Programa Energia Transparente

Documentos relacionados
Oferta e Demanda de Energia Elétrica: Cenários. Juliana Chade

PMO de Dezembro Semana Operativa de 25/11/2017 a 01/12/2017

O QUE DEVE ACONTECER COM OS PREÇOS DA ENERGIA NO AMBIENTE LIVRE 2018/19 03/10/2018

14º Encontro Internacional de Energia. Operação do SIN frente à Mudança na Matriz Elétrica. Hermes Chipp Diretor Geral

Sumário Executivo do Programa Mensal de Operação

PMO de Novembro Semana Operativa de 28/10/2017 a 03/11/2017

PMO de Fevereiro Semana Operativa de 16/02/2019 a 22/02/2019

Garantia do Atendimento do SIN Visões de Curto ( ) e Médio Prazos ( )

PMO de Dezembro Semana Operativa de 02/12/2017 a 08/12/2017

PMO de Dezembro Semana Operativa de 08/12/2018 a 14/12/2018

Avaliação das Condições do Atendimento Eletroenergético do SIN em 2014 e Visão para Hermes Chipp Diretor Geral

PMO de Fevereiro Semana Operativa de 09/02/2019 a 15/02/2019

PMO de Julho Semana Operativa de 07/07/2018 a 13/07/2018

Perspectivas do Mercado de Energia

III Seminário sobre a Matriz e Segurança Energética FGV / IBRE / CERI

PMO de Dezembro Semana Operativa de 23/12/2017 a 29/12/2017

PMO de Março Semana Operativa de 24/02/2018 a 02/03/2018

JANEIRO RV0 1º Semana

Sumário Executivo do Programa Mensal de Operação

Análise PLD 1ª semana operativa de janeiro

PMO de Outubro Semana Operativa de 07/10/2017 a 13/10/2017

PMO de Abril Semana Operativa de 31/03/2018 a 06/04/2018

PMO de Janeiro 2019 Semana Operativa de 05/01/2019 a 11/01/2019

PMO de Outubro Semana Operativa de 21/10/2017 a 27/10/2017

PMO de Março Semana Operativa de 03/03/2018 a 09/03/2018

Programa Energia Transparente

PMO de Setembro Semana Operativa de 15/09/2018 a 21/09/2018

PMO de Março Semana Operativa de 10/03/2018 a 16/03/2018

PMO de Setembro Semana Operativa de 09/09/2017 a 15/09/2017

PMO de Novembro Semana Operativa de 24/11/2018 a 30/11/2018

Sumário Executivo do Programa Mensal de Operação

Sumário Executivo do Programa Mensal de Operação

PMO de Setembro Semana Operativa de 16/09/2017 a 22/09/2017

Sumário Executivo do Programa Mensal de Operação

PMO de Maio Semana Operativa de 19/05/2018 a 25/05/2018

PMO de Setembro Semana Operativa de 02/09/2017 a 08/09/2017

PMO de Novembro Semana Operativa de 18/11/2017 a 24/11/2017

PMO de Fevereiro Semana Operativa de 02/02/2019 a 08/02/2019

42,6 42,0 43,0 40,0 40,3 29,0 30,1 23,4 28,7 27,7 19,5 29,4 23,1 20,5

Análise PLD 1ª semana operativa de outubro

PMO de Dezembro Semana Operativa de 09/12/2017 a 15/12/2017

PMO de Janeiro Semana Operativa de 29/12/2018 a 04/01/2019

PMO de Maio Semana Operativa de 25/05/2019 a 31/05/2019

Relatório Executivo do Programa Mensal de Operação PMO de Abril 2016 Semana Operativa de 23/04/2016 a 29/04/2016

Sumário Executivo do Programa Mensal de Operação

PMO de Agosto Semana Operativa 25/08/2018 a 31/08/2018

Info PLD. Outubro de 2013

Relatório Executivo do Programa Mensal de Operação PMO de Janeiro 2016 Semana Operativa de 16/01/2016 a 22/01/2016

Energia, o que esperar em 2.015

Análise PLD 1ª semana operativa de janeiro

PMO de Maio Semana Operativa de 12/05/2018 a 18/05/2018

PMO de Dezembro Semana Operativa de 16/12/2017 a 22/12/2017

PMO de Março Semana Operativa de 17/03/2018 a 23/03/2018

PMO de Novembro Semana Operativa de 10/11/2018 a 16/11/2018

PMO de Março Semana Operativa de 23/03/2019 a 29/03/2019

PMO de Dezembro Semana Operativa de 15/12/2018 a 21/12/2018

Relatório Executivo do Programa Mensal de Operação PMO de Janeiro 2016 Semana Operativa de 02/01/2016 a 08/01/2016

PMO de Julho Semana Operativa de 30/06/2018 a 06/07/2018

5. PRINCIPAIS RESULTADOS. PMO de SETEMBRO/ ENAs previstas 5.1. CUSTO MARGINAL DE OPERAÇÃO (CMO)

MAIO RV0 1º Semana

Análise PLD 1ª semana operativa de agosto

Sumário Executivo do Programa Mensal de Operação

Sumário Executivo do Programa Mensal de Operação

Info PLD. Fevereiro de 2014

Sumário Executivo do Programa Mensal de Operação

SETEMBRO RV0 1º Semana

Relatório Executivo do Programa Mensal de Operação PMO de Janeiro 2017 Semana Operativa de 14/01/2017 a 20/01/2017

Análise PLD 4ª semana operativa de agosto

Fatores impactantes e Incertezas na formação de Preços: Perspectivas para 2018

PMO de Outubro Semana Operativa de 29/09/2018 a 05/10/2018

INFORMATIVO MENSAL MAR.2012

Relatório Executivo do Programa Mensal de Operação PMO de Março 2017 Semana Operativa de 18/03/2017 a 24/03/2017

INFORMATIVO MENSAL OUT.2012

42,6 42,0 43,0 40,0 40,3 29,0 30,1 23,4 28,7 27,7 19,5 29,4 23,1 20,5

REVISÃO 1 NT 156/2003. P:\Meus documentos\nota Técnica\NT REVISÃO 1.doc

Relatório Executivo do Programa Mensal de Operação PMO de Março 2017 Semana Operativa de 04/03/2017 a 10/03/2017

PMO de Fevereiro Semana Operativa de 17/02/2018 a 23/02/2018

Relatório Executivo do Programa Mensal de Operação PMO de Março 2017 Semana Operativa de 25/03/2017 a 31/03/2017

Análise PLD 1ª semana operativa de fevereiro

PMO de Fevereiro Semana Operativa de 27/01/2018 a 02/02/2018

Relatório Executivo do Programa Mensal de Operação PMO de Janeiro 2016 Semana Operativa de 09/01/2016 a 15/01/2016

A matriz elétrica nacional e a finalidade do Mecanismo de Realocação de Energia - MRE

Panorama Mensal do Setor Elétrico

Relatório Executivo do Programa Mensal de Operação PMO de Dezembro 2016 Semana Operativa de 24/12/2016 a 30/12/2016

JANEIRO RV0 1º Semana

PMO de Maio Semana Operativa de 04/05/2019 a 10/05/2019

PMO de Março Semana Operativa de 09/03/2019 a 15/03/2019

PLD (Preço de Liquidação das Diferenças)

Análise PLD 2ª semana operativa de janeiro

O PLD da 5ª semana de Novembro foi republicado devido a um erro de entrada de dado no Modelo:

PMO de Março Semana Operativa de 16/03/2019 a 22/03/2019

INFORMATIVO MENSAL MAI.2012

DESPACHO DE USINAS TÉRMICAS A PARTIR DE OUTUBRO DE 2016

Relatório Executivo do Programa Mensal de Operação PMO de Janeiro 2017 Semana Operativa de 21/01/2017 a 27/01/2017

Sumário Executivo do Programa Mensal de Operação

Análise PLD 4ª semana operativa de novembro

Análise PLD 4ª semana operativa de outubro

Análise PLD 3ª semana operativa de junho

Relatório Executivo do Programa Mensal de Operação PMO de Dezembro 2016 Semana Operativa de 03/12/2016 a 09/12/2016

Sumário Executivo do Programa Mensal de Operação

Transcrição:

Programa Energia Transparente Monitoramento Permanente dos Cenários de Oferta e do Risco de Racionamento 9ª Edição Dezembro de 2013

Conclusões Principais 9ª Edição do Programa Energia Transparente Esta 9ª edição do Programa Energia Transparente chegou às seguintes conclusões principais: A configuração do parque gerador brasileiro não é a mais adequada para a forma de operação que tem sido adotada para o sistema. A modelagem empregada no planejamento e operação do sistema necessita de revisão geral para melhorar sua precisão. Além do preço da energia, os leilões devem contemplar a localização das usinas, sua capacidade e rapidez de acionamento sob demanda, e, no caso das renováveis, a conveniência da sua oferta em relação à necessidade do consumo ao longo de cada dia e ao longo do ano 2

Perspectiva de suprimento futuro Condições de suprimento do sistema Avaliação da acurácia da modelagem Conclusões e Recomendações 3

Perspectiva de suprimento futuro Condições de suprimento do sistema Avaliação da acurácia da modelagem Conclusões e Recomendações 4

Há risco de racionamento? Para avaliar a segurança consideramos: dados oficiais disponibilizados pelo Operador Nacional do Sistema considerados no Programa Mensal de Operação de out/2013 simulações realizadas no programa computacional Newave a robustez do suprimento com base numa análise de sensibilidade considerando variações na evolução do consumo de energia e na expansão da oferta de energia Além da segurança de suprimento, também avaliamos a probabilidade de ocorrência de intenso despacho termelétrico que possa acarretar elevados custos operacionais As simulações no Newave foram realizadas pela 5

Demanda alta referência Cenários considerados referência Oferta baixa Cenário de Referência Cenário Alternativo 1 Premissas do PMO jul/2013 Demanda de referência x Oferta de referência Demanda de referência Oferta baixa Cenário Alternativo 2 Cenário Alternativo 3 Demanda alta Oferta de referência Demanda alta Oferta baixa 6

Perspectiva para a demanda Previsão do crescimento da carga da EPE A previsão da carga empregada na modelagem oficial é de crescimento de: 6 a 8% até agosto de 2014 (primordialmente devido à interligação TMM*) e aproximadamente 4% no restante do período Crescimento da carga do SIN relativo ao mesmo mês do ano anterior jan fev mar abr mai jun jul ago set out nov dez 2014 7,2% 6,3% 8,2% 6,1% 6,1% 6,2% 6,2% 6,3% 4,8% 4,5% 4,0% 3,7% 2015 5,2% 4,1% 4,1% 4,1% 4,1% 4,1% 4,1% 4,1% 4,2% 4,2% 4,2% 4,1% 2016 3,9% 3,7% 3,7% 3,8% 3,7% 3,7% 3,7% 3,7% 3,7% 3,7% 3,7% 3,7% 2017 4,0% 4,0% 4,0% 4,0% 4,0% 4,0% 4,0% 4,0% 4,0% 4,1% 4,1% 4,0% Fonte: EPE (2013) - Nota Técnica DEA 12/13 ONS 071/2013-1ª Revisão Quadrimestral crescimento acima da média crescimento abaixo da média (*) Tucuruí Manaus - Macapá 7

Como foram as previsões da EPE no passado? Nos últimos anos o planejador tem estimado um crescimento da carga superior ao verificado À primeira vista parece mais provável que a carga seja inferior à projetada, mas... Fonte: EPE (2010-12) - Nota Técnica DEA - Projeção da Demanda de Energia Elétrica para os próximos 10 anos. 8

Expansão do SIN torna demanda futura mais incerta Interligação TMM (Tucuruí Macapá- Manaus ) Efeito Interligação A interligação de Tucuruí-Macapá-Manaus representa uma elevação da carga no Sistema Interligado Nacional da ordem de 900 MW médios, o que corresponde a um incremento de mais de 30% da carga do Subsistema Norte. A interligação não provoca desequilíbrio estrutural, pois agrega carga e capacidade de geração (1,8 GW médios) de forma equilibrada. O acesso à energia de menor custo pode levar os consumidores desses sistemas que eram previamente isolados a elevar o seu consumo, o que torna o consumo futuro menos previsível. Fonte: ONS Cronograma Manaus: set/2013 Macapá: out/2013 Boa Vista: fev/2015 9

Mega eventos tornam demanda futura mais incerta Efeito Mega Eventos Em 2014 será realizada a Copa do Mundo e em 2016 as Olimpíadas. Estes eventos podem provocar significativas mudanças no consumo de energia elétrica. A demanda adicional de energia elétrica em estádios, centros de mídia e hospedagem na Copa do Mundo de 2006 na Alemanha foi da ordem de 13 GW. Isso corresponde a cerca de 10% da potência instalada* do SIN brasileiro em dez/2013. Além da elevação da carga durante esses eventos, é de se esperar uma elevação da carga antes de suas realizações devido à demanda provocada pelas grandes obras de infraestrutura requeridas por estes eventos. Também é de se esperar que a exposição mundial proporcionada por esses eventos impulsione o turismo e comércio no país, provocando elevações mais duradouras no consumo de energia elétrica. (*) Fonte: Aneel, Banco de Informações de Geração (125,78 GW de potência instalada). 10

Perspectiva para a demanda Diante das incertezas em relação à demanda futura devido a fatores que afetarão o consumo como: a interligação TMM e os mega eventos é conveniente avaliar a robustez do Sistema considerando um crescimento da carga mais elevado Adota-se cenário alternativo de crescimento da carga anual 1% superior ao previsto no caso referência 11

Atraso na entrada de empreendimentos é a norma Ata da 132ª Reunião do Comitê de Monitoramento do Setor Elétrico realizada no dia 07/ago/2013 informa balanço das obras de expansão: Empreendimentos de geração somente 27% encontram-se com datas de tendência dentro do prazo previsto o atraso médio é de 9 meses Linhas de transmissão somente 35% encontram-se com datas de tendência dentro do prazo previsto o atraso médio é de 12 meses Subestações somente 44% encontram-se com datas de tendência dentro do prazo previsto o atraso médio é de 6 meses 12

Perspectiva para a oferta Atrasos na oferta considerados nos Cenários 1 e 3 UHE Batalha UHE Baixo Iguaçu UHE Colíder UHE Teles Pires UHE Belo Monte (Principal) UHE Belo Monte (Complementar) Interligação Belo Monte Pequenos Empreendimentos (PCHs e eólicas) Previsto no PMO jul/2013 set-out/2013 mai/2017 jun/2015 mai-set/2015 abr/2016-dez/2017 mar/2015-jan/2016 mai/2016 Cenários com atraso jan-fev/2014 (+4 meses) jan/2018 (+8) jan/2016 (+7) jan/2015-abr/2018 (+8) jan/2017-ago/2018 (+9) set/2015-jul/2016 (+6) set/2015-jul/2016 (+4) atraso de 6 meses (+6) 13

Resultados das simulações Risco de déficit Fonte: Thymos Energia / Acende Brasil. 14

Resultados das simulações Risco de déficit é baixo no curto prazo Fonte: Thymos Energia / Acende Brasil. 15

Resultados das simulações Mesmo no cenário de maior stress, o risco de déficit é moderado nos próximos dois anos Fonte: Thymos Energia / Acende Brasil. 16

Resultados das simulações Na atual conjuntura o risco de déficit não preocupa tanto quanto o risco de custo alto Valor esperado do Custo Marginal de Operação Fonte: Thymos Energia / Acende Brasil. 17

Portanto... As simulações indicam que o risco de déficit nos próximos anos é baixo No entanto, a expectativa é de que na média o custo operacional será maior do que foi no passado Preços de Liquidação de Diferenças O custo operacional do Sistema tem se mantido elevado por longo período de tempo Se não há elevado risco de déficit porque os preços estariam tão altos por tanto tempo? Fonte: CCEE. Elaboração: Instituto Acende Brasil. 18

Perspectiva de suprimento futuro Condições de suprimento do sistema Avaliação da acurácia da modelagem Conclusões e Recomendações 19

Como avaliar o estado do Sistema Elétrico Brasileiro? O Sistema Elétrico Brasileiro é primordialmente hidrelétrico. O fator mais relevante para avaliar a capacidade de geração hidrelétrica futura é o nível de armazenamento de água nos reservatórios de regularização. O monitoramento da Energia Armazenada é chave para acompanhamento das condições de suprimento do Sistema 20

Níveis de armazenamento Após vários anos de ciclos regulares, o Sistema passou a apresentar queda tanto de pico quanto de vale. O que explicaria essa queda do armazenamento? Fonte: ONS. Elaboração: Instituto Acende Brasil. 21

Haveria desequilíbrio estrutural? Não. A expansão da oferta tem acompanhado o crescimento da demanda por energia. Fonte: CCEE e ONS. Elaboração: Instituto Acende Brasil. 22

Seria devido à falta de chuvas? Fonte: ONS. Elaboração: Instituto Acende Brasil. 23

Seria devido à falta de chuvas? A Energia Natural Afluente (ENA) em 2012 foi muito inferior à média de longo termo (MLT), embora a ENA nos anos anteriores (2009 e 2011) tenha sido superior à MLT. Fonte: ONS. Elaboração: Instituto Acende Brasil. 24

Seria devido à falta de chuvas? Numa perspectiva histórica, a hidrologia em 2012 foi o 16º pior ano da série em 83 anos. Fonte: ONS. Elaboração: Instituto Acende Brasil. 25

Seria devido à falta de chuvas? Já a hidrologia de janeiro a outubro de 2013 foi próxima à média de longo termo para o mesmo período do ano (39º ano de maior ENA entre os 84 anos da série histórica) Fonte: ONS. Elaboração: Instituto Acende Brasil. 26

Seria devido à falta de chuvas? A hidrologia ajuda a explicar o esvaziamento dos reservatórios em 2012, mas não explica a baixa recuperação em 2013 Anos com hidrologia excepcionalmente baixa Anos com hidrologia excepcionalmente alta Recuperação Fonte: ONS. Elaboração: Instituto Acende Brasil. 27

Seria devido a um aumento inesperado do consumo? Não. A evolução do consumo seguiu sua tendência histórica. Apenas se verifica uma acentuação das variações sazonais Fonte: ONS 28

Seria por falta de acionamento de termelétricas? Geração de energia por fonte geração termelétrica Não. Nunca antes neste país se gerou tanta energia a partir de termelétricas. Fonte: ONS. Elaboração: Instituto Acende Brasil. 29

Portanto... Os altos preços e a queda do nível de armazenamento em 2012 se deve principalmente à baixa hidrologia naquele ano. Os altos preços e a baixa recuperação do nível de armazenamento em 2013, no entanto, não são explicados: por desequilíbrio da oferta e demanda estrutural, pela hidrologia, pelo consumo, ou pelo baixo despacho termelétrico. Para entender o que está acontecendo é preciso aprofundar a análise... 30

Armazenamento sazonal está mudando Observa-se uma aumento da amplitude da variação anual como consequência da diluição da capacidade de regularização do sistema Fonte: ONS. Elaboração: Instituto Acende Brasil. 31

Diluição da capacidade de regularização A expansão da capacidade dos reservatórios de regularização do parque hidrelétrico tem sido inferior ao crescimento da carga Capacidade de regularização em relação à carga mensal Fonte: ONS. Elaboração: Instituto Acende Brasil. 32

Maior complementação termelétrica requerida A forma de complementação termelétrica está mudando... A frequência e duração do acionamento de termelétricas têm se elevado devido à adoção de procedimentos de operação mais conservadores e às mudanças na matriz elétrica e no consumo. O maior despacho passa a exigir mais termelétricas de baixo Custo Variável Unitário, mesmo que isso requeira maiores investimentos (Renda Fixa maior). Fator de capacidade agregado do parque gerador termelétrico Fonte: ONS. Elaboração: Instituto Acende Brasil. 33

Configuração do parque gerador inadequada Potência Instalada das Termelétricas por Custo Variável Unitário CVU (R$/MWh) A composição das usinas do parque termelétrico existente não é apropriada para operação com elevado fator de carga Fonte: ONS. Elaboração Instituto Acende Brasil 34

Fonte de distorções (1) Os leilões de energia somente levam em conta o preço e a quantidade de Garantia Física ofertada por cada empreendimento Os leilões de energia negligenciam atributos muito relevantes para a operação, como: localização flexibilidade operacional capacidade e rapidez de acionamento sob demanda conveniência da oferta em relação à necessidade do consumo ao longo de cada dia e ao longo do ano Elevação do custo operacional e comprometimento da segurança de suprimento 35

Fonte de distorções (2) Até agosto de 2013 havia um descompasso entre a operação e o planejamento e comercialização: PLANEJAMENTO e COMERCIALIZAÇÃO Os programas computacionais Newave/Decomp são utilizados para definir: a Garantia Física das usinas e os Preços de Liquidação de Diferenças - PLD praticados no mercado de curto prazo OPERAÇÃO Os programas Newave/Decomp também são utilizados para definir: a ordem de mérito econômico que orienta a operação Mas quando o Sistema aproxima-se de um cenário de maior risco de déficit, adota-se o acionamento preventivo de termelétricas balizado em: Curva de Aversão ao Risco (CAR) Procedimentos Operativos de Curto Prazo (POCP) 36

Descompasso entre planejamento, comercialização e operação do Sistema Esse descompasso distorce o planejamento, resultando em custos mais elevados 37

Resultado: despacho fora da ordem de mérito ESS por Segurança Energética e Ultrapassagem da CAR Os elevados Encargos de Serviços do Sistema por Segurança Energética (ESS-SE) até agosto deste ano indicam que havia um grande descompasso entre os preços de mercado praticados e os custos de operação efetivamente incorridos R$ 673 milhões R$ 6.287 milhões Fonte: CCEE. 38

Para corrigir essa fonte de distorções... Para harmonizar o planejamento, a comercialização e a operação incorporou-se a aversão ao risco aos modelos computacionais Newave/Decomp com a adoção do CVaR Conditional Value at Risk (valor condicionado a um dado risco) (*). O efeito da implementação da CVaR (expresso na equação abaixo) é o de introduzir uma ponderação maior aos cenários de hidrologia menos favorável, o que induz a um despacho preventivo de termelétricas (operação mais conservadora). peso atribuído ao valor esperado min x 1 c 1 x 1 + (1 λ) E(min x 2 peso atribuído ao CVaR c 2 x 2 )+ λ CVaR α E(min x 2 c 2 x 2 ) nível de cobertura do CVaR (*) Resolução CNPE 3/2013, Despacho Aneel 2.978/2013, Despacho Aneel 4.025/2013 39

Incorporação da Aversão ao Risco à modelagem No curto prazo, o efeito dessa medida será de elevação do PLD, mas no longo prazo deve haver a redução do custo agregado, uma vez que a incorporação da aversão aos risco deve contribuir para a promoção de uma configuração do parque gerador mais apropriada para a forma atual de operação do SIN. A medida deve promover a ampliação da parcela do parque gerador composto de usinas de Custo Variável Unitário mais baixo, o que contribuirá para a redução dos custos operacionais. Valor esperado do Custo Marginal de Operação preços mais estáveis preços mais instáveis Fonte: Thymos Energia / Acende Brasil. 40

Mudança estrutural no custo de operação No longo prazo, a adoção do CVaR deve mitigar a ocorrência de picos de preço......mas também deve reduzir a profundidade e duração dos vales de preço......proporcionando uma perspectiva de preços mais estáveis, mas num patamar maior PROJEÇÃO Fonte: CCEE, Thymos Energia / Acende Brasil. 41

Mudança estrutural no custo de operação últimos 10 anos projeção Fonte: Thymos Energia / Acende Brasil. 42

Portanto... A explicação para os elevados preços e a queda da energia armazenada é consequência de vários fatores: 1 A configuração do parque gerador passa por mudanças estruturais importantes: diluição da capacidade de regularização hidrelétrica ampliação da participação do parque termelétrico Essas mudanças estruturais implicam alterações na forma de operação do Sistema: oscilação mais intensa do nível de armazenamento ao longo do ano despacho termelétrico mais frequente e mais intenso 2 Foram adotados procedimentos operacionais mais conservadores: despacho preventivo de termelétricas a fim de reduzir o risco de déficit Impacto sobre o mercado de energia: elevação do PLD redução dos picos do PLD 3 Torna-se cada vez mais evidente que os modelos são demasiadamente otimistas (tema do próximo bloco) Risco de déficit futuro é subestimado pelos modelos 43

Perspectiva de suprimento futuro Condições de suprimento do sistema Avaliação da acurácia da modelagem Conclusões e Recomendações 44

Avaliação da modelagem Objetivo: Avaliar a acurácia do Newave Metodologia: Foram realizadas simulações semestrais no Newave comparando os níveis de armazenamento projetados com os efetivamente realizados Para cada período foram avaliados os desvios do nível de armazenamento ocasionados por: erro de previsão da carga erro de previsão da oferta (entrada de novas usinas e interconexões entre subsistemas) erro da modelagem Período abrangido: Foram realizadas simulações semestrais entre janeiro/2011 a dezembro/2012 Realização: As simulações foram realizadas pela 45

Avaliação da modelagem Para cada período foram realizadas 3 simulações: Caso Carga Oferta (*) Hidrologia (**) Erro Avaliado carga e oferta realizada oferta prevista carga prevista realizada realizada realizada modelagem realizada prevista no Deck original prevista no Deck original realizada realizada realizada previsão de oferta + modelagem previsão de carga + modelagem (*) Oferta reflete a entrada em operação de nova capacidade de geração e/ou de novas interligações entre subsistemas. (**) Erro de hidrologia não foi introduzido. 46

Resultados do SIN: jan-jun/2011 (semestre 1 de 4) SIN erro de projeção da carga erro de modelagem O erro médio no período foi da ordem de 10,7%, sendo: 9,8% devido à modelagem 0,1% devido à projeção da oferta 0,8% devido à projeção da carga Erro de previsão da carga: - 3,3 GWmédios efeito de elevar a Energia Armazenada Erro de previsão da oferta: -0,06 GWmédios pode reduzir a Energia Armazenada (dependendo do CMO) 47

Resultados do SIN: jul-dez/2011 (semestre 2 de 4) SIN O erro médio no período foi da ordem de 11,4%, sendo: 7,6% devido à modelagem 0,3% devido à projeção da oferta 3,4% devido à projeção da carga erro de projeção da carga erro de modelagem Erro de previsão da carga: - 2,2 GWmédios efeito de elevar a Energia Armazenada Erro de previsão da oferta: -0,02 GWmédios pode reduzir a Energia Armazenada (dependendo do CMO) 48

Resultados do SIN: jan-jun/2012 (semestre 3 de 4) SIN erro de projeção da carga erro de modelagem O erro médio no período foi da ordem de 9,5%, sendo: 7,9% devido à modelagem -0,3% devido à projeção da oferta 1,8% devido à projeção da carga Erro de previsão da carga: - 2,0 GWmédios efeito de elevar a Energia Armazenada Erro de previsão da oferta: -0,34 GWmédios pode reduzir a Energia Armazenada (dependendo do CMO) 49

Resultados do SIN: jul-dez/2012 (semestre 4 de 4) SIN O erro médio no período foi da ordem de 10,5%, sendo: 4,7% devido à modelagem 0,6% devido à projeção da oferta 5,1% devido à projeção da carga erro de projeção da carga erro de modelagem Erro de previsão da carga: - 2,3 GWmédios efeito de elevar a Energia Armazenada Erro de previsão da oferta: -0,45 GWmédios pode reduzir a Energia Armazenada (dependendo do CMO) 50

Resultados por subsistema: jan-jun/2011 (Semestre 1 de 4) 51

Resultados por subsistema: jul-dez/2011 (Semestre 2 de 4) 52

Resultados por subsistema: jan-jun/2012 (Semestre 3 de 4) 53

Resultados por subsistema: jul-dez/2012 (Semestre 4 de 4) 54

Resultados: PLD no subsistema SE/CO jan-jun/2011 jan-jun/2012 La Niña * * jul-dez/2011 jul-dez/2012 erro de modelo La Niña * * * Carga e oferta realizada correspondem a rodar o modelo com as cargas e ofertas realizadas (e refletem o erro de Modelo). 55

Constatações 1. O modelo sistematicamente superestima o nível de armazenamento 2. O erro de previsão do Custo Marginal de Operação é ainda maior 3. Em relação às fontes do erro: a. A maior parte do erro é deriva da modelagem; b. A segunda maior causa é o erro de previsão da carga; e c. O erro de previsão da expansão da oferta (nesse horizonte de 6 meses) é muito pequeno. 4. Diferentemente dos demais subsistemas, o nível de armazenamento dos reservatórios no subsistema NE é sistematicamente subestimado 5. O erro é exacerbado pela ocorrência de fenômenos climáticos como La Niña e El Niño 56

Prováveis causas de erro da modelagem 1. despacho determinado pelo modelo Decomp Newave proporciona apenas parâmetros de entrada (curva de custo futuro) para o modelo Decomp 2. modelagem de usinas com reservatórios de regularização baseado em sistemas equivalentes (superestima capacidade de armazenamento) 3. superdimensionamento do volume útil de reservatórios de regularização (não leva em conta sedimentação) 4. série de vazões distorcida (principalmente de usinas do subsistema NE) 5. subavaliação do custo futuro de geração 6. superdimensionamento da produtibilidade de usinas hidrelétricas 57

Comportamento hidrológico nos subsistemas O histórico da hidrologia é um bom indicador para o futuro? Fonte: ONS 58

Aumento do uso consuntivo* de recursos hídricos Principais usos consuntivos As maiores retiradas são para: abastecimento urbano e industrial em regiões metropolitanas como as do Rio de Janeiro, São Paulo, Campinas e Baixada Santista agricultura irrigada nas Bacias dos Rios São Francisco, Tocantins-Araguaia e Paranaíba (RH do Paraná) Entre 2000 e 2010 a retirada para irrigação elevou-se em 73% A irrigação representa 72% da vazão retirada Fonte: ANA Conjuntura dos Recursos Hídricos no Brasil - Informe 2012 (*) Usos consuntivos da água: referem-se aos usos que retiram a água de sua fonte natural e diminuem sua disponibilidade espacial e temporal. 59

Outras fragilidades da modelagem Taxa de desconto Outro parâmetro fundamental da modelagem que precisa ser revisado é a taxa de desconto Taxa de desconto empregada no modelo é de 12%, em termos reais, superior à taxa de desconto de mercado Reduz o valor presente dos custos de déficit e de operação futura Eleva o acionamento de hidrelétricas no presente, reduzindo o nível de armazenamento para períodos futuros 60

Condições de suprimento do sistema Perspectiva de suprimento futuro Avaliação da acurácia da modelagem Conclusões e Recomendações 61

Conclusões 1. Os elevados custos operacionais e a baixa recuperação do nível dos reservatórios em 2013 não é explicada por: hidrologia desfavorável desequilíbrio estrutural elevação inesperada da demanda (carga) baixo despacho termelétrico 2. Os elevados custos operacionais decorrem principalmente da configuração inadequada do parque gerador para operar nas condições vigentes (aversão ao risco, maior participação de termelétricas) 3. Os leilões, da forma que têm sido implementados, não promovem a expansão do parque gerador em conformidade com que seria adequado para a operação do sistema 4. A modelagem apresenta baixa precisão 62

Recomendações 1. Aprimorar a modelagem para diminuir a grande incongruência entre as previsões do modelo Newave e a realidade: a.adotar outra forma de simplificação do problema que não exija adoção de sistemas equivalentes, sistemas estes que parecem ser uma das importantes fontes de erro do modelo b.atualizar a taxa de desconto utilizada no modelo c.revisar as séries de vazões utilizadas no modelo d.incorporar restrições estruturais no modelo (antes o problema era a CAR e o POCP, e agora as restrições elétricas duradouras no NE têm mais peso) e.revisar a capacidade de armazenamento dos reservatórios de regularização f.revisar a produtibilidade (capacidade de geração por m 3 de água turbinada) das hidrelétricas 2. Evitar surgimento de novas discrepâncias entre o planejamento de longo prazo e a operação 3. Aprimorar o sistema de leilões para ensejar a configuração mais adequada às necessidades do Sistema Interligado Nacional 4. O processo de aprimoramento dos modelos não deve ser realizado de forma repentina. É essencial que mudanças nos modelos sejam: a.precedidas de audiência pública b.anunciadas com antecedência c.implementadas a partir de um novo ciclo de sazonalização das cargas e das Garantias Físicas dos agentes 63

64