um capacitor eletrolítico como filtro de entrada no conversor. Este capacitor será dimensionado tomando como referência a equação (5.11). C 1 = Io 4 f V c 1 (5.11) Onde: I o Corrente média na carga. f Frequência de chaveamento. V C1 Variação da tensão no capacitor de entrada. (Considerar V C1 = 2 V). Efetuando os cálculos temos: C 1 48 = = 240µ F 4 25000 2 5.7 Dimensionamento do Capacitor de Saída Para que possamos obter uma corrente constante na carga, é necessário que façamos uso de um capacitor eletrolítico na saída do conversor, por onde circulará a componente alternada da corrente que passa através do indutor [7]. Podemos, através da equação (5.12), dimensionar o valor do capacitor necessário para atender às especificações iniciais do projeto. C 2 i = L 2π f V (5.13) Onde: i L Variação da corrente no indutor L 1, definida no início do projeto com o valor de 9,6 A. f Frequência de chaveamento. V Variação da tensão de saída, definida no início do projeto com o valor de 0,05 x V omin. Efetuando os cálculos temos: C 2 9,6 = 116µ F 2π 25000 0,05 10,5 (5.14) 23

5.8 Escolha do MOSFET Sendo a potência máxima do conversor igual a 500 W e a tensão máxima presente na entrada do circuito igual a 28 V, foi escolhido o MOSFET IRFZ44 por ser um componente de fácil aquisição e custo reduzido. Este componente possui V DS = 60 V e I Dmáx = 50 A. 24

Capítulo 6 Implementação da Técnica MPPT Para a construção do sistema foi utilizada a proposta de arranjo apresentada na Figura 6.1. Figura 6.1 Proposta de arranjo para a implementação do sistema. 6.1 Escolha do microcontrolador. O microcontrolador escolhido possui internamente todos os módulos necessários para a implementação da técnica escolhida e também tem como atrativo o seu baixo preço de mercado. Para este trabalho, o microcontrolador escolhido foi o PIC16F876A, da fabricante Microchip. Este dispositivo eletrônico possui em seu interior, além da CPU, uma memória EEPROM de 256 x 8 bits, dois módulos PWM com resolução de 8 bits e um conversor A/D de 10 bits [13]. A Figura 6.1 apresenta a estrutura interna do microcontrolador PIC16F876A, fornecida pela fabricante. 25

Figura 6.2 Estrutura interna do microcontrolador PIC16F876A [22]. A frequência de trabalho escolhida para o microcontrolador foi de 20 MHz, utilizando um oscilador externo a cristal. Esta frequência foi escolhida por simples conveniência, tendo em vista que este cristal já estava disponível para a utilização no momento do desenvolvimento deste trabalho. Frequências menores podem ser utilizadas sem problema, pois o sistema a ser controlado, uma turbina eólica, possui constante de tempo de segundos, devido à inércia da máquina elétrica. Figura 6.3 Microcontrolador PIC16F876A com encapsulamento DIP-28 26

Figura 6.4 Cristal utilizado para a geração do sinal de clock do microcontrolador 6.2 Sensor de corrente. Para o cálculo da potência durante o rastreamento do ponto de máxima potência é necessária a aquisição do valor da corrente fornecida pela turbina eólica. Para medir este valor de corrente foi utilizado um sensor de corrente por efeito Hall integrado, fabricado pela Allegro MicroSystems. Este sensor pertence a linha de sensores ACS712 e o modelo escolhido tem a capacidade de medir correntes na faixa de -20 A a +20 A [14]. A utilização deste sensor foi escolhida porque é um sensor de baixo custo, se comparado com sensores de outros fabricantes, é facilmente encontrado no mercado e já vem montado em uma pequena placa de circuito impresso, o que torna sua manipulação e instalação mais fácil. A Figura 6.4 mostra a estrutura interna deste sensor integrado com os seus respectivos blocos de filtragem e condicionamento de sinal. Figura 6.5 Estrutura interna do circuito integrado sensor de corrente [23]. 27

Figura 6.6 Aplicação típica sugerida pelo fabricante [23]. Figura 6.7 Placa comercial com sensor já montado. A saída do módulo sensor de corrente foi conectada diretamente à entrada de um dos canais do conversor A/D do microcontrolador. O módulo apresenta em sua saída uma tensão de 2,5 V, quando a corrente que o atravessa é igual a zero; 0 V de saída, quando a corrente que o atravessa é igual a -25 A e 5 V de saída, quando a corrente que o atravessa é igual a 25 A. Apesar do sensor ser especificado pelo fabricante como tendo a capacidade me medir correntes de -20 A a +20 A sua escala está dividida dentro do intervalo -25 A a +25 A, esta divisão resulta em 100 mv/a em sua saída. O conversor A/D do microcontrolador foi configurado para ter como referência a sua própria tensão de alimentação, ou seja, 5 V. Com esta configuração temos uma resolução na conversão aproximadamente igual a 5 mv. Assim, temos que a menor corrente que pode ser medida será de 50 ma. Sendo esta a menor corrente que podemos medir nestas condições, torna-se importante escolhermos um valor para a perturbação do sistema que gere correntes iguais ou maiores que este valor, para que o algoritmo possa avaliar a posição do sistema em relação ao ponto de máxima potência. 28

6.3 Sensor de tensão. O sensor de tensão utilizado neste trabalho foi implementado através de um divisor resistivo e fazendo uso de dois resistores de precisão, um com valor de 56 kω e outro com valor de 5,1 kω, sendo a tensão sobre este segundo resistor direcionada para um dos canais do conversor A/D do microcontrolador. A partir destes valores de resistor, foi definido um fundo de escala de 60 V, para a medição da tensão da turbina eólica. Sendo a referência do conversor A/D igual a 5 V, teremos uma resolução na medição da tensão de aproximadamente 60 mv. A Figura 6.7 mostra o circuito divisor de tensão implementado como sensor de tensão. Figura 6.8 Sensor de tensão. 6.4 Fluxograma do algoritmo. Uma vez que já temos realizado a aquisição dos valores instantâneos da tensão e da corrente geradas pela turbina eólica, podemos realizar, dentro do microcontrolador, os cálculos necessários para obtermos o valor da potência gerada e o sentido da perturbação a ser aplicado no conversor eletrônico. A Figura 6.8 mostra o fluxograma (BRITO et al., 2010) [15] do algoritmo implementado no software que irá embarcado no microcontrolador. 29

Figura 6.9 Fluxograma do algoritmo Perturba e Observa implementado. 30

Capítulo 7 Placa de Controle 7.1 Visão geral. Para o controle do sistema, foi desenvolvida uma placa de controle para a instalação do microcontrolador e do circuito driver de acionamento das chaves eletrônicas. Esta placa pode ainda ser usada para o controle do descarte do excesso da energia gerada pela turbina eólica, também conhecido como dump load, e acionamento do sistema de frenagem de emergência, em situações anormais de vento. Por hora, serão citadas apenas as características da placa utilizadas para o desenvolvimento deste trabalho. 7.2 Esquemático eletrônico. A Figura 7.1 apresenta o esquemático do circuito eletrônico desenvolvido para o controle e acionamento do sistema. Como mencionado anteriormente, este circuito foi concebido para desempenhar funções que vão além do foco deste trabalho. Para melhor visualização consulte o Apêndice A. Figura 7.1 Esquemático eletrônico da placa de controle. 31

7.3 Layout da placa de controle. O resultado do roteamento da placa, a partir do esquemático eletrônico, pode ser observado na Figura 7.2. As duas cores presentes nas trilhas do layout são referentes às camadas superior e inferior do circuito impresso. Esta placa foi fabricada em um substrato de fibra com espessura de 1,6 mm. Figura 7.2 Layout do circuito impresso da placa de controle. 7.4 Circuito de acionamento das chaves. Como os sinais advindos do microcontrolador têm valores próximos a 5 V, fazse necessária a utilização de um driver para que o transistor responsável pelo chaveamento no conversor buck seja corretamente acionado, evitando, assim, danos por superaquecimento gerado pelas perdas do chaveamento. O circuito driver deverá ser capaz de fornecer ao gate do MOSFET uma tensão mínima de 10 V e máxima de 15 V. Para este desenvolvimento, foi escolhido o circuito integrado IR2104, fabricado pela International Rectifier, por atender às necessidades deste projeto e ser de fácil aquisição no mercado nacional. A Figura 7.3 mostra uma sugestão de utilização fornecida pelo fabricante. 32

Figura 7.3 Sugestão de aplicação do driver IR2104 [24]. Uma das grandes vantagens de se utilizar este tipo de circuito integrado está no fato dele já possuir proteções, como por exemplo, contra baixa tensão de alimentação e contra chaveamento simultâneo entre o transistor superior e o inferior, já implementadas internamente. A Figura 7.4 mostra a arquitetura interna do circuito integrado, onde podemos observar uma das proteções citadas, contra baixa tensão de alimentação, representada pelo bloco UV DETECT Undervoltage Detect. Figura 7.4 Arquitetura interna do driver IR2104 [24]. 33

Capítulo 8 Placa de Potência 8.1 Visão geral. Os principais componentes formadores do conversor Buck estão instalados na placa de potência. Nela estão presentes os transistores, responsáveis pelo chaveamento, os capacitores de entrada e de saída do conversor e os terminais de conexão do indutor. Através de um conector IDC de 10 vias, presente tanto na placa de controle como também na placa de potência, trafegam as informações e os sinais necessários para o devido funcionamento do conversor e do algoritmo. 8.2 Esquemático eletrônico. Na Figura 8.1 é apresentado o esquemático eletrônico da placa de potência, onde podem ser observados os principais componentes integrantes do conversor CC-CC. Figura 8.1 Esquemático eletrônico da placa de potência. É possível observar no esquemático a presença de dois pares de transistores (Q 1, Q 2, Q 3 e Q 4 ) em ligação de meia ponte (half bridge) responsáveis pela configuração síncrona do conversor CC-CC. Este tipo de configuração garante maior eficiência energética, uma vez que a queda de tensão sobre um transistor MOSFET é menor do que sobre um diodo Schottky. Para uma melhor visualização do esquemático consulte o Apêndice B. 34

8.3 Layout da placa de controle. A partir do esquemático eletrônico apresentado na Figura 8.1, foi possível a concepção do layout do circuito impresso para a fabricação da placa protótipo usada neste trabalho. O layout da placa de potência é mostrado na Figura 8.2. Figura 8.2 Layout da placa de potência. Podemos observar, no lado direito da placa, a presença do conector IDC por onde trafegam os sinais responsáveis pelo controle do conversor CC-CC. As trilhas mais espessas foram reforçadas com uma camada de solda durante a fabricação para que pudessem suportar as correntes que deveriam conduzir. 35