UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO. 4 a Lista de Exercícios Gabarito de algumas questões.

Tamanho: px
Começar a partir da página:

Download "UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO. 4 a Lista de Exercícios Gabarito de algumas questões."

Transcrição

1 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO MATEMÁTICA COMBINATÓRIA 4 a Lista de Exercícios Gabarito de algumas questões. Este gabarito foi feito direto no computador em duas horas de trabalho, por isso fique alerta para possíveis erros, inclusive erros de datilografia. Não deixe de me avisar dos erros que encontrar para que possam ser corrigidos. 3. Prove que F 3n é sempre par. Vou proceder por indução em n. Para começar, implicam que F 2 = 1 e F 3 = 2. F 0 = 0 e F 1 = 1, Supondo, agora, que F 3(n 1) é par, usamos a recorrência de Fibonacci duas vezes F 3n = F 3n 1 + F 3n 2 e, também, F 3n 1 = F 3n 2 + F 3n 3. Combinando as duas F 3n = F 3n 3 + 2F 3n 2. Como F 3n 3 é par pela hipótese de indução, concluímos que F 3n é par. 4. Prove que F 2n+1 = 3F 2n 1 F 2n 3. Basta usar a recorrência várias vezes: e, também F 2n+1 = F 2n + F 2n 1 ; F 2n = F 2n 1 + F 2n 2. 1

2 2 MATEMÁTICA COMBINATÓRIA Combinando as duas, F 2n+1 = 2F 2n 1 + F 2n 2. Por outro lado, F 2n 1 = F 2n 2 + F 2n 3 ; donde F 2n 2 = F 2n 1 F 2n 3 ; Assim, F 2n+1 = 2F 2n 1 + F 2n 2 = 3F 2n 1 + F 2n 3 ; que é o resultado desejado. 5. Mostre que o número de seqüências ternárias com n dígitos com um número par de 0 s é (3 n + 1)/2. Uma seqüência ternária é aquela que é formada apenas pelos algarismos 0, 1 e 2. Seja r n a quantidade de seqüências ternárias de comprimento n com um número par de 0s. Podemos formar uma seqüência ternária com n símbolos e um número par de zeros de duas maneiras diferentes: Primeira: tome uma seqüência com n 1 símbolos, que já tenha um número par de zeros, e acrescentar um 1 no início desta seqüência; Segunda: tome uma seqüência com n 1 símbolos, que tenha um número ímpar de zeros, e acrescente um 0 no início desta seqüência. No primeiro caso temos r n 1 seqüências que começam por 1 e têm um número par de zeros. Como há 3 n 1 r n 1 seqüências de n 1 símbolos com um número ímpar de zeros; obtemos 3 n 1 r n 1 seqüências com um número par de zeros adotando a segunda maneira de proceder acima. Portanto, somando tudo, r n = 2r n n 1. Como r 0 = 1 e r 1 = 2 (zero 0 s é um número par de zeros!), devemos resolver a recorrência acima sob estas condições iniciais. Mas isto é fácil: basta somar uma PG, usando o método de somas telescópicas. 6. Ache uma relação de recorrência e suas condições inicias para o número de palavras ternárias que ou contêm dois zeros consecutivos, ou dois uns consecutivos. Resolva esta recorrência. Seguindo uma sugestão dada em sala, vou achar uma recorrência r n para a quantidade de seqüências ternárias que não contêm 00, nem 11. Imagine que s n 1 é uma

3 MATEMÁTICA COMBINATÓRIA 3 seqüência ternária de comprimento n 1 que nem tem 00, nem 11. Há 3 possibilidades: s n 1 começa com 0: neste caso só posso acrescentar 1 ou 2 no início da seqüencia se quero transformá-la em uma seqüência de comprimento n sem 00 e sem 11. s n 1 começa com 1: neste caso só posso acrescentar 0 ou 2 no início da seqüencia se quero transformá-la em uma seqüência de comprimento n sem 00 e sem 11. s n 1 começa com 2: neste caso posso acrescentar 0, 1 ou 2 no início da seqüencia se quero transformá-la em uma seqüência de comprimento n sem 00 e sem 11. Note que, nos dois primeiros casos, posso acrescentar dois elementos para transformar a seqüência de n 1 para n elementos, continuando com a propriedade de não ter 00, nem 11. No terceiro caso, qualquer coisa vale na primeira posição. Isto é ruim porque se só pudéssemos ter 0 ou 1 na primeira posição, teríamos a mesma quantidade de possibilidades em cada caso. Isto significaria que a recorrência seria simplesmente r n = 2r n 1. Como isto não é verdade, vou apelar e subdividir o último caso em dois; no primeiro ponho 0 ou 1 no começo da palavra e no último ponho 2 no começo. Assim, no segundo caso as palavras de comprimento n que estão sendo consideradas começam com 22 e continuam com uma palavra de comprimento n 2 que não tem 00, nem 11. Isto me dá a recorrência r n = 2r n 1 + r n 2, que conta as palavras sem 00 e sem 11. As que têm 00 ou 11 correspondem ao complementar. Assim, se c n são as palavras com n símbolos que contêm 00 ou 11, temos que r n = 3 n c n. Substituindo na recorrência acima, Rearrumando, 3 n c n = 2(3 n 1 c n 1 ) + 3 n 2 c n 2. c n = 3 n 2(3 n 1 c n 1 ) 3 n 2 + c n 2, que não é homogênea e é bastante complicada de resolver na mão. A que é fácil de resolver é r n. Ache as condições iniciais e resolva r n. 8. Ache a relação de recorrência e as condições iniciais para o número de maneiras de subir uma escada de n degraus se a pessoa pode subir um ou dois degraus de cada vez. Resolva esta recorrência.

4 4 MATEMÁTICA COMBINATÓRIA Se r n é o numero de maneiras de subir uma escada com n degraus como descrito acima, então ou subimos até o n 1-ésimo degrau e damos um passo, ou subimos até o n 2-ésimo e damos dois passos, donde r n = r n 1 + r n 2. Se há apenas um degrau, só podemos subri dando um passo, donde r 1 = 1. Se há dois degraus, podemos dar dois passos de um degrau cada, ou um passo de dois degraus, logo r 2 = 2. Resta resolver a recorrência. 9. Ache a relação de recorrência e as condições iniciais satisfeitas pelo número de palavras ternárias (isto é, formadas apenas por 0, 1 e 2) que não contêm dois zeros consecutivos. Resolva esta recorrência. Na lista está escrito binária, mas isto foi um erro de datilografia, porque a resposta é para seqüências ternárias. Além disso, já fizemos binárias em sala. Para ternárias a análise é semelhante. Construímos uma seqüência ternária sem 00 e comprimento n, a partir de uma que tem comprimento menor analisando dois casos. A uma seqüência de comprimento n 1 sem 00 podemos acrescentar 1 ou 2 no início para obter uma de comprimento n que também não tem zeros. Com isto resta-nos explicar como produzir seqüências de comprimento n sem 00 e que começam por 0. Neste caso precisamos garantir que a seqüência de comprimento n 1 colada depois do 0 inicial começa com 1 ou 2, para que não apareça um 00 indesejado no início. Mas isto significa considerar seqüências de comprimento n 2, sem 00, às quais colamos 1 ou 2 no início. Temos assim que r n = 2r n 1 + 2r n 2. O 2 multiplicando aparece porque às seqüências de comprimento menor podem ser completadas com um 1 ou 2 no início. 10. Seja a n o determinante da matriz n n abaixo: 2q q q 2q q q 2q q q 2q onde n 2 e q é uma constante não nula. Ache uma relação de recorrência para a n e resolva esta relação.

5 MATEMÁTICA COMBINATÓRIA 5 Seja 2q q q 2q q A n = 0 q 2q q q 2q Expandindo o determinante pela primeira linha, temos q q q q a n = 2q det(a n 1 ) q det q 2q Expandindo, agora, o determinante da segunda parcela pela primeira coluna, obtemos q q q q det = q det(a n 2) q 2q Substituindo acima, que é a recorrência desejada. a n = 2q det(a n 1 ) q det(a n 2 ) = 2qa n 1 q 2 a n 2 ; 15. Suponha que você dispõe de um computador que efetua qualquer operação binária em 10 9 segundos. Determine o tamanho n do maior problema que pode ser resolvido em 1 segundo por um algoritmo cujo tempo de execução é: (a) (log 2 n) 2 ; (b) (log 2 n) 33 ; (c) n; (d) n 2. O custo corresponde ao número de operações executadas. Portanto, devemos ter em (a) que (log 2 n) < 1. Logo, (log 2 n) 2 < 10 9 ; donde (log 2 n) < 10 9/2.

6 6 MATEMÁTICA COMBINATÓRIA Assim,finalmente, Os outros são análogos. n < 2 109/ Dê uma estimativa para n! e para log(n!) usando a notação O. n! = n, é o produto de n termos todos menores ou iguais a n, logo Assim, Por um argumento semelhante, n! < n n. n! = O(n n ). log(n!) = O(n log(n)). 17. Sejam f 1, f 2, g 1 e g 2 funções definidas no mesmo intervalo. Prove que se f 1 é O(g 1 ) e f 2 é O(g 2 ), então (a) f 1 + f 2 é O(max{g 1, g 2 }), e (b) f 1 f 2 é O(g 1 g 2 ). Vou provar a primeira, a outra é análoga. Dizer que f 1 é O(g 1 ) significa que existem constantes K 1 e L 1 tais que f 1 (x) K 1 g 1 (x) para todo x > L 1. Analogamente, como f 2 é O(g 2 ), existem constantes K 2 e L 2 tais que f 2 (x) K 2 g 2 (x) para todo x > L 2. Escolha M = max{k 1, K 2 } e M = max{l 1, L 2 }. Então, f 1 (x) + f 2 (x) K 1 g 1 (x) + K 2 g 2 (x) Mg 1 (x) + Mg 2 (x) M(g 1 + g 2 )(x), para todo x que é mairo do que L 1 e do que L 2 ; isto é, para todo x > M. Logo, por definição, f 1 + f 2 é O(max{g 1, g 2 }). 18. Mostre que

7 (a) log n é O(n). (b) 3n log(n!) + (n 2 + 3) log(n) é O(n 2 log(n)); (c) (n + 1) log(n 2 + 1) + 3n 2 é O(n 2 ). MATEMÁTICA COMBINATÓRIA 7 Para (a), basta lembrar que log(n) < n para todo n > 1. Para (b), use o exercício anterior para verificar que O(3n log(n!) + (n 2 + 3) log(n)) = O(3n log(n!)) + O((n 2 + 3) log(n)). Aplicando, novamente, o exercício anterior, desta vez à primeira parcela O(3n log(n!)) = O(3n)O(log(n!)) = O(n)O(log(n!)), já que podemos ignorar constantes. Por outro lado, como log(n!) n log(n), obtemos Passando à outra parcela, O(3n log(n!)) = O(n)O(n log(n)) = O(n 2 log(n)). Contudo, 2n 2 > n para n > 2, logo O((n 2 + 3) log(n)) = O(n 2 + 3)O(log(n)). O(n 2 + 3) = O(2n 2 ) = O(n 2 ), porque podemos ignorar constantes. Por isso, Juntando tudo, O((n 2 + 3) log(n)) = O(n 2 log(n)). O(3n log(n!) + (n 2 + 3) log(n)) = O(2n 2 log(n)). Ignorando as constantes, obtemos o resultado desejado. As outras são análogas. 23. Considere o seguinte algoritmo para determinar o maior elemento e o menor elemento de uma seqüência a 1, a 2,..., a n : Se n = 1, então a 1 é tanto o máximo quanto o mínimo. Se n > 1, divida a seqüência dada em duas seqüências menores. Se n for par, então a duas seqüências menores terão o mesmo número de elementos; se n for ímpar, uma delas terá um elemento a mais que a outra. O problema fica então reduzido a achar o máximo e o mínimo de duas seqüências menores. Finalmente, para resolver o problema para a seqüência original de n elementos basta comparar os máximos e os mínimos das seqüências menores para descobrir o maior elemento e o menor elemento.

8 8 MATEMÁTICA COMBINATÓRIA Seja f(n) o número de comparações necessários para resolver o problema com n elementos. (a) Mostre que se n é par então f(n) = 2f(n/2) + 2. (b) Resolva esta congruência quando n é uma potência de 2. (c) Determine a complexidade deste algoritmo usando notação O. (a) O algoritmo reduz o problema há duas listas L 1 e L 2 de comprimento n/2, em cada uma das quais devemos encontrar o méximo e o mínimo por aplicação recursiva do algoritmo. Isto nos dá 2f(n/2) comparações. Ainda precisamos decidir quem é maior entre os máximos de L 1 e L 2 (uma comparação), e quem é o menor entre os mínimos de L 1 e L 2 (mais uma comparação). Temos, assim, um total de 2f(n/2) + 2 comparações, de modo que a recorrência é f(n) = 2f(n/2) + 2. (b) Se n = 2 k, então f(2 k ) = 2f(2 k 1 ) + 2. Dividindo tudo por 2 k e fazendo r k = f(2 k )/2 k, obtemos Escrevendo temos uma soma telescópica, que nos dá Somando a PG, Logo, donde r k = r k k. r k r k 1 = 2 k r k r 0 = r k r 0 = k 2 j. j=1 1/2 1/2k /2 r k r 0 = 2k 1 2 k ; f(2 k ) = 2 k 1. Note que f(1) = 0, (isto é r 0 = 0) já que não há necessidade de fazer comparações quando a seqüência tem apenas um elemento. Como n = 2 k, obtemos f(n) = n 1.

9 MATEMÁTICA COMBINATÓRIA 9 O algoritmo indutivo cria duas variáveis min e max onde são guardados o mínimo e o máximo, respectivamente. Estas variáveis são ambas inicializadas com o elemento inicial da lista. Os valores de min e max são, então, comparados com os elementos da lista, um a um. Se o elemento da lista que está sendo analisado é menor que min troque o valor atual de min pelo deste elemento; faça o análogo com max. O número total de comparações efetuadas por este algoritmo é 2(n 1). Portanto, o custo do algoritmo indutivo é O(n), que é igual ao custo do algoritmo dividir-e-conquistar descrito acima. E eu acabei fazendo mais do que a questão pedia...

RESOLUÇÃO DCC-UFRJ MATEMÁTICA COMBINATÓRIA 2006/2 PROVA Considere a soma. S n = n 2 n 1

RESOLUÇÃO DCC-UFRJ MATEMÁTICA COMBINATÓRIA 2006/2 PROVA Considere a soma. S n = n 2 n 1 DCC-UFRJ MATEMÁTICA COMBINATÓRIA 2006/2 PROVA 1 1. Considere a soma S n = 1 2 0 + 2 2 1 + 3 2 2 + + n 2 n 1. Mostre, por indução finita, que S n = (n 1)2 n + 1. Indique claramente a base da indução, a

Leia mais

Complemento a Um e Complemento a Dois

Complemento a Um e Complemento a Dois Complemento a Um e Complemento a Dois Cristina Boeres (baseado no material de Fernanda Passos) Instituto de Computação (UFF) Fundamentos de Arquiteturas de Computadores Cristina Boeres (IC/UFF) Complemento

Leia mais

Divisão e Conquista. Norton T. Roman. Apostila baseada nos trabalhos de Cid de Souza, Cândida da Silva e Delano M. Beder

Divisão e Conquista. Norton T. Roman. Apostila baseada nos trabalhos de Cid de Souza, Cândida da Silva e Delano M. Beder Divisão e Conquista Norton T. Roman Apostila baseada nos trabalhos de Cid de Souza, Cândida da Silva e Delano M. Beder Divisão e Conquista Construção incremental Ex: Consiste em, inicialmente, resolver

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/27 4 - INTROD. À ANÁLISE COMBINATÓRIA 4.1) Arranjos

Leia mais

Aula 8: Complemento a Um e Complemento a Dois

Aula 8: Complemento a Um e Complemento a Dois Aula 8: Complemento a Um e Complemento a Dois Diego Passos Universidade Federal Fluminense Fundamentos de Arquiteturas de Computadores Diego Passos (UFF) Complemento a Um e Complemento a Dois FAC 1 / 40

Leia mais

Recorrências Lineares de Primeira Ordem

Recorrências Lineares de Primeira Ordem 7 Recorrências Lineares de Primeira Ordem Sumário 7.1 Introdução....................... 2 7.2 Sequências Denidas Recursivamente........ 3 7.3 Exercícios Recomendados............... 4 7.4 Exercícios Suplementares...............

Leia mais

Complexidade de Algoritmos

Complexidade de Algoritmos Complexidade de Algoritmos! Uma característica importante de qualquer algoritmo é seu tempo de execução! é possível determiná-lo através de métodos empíricos, considerando-se entradas diversas! é também

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA12 Matemática Discreta Avaliação - GABARITO AV 3 - MA 12 13 de julho de 2013 1. (2,0) Seja (a n ) uma progressão

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/26 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE

O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE ANA PAULA CHAVES AND THIAGO PORTO 1. Introdução Os temas centrais deste texto - bases numéricas e critérios de divisibilidade

Leia mais

Análise de algoritmos

Análise de algoritmos Análise de algoritmos Introdução à Ciência de Computação II Baseados nos Slides do Prof. Dr. Thiago A. S. Pardo Análise de algoritmos Existem basicamente 2 formas de estimar o tempo de execução de programas

Leia mais

Material Teórico - Módulo Matrizes e Sistemas Lineares. Sistemas Lineares - Parte 2. Terceiro Ano do Ensino Médio

Material Teórico - Módulo Matrizes e Sistemas Lineares. Sistemas Lineares - Parte 2. Terceiro Ano do Ensino Médio Material Teórico - Módulo Matrizes e Sistemas Lineares Sistemas Lineares - Parte 2 Terceiro Ano do Ensino Médio Autor: Prof Fabrício Siqueira Benevides Revisor: Prof Antonio Caminha M Neto 1 A representação

Leia mais

Módulo Tópicos Adicionais. Recorrências

Módulo Tópicos Adicionais. Recorrências Módulo Tópicos Adicionais Recorrências Módulo Tópico Adicionais Recorrências 1 Exercícios Introdutórios Exercício 1 Considere a sequência definida por x 1 d e x n r + x n 1, para n > 1 Trata-se de uma

Leia mais

XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Treinamento 7 Nível 3

XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Treinamento 7 Nível 3 UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA PET MATEMÁTICA XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Treinamento 7 Nível 3 Dias/Horários

Leia mais

Lista 1 - PMR2300. Fabio G. Cozman 3 de abril de 2013

Lista 1 - PMR2300. Fabio G. Cozman 3 de abril de 2013 Lista 1 - PMR2300 Fabio G. Cozman 3 de abril de 2013 1. Qual String é impressa pelo programa: p u b l i c c l a s s What { p u b l i c s t a t i c void f ( i n t x ) { x = 2 ; p u b l i c s t a t i c void

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE5403 - Fundamentos de Matemática Discreta para a Computação ) Fundamentos.1) Conjuntos e Sub-conjuntos.) Números Inteiros.3) Funções.4) Seqüências e Somas.5) Crescimento de Funções Seqüências Uma seqüência

Leia mais

ANÁLISE DE ALGORITMOS: PARTE 4

ANÁLISE DE ALGORITMOS: PARTE 4 ANÁLISE DE ALGORITMOS: PARTE 4 Prof. André Backes 2 Função recursiva Função que chama a si mesma durante a sua execução Exemplo: fatorial de um número N. Para N = 4 temos 4! = 4 * 3! 3! = 3 * 2! 2! = 2

Leia mais

Organização de Computadores I

Organização de Computadores I Organização de Computadores I Aula 3 Material: Diego Passos http://www.ic.uff.br/~debora/orgcomp/pdf/parte3.html Organização de Computadores I Aula 3 1/17 Tópicos Numéricas. entre bases. de conversão..

Leia mais

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c.

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Divisores Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Quando a é múltiplo de d dizemos também que a é divisível

Leia mais

Álgebra Linear Semana 01

Álgebra Linear Semana 01 Álgebra Linear Semana 01 Diego Marcon 27 de Março de 2017 Conteúdo 1 Estrutura do Curso 1 2 Sistemas Lineares 1 3 Formas escalonadas e formas escalonadas reduzidas 4 4 Algoritmo de escalonamento 5 5 Existência

Leia mais

Aulas 5 e 6 / 28 e 30 de março

Aulas 5 e 6 / 28 e 30 de março Aulas 5 e / 8 e 30 de março 1 Notação de soma e produto Como expressar a seguinte soma de uma maneira mais concisa? 1 + + 3 3 + + 10? Note que as parcelas são semelhantes, e que a única coisa que varia

Leia mais

Análise e Complexidade de Algoritmos

Análise e Complexidade de Algoritmos Análise e Complexidade de Algoritmos Professor Ariel da Silva Dias Algoritmos Divisão e Conquista Construção incremental Resolver o problema para um sub-conjunto dos elementos de entrada; Então, adicionar

Leia mais

Aula 7: Representações de Números Inteiros: Sinal e Magnitude e Representação em Excesso de k

Aula 7: Representações de Números Inteiros: Sinal e Magnitude e Representação em Excesso de k Aula 7: Representações de Números Inteiros: Sinal e Magnitude e Representação em Excesso de k Diego Passos Universidade Federal Fluminense Fundamentos de Arquiteturas de Computadores Diego Passos (UFF)

Leia mais

Modelagem com relações de recorrência. Exemplo: Determinada população dobra a cada ano; população inicial = 5 a n = população depois de n anos

Modelagem com relações de recorrência. Exemplo: Determinada população dobra a cada ano; população inicial = 5 a n = população depois de n anos Relações de recorrência 8. RELAÇÕES DE RECORRÊNCIA Introdução a relações de recorrência Modelagem com relações de recorrência Solução de relações de recorrência Exemplos e aplicações Relações de recorrência

Leia mais

Cálculo Numérico BCC760

Cálculo Numérico BCC760 Cálculo Numérico BCC760 Resolução de Sistemas de Equações Lineares Simultâneas Departamento de Computação Página da disciplina http://www.decom.ufop.br/bcc760/ 1 Introdução! Definição Uma equação é dita

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/30 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

Aulas práticas de Álgebra Linear

Aulas práticas de Álgebra Linear Ficha 2 Determinantes Aulas práticas de Álgebra Linear Mestrado Integrado em Engenharia Eletrotécnica e de Computadores 1 o semestre 2016/17 Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto

Leia mais

ESTRUTURAS DE REPETIÇÃO - PARTE 2

ESTRUTURAS DE REPETIÇÃO - PARTE 2 AULA 16 ESTRUTURAS DE REPETIÇÃO - PARTE 2 16.1 A seqüência de Fibonacci Um problema parecido, mas ligeiramente mais complicado do que o do cálculo do fatorial (veja as notas da Aula 14), é o do cálculo

Leia mais

Representação decimal dos números racionais

Representação decimal dos números racionais Representação decimal dos números racionais Alexandre Kirilov Elen Messias Linck 21 de março de 2018 1 Introdução Um número é racional se puder ser escrito na forma a/b, com a e b inteiros e b 0; esta

Leia mais

deve ter a forma 2 3 5, com a, b e c inteiros, 0 a 8, é dessa forma. Cada um dos outros números possui um fator primo diferente de 2, 3 e 5.

deve ter a forma 2 3 5, com a, b e c inteiros, 0 a 8, é dessa forma. Cada um dos outros números possui um fator primo diferente de 2, 3 e 5. XXXII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL 1) E 6) C 11) E 16) D 1) E ) B 7) B 1) C 17) E ) C ) E 8) D 1) D 18) A ) B 4) E 9) D 14) A 19) C 4) E

Leia mais

Representações de Números Inteiros: Sinal e Magnitude e Representação em Excesso de k

Representações de Números Inteiros: Sinal e Magnitude e Representação em Excesso de k Representações de Números Inteiros: Sinal e Magnitude e Representação em Excesso de k Cristina Boeres Instituto de Computação (UFF) Fundamentos de Arquiteturas de Computadores Material de Fernanda Passos

Leia mais

NÚMEROS INTEIROS E CRIPTOGRAFIA UFRJ

NÚMEROS INTEIROS E CRIPTOGRAFIA UFRJ NÚMEROS INTEIROS E CRIPTOGRAFIA UFRJ GABARITO LISTA 6: ALGORITMO CHINÊS DO RESTO 1. Ver gabarito das questões do livro. 2. Aplique o Algoritmo de Fermat para encontrar 999367 = 911 1097. Como 911 e 1097

Leia mais

ficha 2 determinantes

ficha 2 determinantes Exercícios de Álgebra Linear ficha 2 determinantes Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 Determinantes 2 Sendo

Leia mais

1 bases numéricas. capítulo

1 bases numéricas. capítulo capítulo 1 bases numéricas Os números são representados no sistema decimal, mas os computadores utilizam o sistema binário. Embora empreguem símbolos distintos, os dois sistemas formam números a partir

Leia mais

Técnicas de projeto de algoritmos: Indução

Técnicas de projeto de algoritmos: Indução Técnicas de projeto de algoritmos: Indução ACH2002 - Introdução à Ciência da Computação II Delano M. Beder Escola de Artes, Ciências e Humanidades (EACH) Universidade de São Paulo dbeder@usp.br 08/2008

Leia mais

Aula prática 5. Funções Recursivas

Aula prática 5. Funções Recursivas Programação Funcional UFOP DECOM 2014.1 Aula prática 5 Funções Recursivas Resumo Definições recursivas são comuns na programação funcional. Nesta aula vamos aprender a definir funções recursivas. Sumário

Leia mais

Algoritmos e Estrutura de Dados. Aula 04 Recorrência Prof. Tiago A. E. Ferreira

Algoritmos e Estrutura de Dados. Aula 04 Recorrência Prof. Tiago A. E. Ferreira Algoritmos e Estrutura de Dados Aula 04 Recorrência Prof. Tiago A. E. Ferreira Esta Aula... Nesta aula veremos três métodos para resolver recorrência: Método da substituição É suposto um limite hipotético

Leia mais

Classes, Herança e Interfaces

Classes, Herança e Interfaces Escola de Artes, Ciências e Humanidades EACH-USP ACH2002 Introdução à Ciência da Computação II Professor: Delano Medeiros Beder revisada pelo professor: Luciano Digiampietri EACH Segundo Semestre de 2011

Leia mais

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F.

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 1 Exercícios Introdutórios Exercício 1.

Leia mais

Matemática Computacional

Matemática Computacional folha de exercícios 5 :: página 1/5 exercício 5.1. Defina a função f : R R, f(x) = 4x 4 3x 3 + 2x 2 + x. Calcule f(0), f( 1), f(4/3) e f(2.88923). exercício 5.2. Defina a função g : R R R, g(x, y) = x

Leia mais

Método Simplex dual. Marina Andretta ICMC-USP. 24 de outubro de 2016

Método Simplex dual. Marina Andretta ICMC-USP. 24 de outubro de 2016 Método Simplex dual Marina Andretta ICMC-USP 24 de outubro de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211 - Otimização

Leia mais

Complexidade de Algoritmos

Complexidade de Algoritmos Complexidade de Algoritmos O que é um algoritmo? Sequência bem definida e finita de cálculos que, para um dado valor de entrada, retorna uma saída desejada/esperada. Na computação: Uma descrição de como

Leia mais

Cálculo Numérico Noções básicas sobre erros

Cálculo Numérico Noções básicas sobre erros Cálculo Numérico Noções básicas sobre erros Profa. Vanessa Rolnik 1º semestre 2015 Fases da resolução de problemas através de métodos numéricos Problema real Levantamento de Dados Construção do modelo

Leia mais

Quantidade de memória necessária

Quantidade de memória necessária Tempo de processamento Um algoritmo que realiza uma tarefa em 10 horas é melhor que outro que realiza em 10 dias Quantidade de memória necessária Um algoritmo que usa 1MB de memória RAM é melhor que outro

Leia mais

Análise de algoritmos

Análise de algoritmos Análise de algoritmos Recorrências Conteúdo Introdução O método mestre Referências Introdução O tempo de execução de um algoritmo recursivo pode frequentemente ser descrito por uma equação de recorrência.

Leia mais

Marina Andretta. 10 de outubro de Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis.

Marina Andretta. 10 de outubro de Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Solução básica viável inicial Marina Andretta ICMC-USP 10 de outubro de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211

Leia mais

1. Um quadradófago é um inseto que se alimenta de quadrados de tabuleiros de xadrez e dama. Um tabuleiro de tamanho 5 5 é mostrado abaixo

1. Um quadradófago é um inseto que se alimenta de quadrados de tabuleiros de xadrez e dama. Um tabuleiro de tamanho 5 5 é mostrado abaixo 1. Um quadradófago é um inseto que se alimenta de quadrados de tabuleiros de xadrez e dama. Um tabuleiro de tamanho 5 5 é mostrado abaixo Quando um quadradófago começa a comer os quadrados de um tabuleiro

Leia mais

Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental

Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental Material Teórico - Módulo Equações do Segundo Grau Equações de Segundo Grau: outros resultados importantes Nono Ano do Ensino Funcamental Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Sistemas de Equações Lineares. Métodos diretos Conteúdo

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos - Princípio de Indução; Algoritmo de Euclides 1. Seja ( n) k n! k!(n k)! o coeficiente binomial, para n k 0. Por convenção, assumimos que, para outros

Leia mais

Matemática Discreta - 05

Matemática Discreta - 05 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 05 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Luís Fernando Schultz Xavier da Silveira. 12 de maio de 2010

Luís Fernando Schultz Xavier da Silveira. 12 de maio de 2010 Monóides e o Algoritmo de Exponenciação Luís Fernando Schultz Xavier da Silveira Departamento de Informática e Estatística - INE - CTC - UFSC 12 de maio de 2010 Conteúdo 1 Monóides Definição Propriedades

Leia mais

a complexidade no desempenho de algoritmos

a complexidade no desempenho de algoritmos capítulo 1 introdução Os algoritmos são o cerne da computação. Este capítulo introdutório procura ressaltar a importância da complexidade e dos métodos de projeto e análise de algoritmos. Partindo da ideia

Leia mais

XXXVII OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase 9 de agosto de 2014 Nível (6º e 7º anos do Ensino Fundamental)

XXXVII OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase 9 de agosto de 2014 Nível (6º e 7º anos do Ensino Fundamental) XXXVII OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase 9 de agosto de 2014 Nível (6º e 7º anos do Ensino Fundamental) Resoluções www.opm.mat.br PROBLEMA 1 a) O total de segundos destinados à visualização

Leia mais

Relações de Recorrência

Relações de Recorrência Relações de Recorrência Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Relações de Recorrência junho - 2018 1 / 102 Este material é preparado usando como referências

Leia mais

a) Em quantas ordem quatro pessoas podem senta num sofá de 4 lugares?

a) Em quantas ordem quatro pessoas podem senta num sofá de 4 lugares? ANÁLISE COMBINATÓRIA 1. PRINCIPIO FUNDAMENTAL DA CONTAGEM A análise combinatória é um ramo da matemática que tem por objetivo resolver problemas que consistem, basicamente em escolher e agrupar os elementos

Leia mais

MATEMÁTICA MÓDULO 1 TEORIA DOS NÚMEROS 1. DIVISIBILIDADE 1.1. DEFINIÇÃO 1.2. CRITÉRIOS DE DIVISIBILIDADE

MATEMÁTICA MÓDULO 1 TEORIA DOS NÚMEROS 1. DIVISIBILIDADE 1.1. DEFINIÇÃO 1.2. CRITÉRIOS DE DIVISIBILIDADE TEORIA DOS NÚMEROS 1. DIVISIBILIDADE Neste momento inicial, nosso interesse será em determinar quando a divisão entre dois números inteiros é exata, ou seja, quando o resto da divisão é 0. Antes de mais

Leia mais

Por exemplo, vamos obter os termos de uma progressão geométrica de razão 2, partindo do número 3.

Por exemplo, vamos obter os termos de uma progressão geométrica de razão 2, partindo do número 3. Definição: Progressão geométrica (ou simplesmente PG) é uma seqüência de números não nulos em que cada um deles, multiplicado por um número fixo, fornece o próximo elemento da seqüência. Esse número fixo

Leia mais

Sistemas Numéricos - Aritmética. Conversão de Bases. Prof. Celso Candido ADS / REDES / ENGENHARIA

Sistemas Numéricos - Aritmética. Conversão de Bases. Prof. Celso Candido ADS / REDES / ENGENHARIA Conversão de Bases 1 NOTAÇÃO POSICIONAL - BASE DECIMAL Desde os primórdios da civilização o homem adota formas e métodos específicos para representar números, para contar objetos e efetuar operações aritméticas.

Leia mais

É interessante comparar algoritmos para valores grandes de n. Para valores pequenos de n, mesmo um algoritmo ineficiente não custa muito para ser

É interessante comparar algoritmos para valores grandes de n. Para valores pequenos de n, mesmo um algoritmo ineficiente não custa muito para ser É interessante comparar algoritmos para valores grandes de n. Para valores pequenos de n, mesmo um algoritmo ineficiente não custa muito para ser executado 1 Fazendo estimativas e simplificações... O número

Leia mais

Polinômios de Legendre

Polinômios de Legendre Seção 5: continuação do método de resolução por séries de potências Na Seção foi exposto informalmente, através de exemplos, o método de resolução de equações diferenciais ordinárias por séries de potências.

Leia mais

Tente responder às seguintes perguntas. As respostas vão te ajudar a encontrar a solução do problema.

Tente responder às seguintes perguntas. As respostas vão te ajudar a encontrar a solução do problema. ALGUMAS IDÉIAS PARA RESOLVER A LISTA 9 - MCC1-2009/2 Profa. Sandra de Amo Exercicio 1 Problema:Encontrar uma relação de recorrência para o número de cadeias de bits (sequências de 0 e 1) de tamanho n que

Leia mais

Álgebra Linear - 1 a lista de exercícios Prof. - Juliana Coelho

Álgebra Linear - 1 a lista de exercícios Prof. - Juliana Coelho Álgebra Linear - a lista de exercícios Prof. - Juliana Coelho - Considere as matrizes abaixo e faça o que se pede: M N O 7 P Q R 8 4 T S a b a Determine quais destas matrizes são simétricas. E antisimétricas?

Leia mais

Introdução à Álgebra Linear - 1a lista de exercícios Prof. - Juliana Coelho

Introdução à Álgebra Linear - 1a lista de exercícios Prof. - Juliana Coelho Introdução à Álgebra Linear - a lista de exercícios Prof. - Juliana Coelho - Ache uma forma escalonada para cada matriz abaixo. (Lembre que a forma escalonada não é única, então você pode obter uma resposta

Leia mais

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. (a) Sejam a, b, n Z com n > 0. Mostre que a + b a 2n b 2n.

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. (a) Sejam a, b, n Z com n > 0. Mostre que a + b a 2n b 2n. MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2018.2 Gabarito Questão 01 [ 1,25 ::: (a)=0,50; (b)=0,75 ] (a) Sejam a, b, n Z com n > 0. Mostre que a + b a 2n b 2n. (b) Para quais valores de

Leia mais

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes

Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes Muitos problemas de física envolvem diversas equações diferenciais. Na seção 14, por exemplo, vimos que o sistema

Leia mais

Parte 1 - Matrizes e Sistemas Lineares

Parte 1 - Matrizes e Sistemas Lineares Parte 1 - Matrizes e Sistemas Lineares Matrizes: Uma matriz de tipo m n é uma tabela com mn elementos, denominados entradas, e formada por m linhas e n colunas. A matriz identidade de ordem 2, por exemplo,

Leia mais

Tópicos de Matemática Elementar

Tópicos de Matemática Elementar Tópicos de Matemática Elementar 2 a série de exercícios 2004/05. A seguinte prova por indução parece correcta, mas para n = 6 o lado esquerdo é igual a 2 + 6 + 2 + 20 + 30 = 5 6, enquanto o direito é igual

Leia mais

Comportamento Assintótico. Algoritmos e Estruturas de Dados Flavio Figueiredo (http://flaviovdf.github.io)

Comportamento Assintótico. Algoritmos e Estruturas de Dados Flavio Figueiredo (http://flaviovdf.github.io) Comportamento Assintótico Algoritmos e Estruturas de Dados 2 2017-1 Flavio Figueiredo (http://flaviovdf.github.io) 1 Até Agora Falamos de complexidade de algoritmos com base no número de passos Vamos generalizar

Leia mais

Fundamentos de Arquiteturas de Computadores

Fundamentos de Arquiteturas de Computadores Fundamentos de Arquiteturas de Computadores Cristina Boeres Instituto de Computação (UFF) Conversões Entre Bases Numéricas Material de Fernanda Passos (UFF) Conversões Entre Bases Numéricas FAC 1 / 42

Leia mais

2013/1S EP33D Matemática Discreta Avaliação 01

2013/1S EP33D Matemática Discreta Avaliação 01 013/1S EP33D Matemática Discreta Avaliação 01 Data: 10/07/013 Início: 13h00min Duração: 03 aulas h30min) OBSERVAÇÕES: i) a prova é individual; ii) qualquer forma de consulta não autorizada acarretará no

Leia mais

UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CAMPUS AVANÇADO DE NATAL CURSO DE CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR

UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CAMPUS AVANÇADO DE NATAL CURSO DE CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CAMPUS AVANÇADO DE NATAL CURSO DE CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR PROFESSOR: MARCELO SILVA 1. Introdução No ensino fundamental você estudou

Leia mais

Material Teórico - Módulo Progressões Aritméticas. Definição e Lei de Formação de uma PA. Primeiro Ano

Material Teórico - Módulo Progressões Aritméticas. Definição e Lei de Formação de uma PA. Primeiro Ano Material Teórico - Módulo Progressões Aritméticas Definição e Lei de Formação de uma PA Primeiro Ano Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto 1 Sequências elementares e

Leia mais

EXPRESSÕES RELACIONAIS

EXPRESSÕES RELACIONAIS AULA 7 EXPRESSÕES RELACIONAIS 7.1 Operadores relacionais Uma expressão relacional, ou simplesmente relação, é uma comparação entre dois valores de um mesmo tipo. Esses valores são representados na relação

Leia mais

MA14 - Aritmética Lista 1. Unidades 1 e 2

MA14 - Aritmética Lista 1. Unidades 1 e 2 MA14 - Aritmética Lista 1 Unidades 1 e 2 Abramo Hefez PROFMAT - SBM 05 a 11 de agosto 2013 Unidade 1 1. Mostre, por indução matemática, que, para todo n N {0}, a) 8 3 2n + 7 b) 9 10 n + 3.4 n+2 + 5 2.

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/20 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

Teorema Chinês dos Restos. Tópicos Adicionais

Teorema Chinês dos Restos. Tópicos Adicionais Teorema Chinês dos Restos Teorema Chinês dos Restos Tópicos Adicionais Tópicos Adicionais Teorema Chinês dos Restos 1 Exercícios Introdutórios Exercício 1. Para cada um dos itens abaixo, encontre o menor

Leia mais

Elementos de Matemática Finita ( ) Exercícios resolvidos

Elementos de Matemática Finita ( ) Exercícios resolvidos Elementos de Matemática Finita (016-017 Exercícios resolvidos Ficha 7-1. ( ( 30 10 0 10. Ficha 7 -. 4 10 ( 4 10. Ficha 7-3. A resposta à primeira pergunta é (5 3 ( 5 6. A probabilidade de acertar exactamente

Leia mais

MATRIZES - PARTE Mais exemplos Multiplicação de duas matrizes AULA 26

MATRIZES - PARTE Mais exemplos Multiplicação de duas matrizes AULA 26 AULA 26 MATRIZES - PARTE 2 26. Mais exemplos Nesta aula, veremos mais dois algoritmos envolvendo matrizes. O primeiro deles calcula a matriz resultante da multiplicação de duas matrizes e utiliza três

Leia mais

Otimização em Grafos

Otimização em Grafos Otimização em Grafos Luidi G. Simonetti PESC/COPPE 2017 Luidi Simonetti (PESC) EEL857 2017 1 / 33 Definição do Problema Dado: um grafo ponderado G = (V, E), orientado ou não, onde d : E R + define as distâncias

Leia mais

Primeira prova de Álgebra Linear - 06/05/2011 Prof. - Juliana Coelho

Primeira prova de Álgebra Linear - 06/05/2011 Prof. - Juliana Coelho Primeira prova de Álgebra Linear - 6/5/211 Prof. - Juliana Coelho JUSTIFIQUE SUAS RESPOSTAS! Questões contendo só a resposta, sem desenvolvimento ou justificativa serão desconsideradas! QUESTÃO 1 (2, pts)

Leia mais

= o A MATRIZ IDENTIDADE. a(i, :) = (aii, ai2,, ai.) i = 1,, m

= o A MATRIZ IDENTIDADE. a(i, :) = (aii, ai2,, ai.) i = 1,, m Matrizes e Sistemas de Equações 9 para toda matriz A n X n. Vamos discutir, também, a existência e o cálculo de inversas multiplicativas. A MATRIZ IDENTIDADE Uma matriz muito importante é a matriz / n

Leia mais

Funções - Primeira Lista de Exercícios

Funções - Primeira Lista de Exercícios Funções - Primeira Lista de Exercícios Vers~ao de 0/03/00 Recomendações Não é necessário o uso de teoremas ou resultados complicados nas resoluções. Basta que você tente desenvolver suas idéias. Faltando

Leia mais

MA21: Resolução de Problemas - gabarito da primeira prova

MA21: Resolução de Problemas - gabarito da primeira prova MA21: Resolução de Problemas - gabarito da primeira prova Problema 1 (2 pontos) Prove que a maior área dentre todos os retângulos de perímetro 1 é atingida por um quadrado. Dificuldade: MUITO FÁCIL Sejam

Leia mais

Algoritmos de Ordenação

Algoritmos de Ordenação Algoritmos de Ordenação! Problema: encontrar um número de telefone em uma lista telefônica! simplificado pelo fato dos nomes estarem em ordem alfabética! e se estivesse sem uma ordem?! Problema: busca

Leia mais

Gabarito da G3 de Equações Diferenciais

Gabarito da G3 de Equações Diferenciais Gabarito da G3 de Equações Diferenciais 03. MAT 54 Ques..a.b.c.a.b 3 4 5.a 5.b soma Valor.0.0.0.0.0.0.0.0.0 0.0 Nota ) Considere o problema abaixo que representa o comportamento de duas espécies(com densidades

Leia mais

GABARITO E PAUTA DE CORREÇÃO DO ENQ Questão 2 [ 1,0 pt ::: (a)=0,5; (b)=0,5 ] Sejam a, b, p inteiros, com p primo.

GABARITO E PAUTA DE CORREÇÃO DO ENQ Questão 2 [ 1,0 pt ::: (a)=0,5; (b)=0,5 ] Sejam a, b, p inteiros, com p primo. GABARITO E PAUTA DE CORREÇÃO DO ENQ-014. Questão 1 [ 1,0 pt ::: (a)=0,5; (b)=0,5 ] Sejam a, b, p inteiros, com p primo. Demonstre que: (a) se p não divide a, então (p, a) = 1. (b) se p ab, então p a ou

Leia mais

Capítulo 1. Matrizes e Sistema de Equações Lineares. 1.1 Corpos

Capítulo 1. Matrizes e Sistema de Equações Lineares. 1.1 Corpos Capítulo 1 Matrizes e Sistema de Equações Lineares Neste capítulo apresentaremos as principais de nições e resultados sobre matrizes e sistemas de equações lineares que serão necessárias para o desenvolvimento

Leia mais

Introdução aos Métodos Numéricos. Instituto de Computação UFF

Introdução aos Métodos Numéricos. Instituto de Computação UFF Introdução aos Métodos Numéricos Instituto de Computação UFF Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares. Métodos diretos Interpolação Ajuste de Curvas Zeros de Função Sistemas

Leia mais

Raciocínio Lógico. Números. Professor Edgar Abreu.

Raciocínio Lógico. Números. Professor Edgar Abreu. Raciocínio Lógico Números Professor Edgar Abreu www.acasadoconcurseiro.com.br Raciocínio Lógico QUESTÕES ENVOLVENDO SEQUÊNCIA DE NÚMEROS É comum aparecer em provas de concurso questões envolvendo sequências

Leia mais

Lista de Exercícios da Primeira Semana Análise Real

Lista de Exercícios da Primeira Semana Análise Real Lista de Exercícios da Primeira Semana Análise Real Nesta lista, a n, b n, c n serão sempre sequências de números reais.. Mostre que todo conjunto ordenado com a propriedade do supremo possui a propriedade

Leia mais

Binomiais e Primos. p p 2 + p 3 + p k. Demonstração. No produto n! = n, apenas os múltiplos de p contribuem com um fator p.

Binomiais e Primos. p p 2 + p 3 + p k. Demonstração. No produto n! = n, apenas os múltiplos de p contribuem com um fator p. Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 16 Binomiais e Primos Começamos lembrando a Proposição 1 (Fatores do Fatorial) Seja p um primo Então a maior

Leia mais

MC102 Aula 26. Instituto de Computação Unicamp. 17 de Novembro de 2016

MC102 Aula 26. Instituto de Computação Unicamp. 17 de Novembro de 2016 MC102 Aula 26 Recursão Instituto de Computação Unicamp 17 de Novembro de 2016 Roteiro 1 Recursão Indução 2 Recursão 3 Fatorial 4 O que acontece na memória 5 Recursão Iteração 6 Soma em um Vetor 7 Números

Leia mais

Semana Olímpica 2019

Semana Olímpica 2019 Semana Olímpica 2019 Prof a Ana Paula Chaves apchaves.math@gmail.com Nível 1 Congruência 1. Divisibilidade e Aritmética Modular Um dos tópicos mais fundamentais da teoria dos números é, sem dúvidas, a

Leia mais

MA11 - Unidade 4 Representação Decimal dos Reais Semana 11/04 a 17/04

MA11 - Unidade 4 Representação Decimal dos Reais Semana 11/04 a 17/04 MA11 - Unidade 4 Representação Decimal dos Reais Semana 11/04 a 17/04 Para efetuar cálculos, a forma mais eciente de representar os números reais é por meio de expressões decimais. Vamos falar um pouco

Leia mais

05 Análise de Algoritmos (parte 4) SCC201/501 - Introdução à Ciência de Computação II

05 Análise de Algoritmos (parte 4) SCC201/501 - Introdução à Ciência de Computação II 05 Análise de Algoritmos (parte 4) SCC201/501 - Introdução à Ciência de Computação II Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir Instituto de Ciências Matemáticas e de Computação USP 2010/2 Moacir

Leia mais