SISTEMA AUTOMÁTICO DEABERTURA DE FONTE RADIATIVA EM LABORATÓRIO DE ENSINO



Documentos relacionados
MANUAL DO USUÁRIO CENTRAL MC 4D

Manual do instalador Box Output AC Rev Figura 01 Apresentação do Box Output AC.

Manual do instalador Box Output DC Rev Figura 01 Apresentação do Box Output DC.

ST 160 ST # Manual de Referência e Instalação

NORMA PROCEDIMENTAL RADIOPROTEÇÃO (SEGURANÇA)

Alarme Automotivo com mensagem para móvel utilizando Arduino

ESPECIFICAÇÃO TÉCNICA

Identificação de materiais radioativos pelo método de espectrometria de fótons com detector cintilador

Manual do instalador Box Input Rev Figura 01 Apresentação do Box Input.

Procedimentos para verificação da eficácia do Sistema de Segurança Radiológica de Instalações Cíclotrons Categoria II (AIEA)

Sistemas Operacionais. Prof. André Y. Kusumoto

MANUAL TÉCNICO JIRAU PASSANTE ELÉTRICO

Projeto de controle e Automação de Antena

Aplicação de Redes Neurais Artificiais na Caracterização de Tambores de Rejeito Radioativo

6 Conclusões e Trabalhos futuros 6.1. Conclusões

Aplicação de Metodologia de Testes de Desempenho de Monitores Portáteis. de Radiação. V. Vivolo, L.V.E. Caldas

EFEITO COMPTON. J.R. Kaschny

Alarme Programável para Ingestão de Medicamentos

Alerta Vigia Eletrônico

Estruturas do Sistema de Computação

SISTEMA DE MONITORAMENTO DIGITAL

Manual de Operação. Porta de Segurança Eclusa Modelo PSED-C

Segurança Operacional em Máquinas e Equipamentos

Hera Indústria de Equipamentos Eletrônicos LTDA. Manual de Instalação e Operação. Discadora por Celular HERA HR2048.

DESCRIÇÃO DO FUNCIONAMENTO Basicamente o ANTRON II-s recebe sinais provenientes da atuação de contatos elétricos externos, associados a equipamentos

Profª Danielle Casillo

DESCRITIVO SISTEMA MASTER

INSTALAÇÃO DE BIOS E CARACTERÍSTICAS DE SEGURANÇA

Suporte para TV IS4313

Núcleo de Informática Aplicada à Educação Universidade Estadual de Campinas

UNIP UNIVERSIDADE PAULISTA

Programação em BASIC para o PIC Vitor Amadeu Souza

Programação de Robótica: Modo Circuitos Programados - Avançado -

CONTROLE DE SIMULTANEIDADE MOD.: MRS-MP/WG4 Manual de Instruções DESCRIÇÃO: O controle de Simultaneidade MRS-MP/WG4 destina-se a aplicações em

HARDWARE E SOFTWARE PARA MONITORAMENTO EM INSTALAÇÕES RADIOATIVAS

Universidade do Vale do Paraíba Faculdade de Engenharias Urbanismo e Arquitetura Curso de Engenharia Elétrica/Eletrônica JANELA SENSORIAL

PLANOS DE CONTINGÊNCIAS

ESTUDO COMPARATIVO ENTRE AS PLATAFORMAS ARDUINO E PIC

BANCO CENTRAL DO BRASIL 2009/2010

LINHA VOLT/X-POWER. Catalogo Produto VA. Engetron Engenharia Eletrônica Ind. e Com. Ltda

Gerenciamento de software como ativo de automação industrial

Pontes Rolantes - Aplicações

Espectometriade Fluorescência de Raios-X

DESCRITIVO TÉCNICO. 1 Alimentador

1. CAPÍTULO COMPUTADORES

*OBS: Chave estrela-triângulo: tensão de partida limitada a 58% da tensão nominal.

TÍTULO: PROGRAMAÇÃO DE CLP PARA UMA MÁQUINA DE SECÇÃO SEGMENTOS ORGÂNICOS

GREENLOAD CARGA ELETRÔNICA REGENERATIVA TRIFÁSICA

Centrais de Alarme DSC MANUAL DE CENTRAL DE ALARME. Disponibilizado por www. alarmsystems. com.

Leocadio J.C 1.; Ramalho A. T. 1 ; Pinho, A S. 1 ; Lourenço, M. M. J. 1 ; Nicola, M. S. 1 ; D Avila, R. L. 1 ; Melo, I. F 1.; Cucco, A C. S.

Manual do Usuário - NKPROX

6. CILINDROS PNEUMÁTICOS

Sistema de Leitura da Porta de Mouse do PC

FACULDADE PITÁGORAS DISCIPLINA: ARQUITETURA DE COMPUTADORES

MANUAL DE UTILIZAÇÃO SISTEMA DE CADASTRO INTRANET

M418 AUTOMAÇÃO NAVAL

PAINEL DE SENHAS RBSG4JE. Imagem ilustrativa do painel. Operação/Configuração Painel Eletrônico de Senhas / Guichê com jornal de mensagens.

Manutenção de Computadores

O programa Mysql acompanha o pacote de instalação padrão e será instalado juntamente com a execução do instalador.

GT COFRE VIA GSM GT COFRE VIA SATÉLITE ABERTURA E TRAVAMENTO DE PORTAS E COFRES

INFORMATIVO DE PRODUTO

Automação Industrial Parte 2

Solução de Segurança patrimonial com a tecnologia RFID(*)

INFORMATIVO DE PRODUTO

MANUAL DO USUÁRIO SISTEMA GUARDIAN

O Terminal. VS Display

Gerenciamento de Incidentes

Prezados(as); A portaria está disponível na seguinte página: Atenciosamente CNI

SOLUÇÕES EM CONTROLE DE ACESSO, AUTOMAÇÃO E SEGURANÇA

ANDRÉ APARECIDO DA SILVA APOSTILA BÁSICA SOBRE O POWERPOINT 2007

INFORMATIVO DE PRODUTO

MANUAL DE INSTRUÇÕES USUÁRIO

ERP Enterprise Resource Planning

ARMÁRIO DIGITAL. Av. Viena, 360 Bairro São Geraldo Porto Alegre RS Fone: xx Azanonatec@azanonatec.com.

Manual de Instalação... 2 RECURSOS DESTE RELÓGIO REGISTRANDO O ACESSO Acesso através de cartão de código de barras:...

P 5 V 000 UM NOV O O O CON O CEIT I O

Display de LEDs Rotativo

TÍTULO: JANELA AUTOMATIZADA QUE OPERA A PARTIR DE DADOS METEOROLÓGICOS OBTIDOS POR SENSORES

ESCOLA SENAI CELSO CHARURI CFP 5.12 PROGRAMA DE CONTROLE DE CONSUMO DE ENERGIA ELÉTRICA

Participantes Alunos regularmente matriculados no Curso Superior de Tecnologia em Radiologia da UNIP

Sensoriamento 55. Este capítulo apresenta a parte de sensores utilizados nas simulações e nos

FACILITY TOP HÍBRIDA. Manual Técnico MANUAL TÉCNICO AUTOMATIZADOR PARA PORTÕES DESLIZANTES MONDIALE. P Rev. 1

Placa Acessório Modem Impacta

Ambientes Inteligentes

Contatores Contatores são dispositivos de manobra mecânica, eletromagneticamente, construídos para uma elevada freguência de operação.

Monitor Cardíaco. Universidade Federal de Santa Maria Centro de Tecnologia Departamento de Eletrônica e Computação

Microsoft Office PowerPoint 2007

Universidade Paulista

Controle de Múltiplos Pivôs Centrais com um único Conjunto Motor-Bomba

Relé de Proteção do Motor RPM ANSI 37/49/50/77/86/94 CATÁLOGO. ELECTRON TECNOLOGIA DIGITAL LTDA Página 1/5

Entrada e Saída. Prof. Leonardo Barreto Campos 1

NUCLEARINSTALLATIONSAFETYTRAININGSUPPORTGROUP DISCLAIMER

2 Diagrama de Caso de Uso

1 Introdução. 2 REDES sem fio de comunicações

RET Relatório Técnico de Encerramento Título do Teste TESTE DE HIDROVARIADOR DE VELOCIDADE HENFEL MODELO HFPM2500

SLA - Service Level Agreement (Acordo de Nível de Serviço) Gerenciamento de Estoque

Introdução. Criar um sistema capaz de interagir com o ambiente. Um transdutor é um componente que transforma um tipo de energia em outro.

Transcrição:

IXLatin American IRPA Regional Congress on Radiation Protection and Safety - IRPA 2013 Rio de Janeiro, RJ, Brazil, April 15-19, 2013 SOCIEDADE BRASILEIRA DE PROTEÇÃO RADIOLÓGICA - SBPR SISTEMA AUTOMÁTICO DEABERTURA DE FONTE RADIATIVA EM LABORATÓRIO DE ENSINO 1 2 3 M aria Emilia Gibin Seren, Vladimir Gaal, Varlei Rodrigues and Sérgio Luiz de M orais4 1Laboratório de Ensino em Física Médica do Instituto de Física Gleb Wataghin (LEB/IFGW) Universidade Estadual de Campinas (UNICAMP) Rua Sérgio Buarque de Holanda, 777 - Cidade Universitária Zeferino Vaz 13083-859 Campinas,SP mseren@ifi.unicamp.br 2 Laboratório de Eletrônica e Eletricidade do Instituto de Física Gleb Wataghin (LEB/IFGW) Universidade Estadual de Campinas (UNICAMP) Rua Sérgio Buarque de Holanda, 777 - Cidade Universitária Zeferino Vaz 13083-859 Campinas,SP vladimir@ifi.unicamp.br 3 Departamento de Física Aplicada do Instituto de Física Gleb Wataghin (DFA/IFGW) Universidade Estadual de Campinas (UNICAMP) Rua Sérgio Buarque de Holanda, 777 - Cidade Universitária Zeferino Vaz 13083-859 Campinas,SP varlei@ifi.unicamp.br 4 Oficina Mecânica do Instituto de Física Gleb Wataghin (CST-Mec/IFGW) Universidade Estadual de Campinas (UNICAMP) Rua Sérgio Buarque de Holanda, 777 - Cidade Universitária Zeferino Vaz 13083-859 Campinas,SP ceelinho@ifi.unicamp.br ABSTRACT Compton scattering phenomenon is experimentally studied during the medical physics laboratory course at the University of Campinas (UNICAMP). The Teaching Laboratory of Medical Physics from IFGW/UNICAMP has a structure for its development: a fixed 137Cs sealed source with activity 610.5MBq, whose emitted radiation collides on a target, and a scintillation detector that turns around the target and detects scattered photons spectrum. 137Cs source is stored in a lead shield with a collimating window for the gamma radiation emitted with energy of 0.662MeV. This source is exposed only when attenuation barrier protecting the collimating window is opened. The process of opening and closing the attenuation barrier may deliver radiation dose to users when done manually. Taking into account the stochastic harmful effects of ionizing radiation, the objective of this project was to develop an automatic exposure system of the radioactive source in order to reduce the dose during the Compton scattering experiment. The developed system is micro controlled and performs standard operating routines and responds to emergencies. Electromagnetic lock enables quick closing barrier by gravity in case of interruption of electrical current circuit. Besides reducing the total dose of lab users, the system adds more security in the routine since it limits access to the source and prevents accidental exposure.

1. INTRODUÇÃO Em 1920, o físico Arthur Holly Compton estudou a diferença de energia entre fótons espalhados e fótons incidentes em uma amostra. Neste fenômeno, conhecido hoje como espalhamento Compton ou colisão Compton, o fóton incidente transfere parte de sua energia para um elétron de um material alvo e é espalhado de acordo com as leis de conservação de energia e momento. Este mecanismo de interação da radiação eletromagnética com a matéria é estudado na faixa de energia típica de emissão de radioisótopos - dezenas de kev até poucos MeV - e sua probabilidade de ocorrer muda em função do alvo. O estudo experimental do espalhamento Compton no ambiente de aprendizagem necessita de um feixe incidente de fótons, um alvo e um sistema de detecção dos fótons espalhados (Fig.1). No Laboratório de Ensino em Física Média do Instituto de Física Gleb Wataghin da Universidade Estadual de Campinas (IFGW/UNICAMP), o feixe incidente de fótons é obtido através da colimação da radiação gama emitida por uma fonte de 137Cs, cuja energia é de 0.662 MeV, e tem atividade atual 610.5 MBq, que é suficiente para produzir uma taxa de contagens apreciável de fótons espalhados para executar o experimento. NaI(Tl) PMT Alvo Fonte i Figura 1. Esboço do aparato experimental usado para estudar o espalhamento Compton 137 dos raios gama emitidos pelo 137Cs. 137 A fonte de Cs fica guardada em uma blindagem que possui uma janela de pequeno diâmetro, cuja função é colimar a radiação gama emitida. A janela de colimação é protegida por uma barreira atenuadora, chamada de porta da fonte, que consiste em um bloco maciço de chumbo com 50 mm de espessura e peso aproximado de 1.8 kg, presa em uma alavanca de 15 cm de comprimento, que auxilia na sua abertura.

O detector usado neste experimento é um cintilador composto por um cristal inorgânico de iodeto de sódio dopado com tálio NaI(Tl), acoplado a um tubo fotomultiplicador (PMT), que permite adquirir o espectro dos fótons espalhados pelo material alvo. Este detector é fixado ao final de uma haste que translada ao redor do alvo, sendo possível variar o ângulo de detecção entre 0 e 130. Para iniciar a coleta de dados do experimento a fonte radiativa deve ser exposta. Para que isso ocorra, o usuário do laboratório entra na sala de armazenamento da fonte e abre manualmente sua porta, que fica presa por um gancho durante o período de aquisição de dados. Desta forma, quando qualquer mudança do ângulo de detecção ou material alvo é requerida, o usuário entra novamente na sala onde a fonte está exposta para fechar sua porta, e após as modificações a abre novamente. No final da coleta de dados, o usuário entra pela última vez na sala para fechar a porta fonte. Como durante o experimento espalhamento Compton são explorados a influência do número atômico do alvo e a relação entre a energia do fóton espalhado e o ângulo de detecção, o usuário deve entrar dezenas de vezes na sala em uma única aula para trocar o alvo e variar o ângulo do detector. Assim, a maior probabilidade de exposição à radiação ionizante durante o experimento decorre dos processos de abertura e fechamento manual da porta da fonte. A dose total estimada durante a execução padrão deste experimento é baixa, cerca 10 p,sv para cada usuário. Todavia, outros experimentos do laboratório de física médica podem contribuir para dose total que um aluno ou docente recebe durante um curso integral de laboratório experimental de física médica. O Laboratório de Ensino em Física Médica desenvolve uma política de radioproteção e segurança baseada no preceito que as exposições devem ser tão baixas quanto razoavelmente exequíveis (princípio ALARA). Continuamente, são desenvolvidas ações para reduzir a magnitude da exposição dos indivíduos ocupacionalmente expostos e indivíduos do público que usam o laboratório. Neste contexto, o objetivo deste projeto foi desenvolver um sistema de exposição e supressão 137 de fonte radiativa através da automatização de uma barreira atenuadora para fonte Cs, a fim de limitar a exposição dos usuários do experimento Compton aos efeitos nocivos da radiação ionizante. 2. SISTEMA AUTOMÁTICO DE EXPOSIÇÃO O sistema automático de exposição da fonte radiativa proposto deveria ter três características fundamentais: executar as rotinas de exposição e supressão da fonte radiativa considerando as situações de emergência, ter baixo custo e utilizar apenas recursos locais para sua instalação. O desenvolvimento do projeto aconteceu em três estágios. Na primeira etapa definiram-se as condições de operação do equipamento, tanto durante a rotina padrão quanto em circunstâncias excepcionais, aqui chamadas de situações de emergência.

Na segunda etapa, foram exploradas as tecnologias disponíveis no mercado, de baixo custo, que estavam aptas a cumprir as condições de operação propostas na primeira etapa do projeto. A terceira etapa foi a construção do sistema, ou seja, montagem eletrônica do circuito, instalação in situ do sistema e testes de funcionamento. 2.1. Condições de Operação A elaboração das condições de operação foi focada em proteger os usuários do laboratório dos efeitos nocivos da radiação ionizante. Embora a dose estimada durante a execução do experimento Compton seja de pequena magnitude, esforços para oferecer maiores níveis de segurança devem sempre ser avaliados, levando-se em conta seus efeitos estocásticos. As condições de operação consideraram a filosofia de proteção em profundidade através do método de múltiplas barreiras e são dividas em dois blocos: condições normais de operação e situações de emergência. Em condições normais de operação os seguintes tópicos devem ser obedecidos: a) O arranjo experimental será armazenado em uma sala classificada como área controlada, que fica permanentemente trancada. Seu acesso é restrito às pessoas autorizadas pelo supervisor de radioproteção; b) O computador de controle e processamento de dados deverá ficar externo à sala de fontes, sendo que seu uso é independente do aparato experimental; c) Os usuários do experimento, assim como todos os outros usuários do laboratório, devem ser monitorados em relação à exposição à radiação. d) O acionamento de abertura ou fechamento automático da porta da fonte deverá ser feito remotamente por um botão externo à sala de fontes; e) Os botões para abertura e fechamento da porta da fonte devem ter identificação e aparência visual distinta para evitar serem confundidos; 137 f) A fonte Cs só poderá ser exposta com a porta da sala de fontes fechada; g) O sistema deve permitir o fechamento e abertura da porta da fonte de acordo com a necessidade do usuário, podendo acontecer inúmeras vezes em curtos intervalos de tempo. h) Uma luz de advertência, identificada como tal, deverá ser fixada na porta externa da sala restrita durante todo o tempo em que a fonte estiver exposta a fim de prevenir exposições acidentais; Nas condições normais de operação, são incluídas ações de prevenção de acidentes. Além das barreiras físicas como acesso restrito à área controlada e blindagem da fonte, barreiras morais como cartazes de advertência e luz de sinalização são considerados para garantir a segurança dos usuários. Nas situações de emergência é prevista falha humana, desde que existe a possibilidade de esquecimento de fechamento da porta da fonte entre a troca de alvos e ângulo de detecção e também a possibilidade da porta da fonte permanecer aberta ao final do experimento. Também são previstos problemas na rede elétrica e mau-funcionamento do sistema.

Nestas situações, ações para limitar a evolução e consequências da exposição de usuários devem ser praticadas. Desta forma, os seguintes tópicos devem ser contemplados pelo sistema automático de exposição: a) Se a porta de entrada da sala de fontes for repentinamente aberta quando a fonte estiver exposta, a porta da fonte deve ser fechada imediatamente pelo sistema; b) No caso de falhas na alimentação elétrica do sistema a porta da fonte deve ser recolhida imediatamente; c) Um sistema temporizador deverá fechar a porta da fonte após um período estabelecido; d) Em caso de falhas no sistema, deve ser possível a intervenção humana para recolher a porta da fonte até a posição de fechamento de maneira simples, segura e rápida. 2.2. Planejamento do Sistema Após ampla pesquisa optou-se pela montagem de um sistema microcontrolado devido à complexidade lógica e a possibilidade de comunicação com uma porta serial ou paralela. O sistema microcontrolado é composto de duas partes: hardware e software. A parte de hardware envolve os componentes do sistema e seu funcionamento. A parte de software abrange a implementação dos comandos executados pelo sistema microcontrolado. 2.2.1. H ardw are A arquitetura do hardware é composta por um processador, sensores nas portas da fonte e da sala controlada, motor da porta da fonte, trava eletromagnética, timer, e lâmpada de sinalização (Fig. 2). Figura 2. A rquitetura do sistema.

Um microcontrolador da família PIC 16F877A foi escolhido para gerir o circuito do sistema de abertura de fonte. Este tipo de microcontrolador é confiável e usado em sistemas industriais de alta demanda. Além disso, apresenta um grande número de entradas e saídas e está bastante disponível no mercado. Para a abertura e fechamento da porta da fonte foi definido um servo motor, já que o mesmo possui torque significativo mesmo nos modelos mais simples. Sua instalação é simples e dispõe de limite de curso (-90 ; 0 ; +90 ). Este motor rotaciona uma alavanca de cerca de 15 cm acoplada à porta da fonte. Figura 3. Atuação do eletroímã. A) Posição de proteção da fonte sob atuação de corrente elétrica B) Posição de exposição da fonte sob atuação da corrente elétrica. C) Posição de proteção da fonte sob interrupção da corrente elétrica. Uma trava eletromagnética ou eletroímã, que vincula o braço do motor à alavanca da porta da fonte, foi a solução encontrada para o fechamento da porta da fonte nas situações de

emergência. Uma vez que a corrente elétrica é interrompida no eletroímã, o arranjo é desacoplado sem intervenção lógica ou humana e o fechamento rápido da porta da fonte acontece pela simples ação da força de gravidade (Fig. 3). No circuito, são utilizados dois sensores tipo chave de fim de curso (microswitch). Um dos sensores é utilizado na porta de entrada da área restrita e o outro sensor na própria porta da fonte. Microswitches são componentes sensíveis a forças magnéticas de pequenas magnitudes, têm alta durabilidade, baixo custo e são facilmente encontrados no mercado. O timer, ou cronômetro, é o componente do circuito que permite temporizações e contagens no microcontrolador. Este componente será o responsável por contar o tempo em que a fonte está exposta. Se o mesmo ultrapassar quatro horas, tempo de duração normal de uma aula de laboratório, a porta da fonte deve ser fechada. A opção de desligar o timer o circuito deve estar disponível, acreditando que alguns projetos de pesquisa possam utilizar um tempo maior de coleta de dados. A lâmpada de sinalização é simplesmente uma lâmpada vermelha que deve ser acionada pelo microcontrolado durante todo o tempo que a porta da fonte permanecer aberta. Está fixada na porta externa da sala do experimento e tem como único objetivo alertar o usuário sobre o risco de exposição. 2.2.1. Software O fluxograma da rotina de erro é mostrado na Figura 4. O fluxograma da rotina principal implementada para permitir a integração do sistema microcontrolado é mostrado na Figura 5. O fluxograma da rotina do timer é mostrado na Figura 6. INICIO ± Desliga o timer interno, liga o LED de erro. desliga o LED da poita da fonte, mantém a lâmpada de sinalização acesa e desliga o eletioímà. ^ FIM ^ Figura 4. Fluxograma da rotina de erro.

Figura 5. Fluxograma da rotina principal do microcontrolador.

Figura 6. Fluxograma da rotina do timer interno.

2.3. Construção do Sistema e Operação O servo motor escolhido para integrar o sistema é o modelo HS-805BB, marca Hitec, que possui torque de 19.8 kg.cm a 4.8 V e 24.7kg.cm a 6.0V. Os microswitches utilizados nas portas da área restrita e da fonte são modelo FM1300, marca Metalfex. O eletroímã modelo 620040400, da marca Kraftmagnet, é utilizado como elemento integrador da alavanca de abertura da fonte e o braço de rotação do servo motor. Uma lâmpada comum vermelha incandescente, 15 W, 127V, foi utilizada na sinalização externa da sala. A implementação do software foi feita em linguagem C, utilizando a IDE mikroc PRO for PIC [4] e gravada com software Icprog. Um suporte de alumínio foi construído para adaptar o novo sistema à estrutura previamente existente (Figura 6). Figura 6. Esboço da estrutura em alumínio para fixação do sistema de abertura. A) Vista frontal lateral superior. B) Vista Lateral. C) Vista posterior lateral superior. Um sistema de ajustes deslizantes de aperto rápido permitiu a instalação ágil do suporte, evitando exposição desnecessária à fonte de 137Cs.

Após a implantação completa do sistema foram realizados testes para avaliar sua eficácia nas condições normais de operação e nas situações de emergência (Tabela 1). O sistema de exposição automática da fonte de radiação respondeu de forma satisfatória a todos os testes executados. Tabela 1. Check-list dos testes de operação do sistema de exposição da fonte. Condições Normais de Operação Comando de abertura da porta pelo botão Acionamento automático da lâmpada de sinalização, quando fonte exposta Comando de fechamento da porta pelo botão ( V ) OK ( V ) OK ( V ) OK Fechamento automático da porta após 4 horas continua de abertura ( V ) OK Situações de Emergência Fechamento da porta da fonte com a abertura repentina da porta da sala do experimento ( V ) OK Fechamento da porta da fonte com o corte repentino de alimentação elétrica ( V ) OK Nas próximas versões deste projeto, pretende-se implementar redundâncias à segurança do sistema automático de exposição de fonte radiativa, como por exemplo, sensor de presença na sala da fonte e alternativas para possíveis falhas dos microswitches. 3. CONCLUSÕES A implantação do sistema microcontrolado para exposição automática da fonte de Cs durante o experimento espalhamento Compton foi viável na rotina do Laboratório de Ensino em Física Médica do Instituto de Física Gleb Wataghin da Universidade Estadual de Campinas (IFGW/UNICAMP). A exposição dos usuários à radiação ionizante durante a troca de alvo e modificações no ângulo do detector foi suspensa com a criação do dispositivo. Além da redução de dose total dos usuários do laboratório, o sistema agrega mais segurança na rotina já que limita o acesso à fonte e previne exposições acidentais. Além disso, os testes de operação do sistema, realizados após sua construção, poderão ser utilizados rotineiramente como garantia de funcionamento adequado. Todavia, as redundâncias da segurança do sistema ainda são escassas, e certamente serão implementadas em uma segunda versão deste projeto. 137

AGRADECIMENTOS Agradecemos ao Instituto de Física Gleb Wataghin da Universidade Estadual de Campinas (IFGW/UNICAMP) que apoiou e financiou todos os custos de execução deste projeto. REFERÊNCIAS 1. A.C. Melissinos, J. Napolitano, Experiments in Modern Physics, Academic Press, New York USA (1992). 2. International Atomic Energy Agency, International basic safety standards for protection against ionizing radiation and for the safety o f radiation sources - Safety Series No. 115, IAEA, Vienna (1996). 3. Comissão Nacional de Energia Nuclear, Diretrizes Básicas de Proteção Radiológica - CNEN-NN-3.01, D.O.U., Brasília (2011). 4. MicroC PRO for PIC, http://www.mikroe.com/mikroc/pic/ (2012). 5. Knoll, G.E. Radiation Detection and Measurement, John Wiley & Sons Inc., New York USA (1989).