Aula III Redes Industriais



Documentos relacionados
ENGG55 REDES INDUSTRIAIS Introdução aos Sistemas de Comunicação Industrial

QUANDO TRATAMOS SOBRE MEIOS DE TRANSMISSÃO, DEVEMOS ENFATIZAR A EXISTÊNCIA DE DOIS TIPOS DESSES MEIOS, SENDO:

Introdução. Arquitetura de Rede de Computadores. Prof. Pedro Neto

REDES DE COMPUTADORES

2- Conceitos Básicos de Telecomunicações

Evolução na Comunicação de

O que é uma rede industrial? Redes Industriais: Princípios de Funcionamento. Padrões. Padrões. Meios físicos de transmissão

REDE DE COMPUTADORES

Meios Físicos de Transmissão

André Aziz Francielle Santos Noções de Redes

Prof. Manuel A Rendón M

MÓDULO 4 Meios físicos de transmissão

Rodrigo Baleeiro Silva Engenheiro de Controle e Automação. Introdução à Engenharia de Controle e Automação

Quadro de consulta (solicitação do mestre)

Universidade de Brasília

Redes Industriais. Centro de Formação Profissional Orlando Chiarini - CFP / OC Pouso Alegre MG Inst.: Anderson

REDES DE COMPUTADORES

Camada Física. Camada Física

Prof. Wilton O. Ferreira Universidade Federal Rural de Pernambuco UFRPE 1º Semestre / 2012

Redes de Computadores. Prof. André Y. Kusumoto

Prof. Manuel A Rendón M

Prof. Manuel A Rendón M

Centro Tecnológico de Eletroeletrônica César Rodrigues. Atividade Avaliativa

Multiplexador. Permitem que vários equipamentos compartilhem um único canal de comunicação

UTP ( PAR TRANÇADO SEM PROTEÇÃO)

Redes de computadores

Largura de banda e Throughput (Tanenbaum,, 2.1.2)

Redes de Computadores

MÓDULO 7 Modelo OSI. 7.1 Serviços Versus Protocolos

Automação Industrial Parte 2

Conversores D/A e A/D

PROFINET. Guilherme Magalhães de Bastos e Lucas Fernandes Sousa

INTRODUÇÃO BARRAMENTO PCI EXPRESS.

1 Problemas de transmissão

Visão Geral do Protocolo CANBus

REDES DE COMPUTADORES

Prof. Manuel A Rendón M

Tratamento do sinal Prof. Ricardo J. Pinheiro

TELECOMUNICAÇÕES E REDES


Placas e Ferramentas de Rede. Prof. Alexandre Beletti Ferreira

Capítulo 2 - Conceitos Básicos de Redes. Associação dos Instrutores NetAcademy - agosto de Página

Introdução. Placas e Ferramentas de Rede. Exemplos. Surgimento. Estrutura Física - Placas

Cap 01 - Conceitos Básicos de Rede (Kurose)

PROJETO DE REDES

REDES DE COMPUTADORES

Centro Federal de Educação Tecnológica CEFET/BA

FACULDADE PITÁGORAS. Prof. Ms. Carlos José Giudice dos Santos

CAPÍTULO 5. INTERFACES PARA PERIFÉRICOS DE ARMAZENAMENTO INTERFACES DIVERSAS: FIREWIRE, SPI e I 2 C INTERFACES COM O MUNDO ANALÓGICO

INTRODUÇÃO... 2 TRANSMISSÃO DE SINAL DE VÍDEO SOBRE CABO UTP... 3 TIPOS DE CONVERSORES DE VÍDEO (BALUNS)... 3 DÚVIDAS FREQUENTES...

III.2. CABLE MODEMS CARACTERÍSTICAS BÁSICAS UNIDADE III SISTEMAS HÍBRIDOS

(Open System Interconnection)

REDE DE COMPUTADORES

09/06/2011. Profª: Luciana Balieiro Cosme

Redes de Dados e Comunicações. Prof.: Fernando Ascani

PROJETO DE REDES

Exercícios de Redes de Computadores Assuntos abordados: Conceitos gerais Topologias Modelo de referência OSI Modelo TCP/IP Cabeamento 1.

Redes de Computadores. Prof. Dr. Rogério Galante Negri

Davidson Rodrigo Boccardo

Redes de Computadores UNIDADE 2:Conhecendo os equipamentos, dispositivos e serviços de TI.

IW10. Rev.: 02. Especificações Técnicas

REDES DE COMPUTADORES

Fundamentos da Informática e Comunicação de Dados

RCO2. Introdução à camada física

Fundamentos em Informática

Aula 03 Redes Industriais. Informática Industrial II ENG1023 Profª. Letícia Chaves

Redes de Computadores

REGRAS PARA SEGMENTAÇÃO

Redes de Computadores sem Fio

Rede Profibus. Process. Manufacturing PLC PROFIBUS-PA. Internet PROFINET IEC RS-485/FO PROFIBUS-DP IPC. AS-Interface

Redes de Computadores

1 Introduc ao 1.1 Hist orico

Modelo OSI - A Camada Física

Elementos ativos de rede e meios de transmissão. Eduardo Max A. Amaral Aula 5

Redes de Computadores

RCO2. LANs, MANs e WANs Visão geral

Espectro da Voz e Conversão A/D

Meios Físicos de Comunicação

REDES DE COMPUTADORES Prof. Ricardo Rodrigues Barcelar

Meios de Transmissão. Conceito. Importância. É a conexão física entre as estações da rede. Influência diretamente no custo das interfaces com a rede.

PROJETO DE REDES

Topologias e abrangência das redes de computadores. Nataniel Vieira nataniel.vieira@gmail.com

Como em AM e FM, a portadora é um sinal senoidal com frequência relativamente alta;

Aula 2 Cabeamento Metálico

REDES FÍSICAS DE ACESSO EM BANDA LARGA

Fundamentos de Rede e Cabeamento Estruturado. A camada Física

Redes de Computadores

Topologia de rede Ligação Ponto-a-Ponto

APRESENTAÇÃO DE EQUIPAMENTOS DA ATMC LTDA

Arquitetura de Redes: Camadas de Protocolos (Parte I) Prof. Eduardo

TOPOLOGIAS. Em redes de computadores modernos a transmissão de dados não ocorre através de bits contínuos.

Mídias Físicas Utilizadas Cabo Coaxial e Par Trançado. Prof. Alexandre Beletti Ferreira

Comunicação de Dados. Aula 9 Meios de Transmissão

Fernando Albuquerque - fernando@cic.unb.br REDES LAN - WAN. Fernando Albuquerque (061) fernando@cic.unb.br

Organização de Computadores 1

Claudivan C. Lopes

Interconexão de redes locais. Repetidores. Pontes (Bridges) Hubs. Pontes (Bridges) Pontes (Bridges) Existência de diferentes padrões de rede

REDES DE COMPUTADORES E TELECOMUNICAÇÕES MÓDULO 6

Assunto: Redes Com Menos Gastos

Transcrição:

Aula III Redes Industriais Universidade Federal da Bahia Escola Politécnica Disciplina: Instrumentação e Automação Industrial I(ENGF99) Professor: Eduardo Simas(eduardo.simas@ufba.br) 1

Introdução Muitas vezes, para que a informação medida em campo seja utilizada corretamente, é necessário transmiti-la para o local onde vai ser processada ou analisada. As redes de comunicação industriais fazem este papel. Entre as funções de uma rede industrial pode-se destacar: Transmitir a informação medida nos sensores para as unidade de processamento ou para os sistemas de controle e supervisão da planta; Transmitir os comandos enviados pelos sistemas de controle e supervisão para os elementos atuadores (motores, válvulas, fornos, etc). Neste módulo serão estudados alguns padrões de comunicação utilizados em redes industriais. 2

Introdução Ao longo dos anos o modo de transmissão da informação nos ambientes industriais foi gradualmente evoluindo em busca de tecnologias mais avançadas. Atualmente os protocolos de redes de campo estão cada vez mais difundidos. Fig. retirada de: L. A. Guedes (2005) Classificação das Redes para Automação industrial, Notas de Aulas DCA/UFRN 3

Introdução As redes de comunicação por sinais elétricos foram introduzidas em ambientes industriais a partir de da década de 1960 e permitiu a substituição de grande quantidade de tubos utilizados para a transmissão pneumática. Isso contribuiu para: Reduzir os custos de instalação; Reduzir o tempo de transmissão dos sinais. Inicialmente os sensores geravam sinais analógicos que eram transmitidos para os elementos de controle (sistemas de supervisão, computadores ou controladores lógicos programáveis CLPs). A comunicação digital entre pequenos dispositivos de chão de fábrica só foi iniciada na década de 1980 e sua aceitação aumentou apenas na década seguinte. Com o aumento da complexidade dos sistemas automatizados, foram propostos diferentes protocolos(padrões) de comunicação para redes industriais. Se tornou necessário trabalhar no sentido de uniformizar os protocolos e garantir a interconexão de dispositivos de diferentes fabricantes. 4

Introdução aos Sistemas de Comunicação 5

Introdução aos Sistemas de Comunicação Um sistema de comunicação simples é formado por: fonte de informação, transmissor, canal(ou meio) de transmissão, receptor e destino. O objetivo é enviar o conteúdo de uma mensagem (informação) de um local(transmissor) para outro(receptor). 6

Introdução aos Sistemas de Comunicação Os sistemas de comunicação podem ser classificados quanto à natureza da informação transmitida em: Analógico Digital Uma fonte de informação analógica pode ser convertida para digital por um processo chamado conversão A-D(analógico-digital). A conversão A-D envolve a execução de algumas etapas como: Amostragem (amostras do sinal analógico devem ser tomadas a intervalos que respeite o limite de Nyquist para amostragem segura) Quantização (os valores da amplitude do sinal analógico são aproximados pelo nível de quantização mais próximo, esse processo introduz erros de quantização) Codificação (os níveis de quantização são associados a palavras digitais) 7

Transmissão Analógica x Digital O termo analógico está relacionado à palavra análogo, pois o sinal que ele representa tenta representar de modo fiel o processo físico correspondente. Para a obtenção de um sinal digital a partir de sua representação analógica é preciso realizar um processo conhecido como conversão analógico-digital(embora existam sinais naturalmente discretos no tempo, i.e. a temperatura diária, o valor de uma ação no fechamento da bolsa de valores, etc). Considerando que: Grande parte dos fenômenos e sinais existentes naturalmente são analógicos. A conversão analógico-digital sempre introduz erros de quantização ao sinal digitalizado. Então, porque o processamento digital é tão difundido atualmente? 8

Transmissão Analógica x Digital Os circuitos digitais são mais tolerantes a variações nos componentes eletrônicos; O sinal digital é mais imune ao ruído aditivo na transmissão (mais simples de minimizar oerroemcadabit,poisestesópodeassumirosvalores0ou1); A crescente disponibilidade de dispositivos para o processamento digital (computadores pessoais, sensores digitais equipamentos móveis, hardware dedicado, etc); É possível utilizar sinais multiplexados por divisão no tempo. Desvantagens: São necessárias duas etapas adicionais para o processamento de um sinal analógico(conv. AD e DA). Os circuitos de processamento digital, em geral, consumem mais energia que os analógicos, pois utilizam sempre dispositivos eletrônicos ativos na sua construção. 9

Transmissão Analógica x Digital Sinal analógico Sinal amostrado e quantizado 10

Transmissão Analógica x Digital É no processo de codificação que os diferentes níveis de quantização são associados às palavras digitais. No exemplo ao lado uma codificação a 4 bits é utilizada para representar até 16 níveis de quantização diferentes. O número de níveis de quantização (NQ) que se pode representar é função do número de bits(nb) de codificação utilizada: 2 O máximo erro de quantização pode ser estimado por: 2 Sendo Δx a faixa de excursão(range) da variável. 11

Transmissão Analógica x Digital Sinal digital As informações das amostras quantizadas do sinal analógico são representadas por palavras digitais 12

Análise no Domínio da Frequência A informação contida num sinal pode ser melhor interpretada se ele for analisado num domínio diferente do original. As operações matemáticas que realizam uma mudança de domínio numa função são chamadas de transformadas. A Transformada de Fourier realiza a transformação de um sinal h(t) no domínio do tempo para um sinal H(w) no domínio da frequência: 13

Análise no Domínio da Frequência Nesteslidesãomostradosexemplosdeumsinalnodomíniodotempox(t) e seu respectivo espectro de frequências. A presença de altas frequências indica que o sinal no domínio do tempo tem variações rápidas. Para sinais de áudio as baixas frequências correspondem aos sons graves e as altas frequências aos agudos. 14

Análise no Domínio da Frequência Exemplos de Pares da Transformada de Fourier 15

Técnicas de Modulação / Multiplexação Para possibilitar a transmissão de mais de um sinal de informação compartilhando o mesmo meio de transmissão é necessário utilizar técnicas de modulação ou de multiplexação. As técnicas de modulação consistem basicamente em aproveitar diferentes faixas do espectro de frequência disponível no meio de transmissão para enviar informações de diferentes fontes ao mesmo tempo(exemplos: Modulação AM, FM, PM, ASK, QAM, etc). De modo análogo, o processo de Multiplexação tem o objetivo de transmitir diversas fontes de informação utilizando o mesmo meio, mas de modo intercalado ou multiplexado (Exemplos: Multiplexação por divisão no tempo, multiplexação por divisão na frequência, multiplexação por divisão no comprimento de onda); 16

Exemplo Modulação AM Um sinal x(t) é multiplicado por uma portadora senoidal de frequência fixa e conhecida f: X AM (t)=x(t)sen(2πft +θ) Deste modo a informação de x(t) é movida para a faixa de frequências em tornodef. 17

Exemplo Modulação FSK Nesta forma de modulação a frequência do sinal transmitido varia com o valor do sinal de informação digital: 18

Exemplo Multiplexação por Divisão no Tempo Na multiplexação por divisão no tempo, as informações digitais de diversas fontes são transmitidas por um mesmo meio de modo intercalado no tempo (aproveitando intervalos de tempo que não seriam utilizados na transmissão de apenas um canal). A taxa de transmissão de informação no meio é a soma das taxas individuais de cada fonte. 19

Multiplexação por Divisão na Frequência Os sinais de informação são deslocados da banda base para diferentes faixas de frequência e transmitidos ao mesmo tempo. Se não houver sobreposição nos espectros é possível recuperar a informação original de todos os canais. 20

Introdução a Redes de Comunicação 21

O Modelo OSI de 7 Camadas O modelo OSI (Open Systems Interconnection) foi definido com o objetivo de padronizar o modo de conexão de redes de dados, possibilitando a interconexão entre redes de diferentes padrões e protocolos. O padrão define sete camadas, cada uma com funções próprias e bem definidas. As camadas adjacentes se comunicam através de interfaces específicas. 22

Especificações de Redes Industriais As redes industriais, assim como as telecomunicações de um modo geral experimentaram uma ampla evolução nos últimos anos com a popularização da internet e dos dispositivos móveis. Para garantir que uma rede de comunicação atenda aos requisitos da planta industrial devem ser considerados aspectos como: Taxa de transmissão; Topologia física da rede; Meio físico de transmissão; Tecnologia de comunicação; Quantidade de dispositivos; Custos de instalação; Confiabilidade e segurança. 23

Meio Físico de Transmissão Par trançado Par trançado multipar (conector RJ45) O par trançado é um dos meios de transmissão mais utilizados em telecomunicações, principalmente pelo baixo custo e simplicidade de conexão. Os pares trançados mais simples são utilizados em aplicações de telefonia, onde cada usuário recebeumpardefios. Em redes de computadores é mais comum a utilização de pares trançados agrupados num cabo multipar. Os pares trançados podem ser blindados (shielded) ou não blindados (unshieded). A blindagem torna o cabo mais imune a interferências entre os pares e a ruídos externos. A depender da categoria é possível transmitir até 100 Mbps (Fast Ethernet) usando pares trançados. 24

Meio Físico de Transmissão Coaxial Fibra óptica Os cabos coaxiais são altamente resistentes à interferências de fontes externas de ruído. Outra vantagem em relação ao par trançado é poder suportar maiores distâncias de transmissão. Em compensação, o par trançado é mais fácil de instalar, mais barato e ocupa menos espaço. O conector mais utilizado para cabos coaxiais é o BNC A fibra óptica é utilizada para transmissão de sinais de luz no lugar de sinais elétricos. Deste modo a interferência eletromagnética é eliminada. Cabos de fibra óptica podem transmitir a distância muito maiores e ocupam espaço significativamente menor que os pares trançados e os coaxiais. É preciso utilizar conversores eletro-ópticos nos pontos de transmissão e recepção. 25

Meio Físico de Transmissão Transmissão sem Fios Atualmente os sistemas de comunicação sem fios são utilizados em diversas aplicações. O ar é utilizado como meio de transmissão da informação. Na indústria, os sistemas sem fios contribuem para aumentar a flexibilidade e a simplicidade de instalação. Como desvantagem pode-se mencionar a menor imunidade ao ruído, se comparado a sistemas com fios. 26

Ocupação do Espectro Eletromagnético Frequência x Comprimento de Onda: Sendo: - v a velocidade de propagação da onda, no caso da onda eletromagnética v=c (velocidade da luz); - λ o comprimento de onda; - f a frequência. 27

Formas de Utilização do Meio Físico 28

Topologia Física (Exemplos) Ponto a ponto Barramento Estrela Anel 29

Redes de Comunicação Industriais 30

Pirâmide da Automação 31

Pirâmide da Automação Diagrama dos níveis 1, 2 e 3 da pirâmide de automação. Estes níveis estão diretamente ligados a operação da planta. Os níveis 4 e 5 estão relacionadas com ações gerenciais 32

Topologias de Redes Industriais Barramento de campo distribuído: Devido às características físicas que normalmente existem nas instalações industriais (longas distâncias, linhas de produção, etc), as redes industriais utilizam muito a conexão via barramento. 33

Topologias de Redes Industriais Sistema de controle distribuído: Os barramentos de campo de diferentes áreas da indústria podem ser conectados gerando um sistema de controle distribuído. 34

Tecnologias de Comunicação As redes industriais podem adotar diferentes formas de comunicação como: Mestre-Escravo: o escravo é um periférico (dispositivos entrada/saída, drivers de acionamento de máquinas, atuadores, etc), que recebe uma informação do processo ou utiliza informações de saída do mestre para atuar na planta. Eles são dispositivos passivos que somente respondem a requisições diretas vindas do mestre. Uma rede de automação pode operar com apenas um (monomestre) ou com vários mestres(multimestre) num mesmo barramento. Produtor-consumidor: neste modelo os dados possuem um identificador único de origem ou destino, há uma economia na transmissão de dados, pois eles só são enviados aos dispositivos que os requisitarem. Quando um nó da rede necessita de uma informação (consumidor) a solicitação é anunciada na rede e outro nó (produtor) que dispõe da informação solicitada a envia. 35

Padrões Analógicos 36

Padrões Analógicos Os padrões de transmissão de informação a partir de sensores com saída analógica ainda são utilizados em plantas industriais(embora com aplicações reduzidas). O Padrão ISA S50.1-1972 regulamenta o uso destes sinais. Os valores da variável elétrica devem ser proporcionais aos sinais de informação a serem transmitidos. Padrões existentes: 0-5V, 0-10V, 1-5V, 2-10V, 4-20mA, 1-5mA, 0-20mA, e 10-50mA. Padrões de tensão: São de fácil entendimento; São bastante afetados pela impedância da linha. Padrões de corrente: Maior imunidade à ruído; Pode ser transmitido a longas distâncias pois possui relativa independência no que se refere ao comprimento do cabo. 37

Padrão 4-20 ma 38

Padrão 4-20 ma Características: Utilizaumamalhadecorrentecomvariaçãode 4a20mA. A variação de corrente na malha é em geral linear proporcionalmente à variável do campo. Vantagens: Imunidade ao ruído Nãoexisteperdadesinal Desvantagens: Nãoémuitointuitivoousodevariaçõesdecorrente. 39

Padrão 4-20 ma Malha de Corrente: 40

Protocolo Hart 41

Protocolo Hart O protocolo Hart (Highway Addressable Remote Transducer) foi desenvolvido no início dos anos 80 por Rosemount. É um protocolo aberto. Em 1993 foi criado o HART Communication Foundation para prover suporte e gerenciar o protocolo. Características: Possibilita comunicação de forma digital entre dispositivos de campo e controladores; Comunicação bidirecional não interfere no sinal analógico 4 20 ma; Utiliza chaveamento de frequência (FSK) com frequência de 1200 Hz parabinário 1 eafrequênciade2200parabinário 0. 42

Protocolo Hart Padrão de modulação FSK utilizado no protocolo HART: 43

Protocolo Hart A separação no domínio da frequência permite a utilização do mesmo meio de transmissão (em geral o par trançado) para o sinal analógico e o sinal do protocolo HART. 44

Protocolo Hart Características: Taxadetransmissãode1200bps O valor indicado pelo sensor é transmitido no sinal de 4 a 20 ma enquanto medidas adicionais, configuração, calibração, etc. Pequena variação de tensão Tipos de comunicação entre dispositivos: mestre-escravo(um dispositivo mestre faz as solicitações de informação aos escravos ); Brust (ou rajadas, neste modo os frames de dados são enviados apenas quando necessário); Etc. 45

Protocolo HART Exemplo de uma rede HART operando no modo mestre-escravo. A estação de controle envia os comandos para os dispositivos de campo solicitando as informações. 46

FIELDBUS 47

Padrão Fieldbus - Introdução Fieldbus é um termo genérico que descreve uma rede digital de comunicação usada para interligar dispositivos de campo. Foi uma tentativa de estabelecer um padrão para a interconexão de dispositivos. Baseia-se em 4 premissas: Substituição dos sinais analógicos(4-20 ma) Maior interação com o campo Interoperabilidade Abertura do padrão O Fieldbus provê um sistema de comunicação: digital serial bidirecional 48

Fieldbus - Características O padrão opera nas seguintes taxas de transmissão: 31.25 Kbps, 1Mbps e 2.5Mbps Topologias: Barramento com derivação Árvore Ponto a ponto Mista Utilização de par trançado com polaridade específica. Comprimento máximo: 1900m para taxa de 31.25Kbps 750mparataxade1Mbps 500m para taxa de 2.5Mbps 49

Fieldbus - Dispositivos Sensores Controladores Atuadores Conectores Blocos terminais Host Repetidores Bridges Gateways 50

Fieldbus - Topologias 51

Fieldbus - Topologias 52

Fieldbus - Topologias 53

Diagrama de Conexão de um Bloco Terminal 54

Fieldbus Protocolo de Comunicação Referência ao modelo OSI com apenas três das sete camadas Camada física Camada de enlace de dados Camada de aplicação 55

Fieldbus Protocolo de Comunicação 56

Fieldbus - Conclusões O Fieldbus constitui uma tecnologia de ponta para a área de automação. Baseia-se na interconexão de dispositivos em um barramento comum. Novas tecnologias surgiram baseadas no Fieldbus tais como: Fieldbus Foundation, Bitbus, Lonkwork, DeviceNet, Modbus, Profibus entre outras. 57

Em apresentações complementares a esta iremos estudar os padrões de comunicação: PROFIBUS CAN AS-Interface 58

Comparação entre Diferentes Tecnologias 59

Comparação entre Diferentes Tecnologias ENGF99 Instrumentação e Automação 60

Exercícios de Fixação 1. Comente a respeito da importância das redes de comunicação em processos industriais atualmente. 2. Na conversão de um sinal analógico que varia entre -1 e 1 V, para um sinal digital, supondo que foi utilizada uma representação a 10 bits, qual o máximo erro de quantização esperado? 3. No problema da questão 02, qual a taxa de bits produzida na conversão AD quando o sinal analógico é amostradocomumafrequênciaiguala1khz? 4. Qualovalordecorrenteesperadonasaídadeumsensoranalógico(nopadrão4a20mA),quando: 1. Osensormedeumatemperaturaquevariaentre10e40oCeovalorinstantâneomedidoé13oC; 2. Osensormedeumacorrenteelétricaquevariaentre0e4Aeovalorinstantâneomedidoé1,4A. 5. Explique o processo de separação dos sinais do protocolo HART do sinal analógico; 61

Fontes Utilizadas Na preparação deste material didático foram utilizadas diversas fontes, entre as quais destacam-se: OmaterialdeaulasdoProf.JoséSergiodaRochaNetodaUFCG; O livro Engenharia de Automação Industrial de Moraes e Castrucci, 2007. O material disponível no site da Profibus(www.profibus.com.br). Das fontes listadas foram retirados alguns dos diagramas utilizados. 62