O uso de algoritmos de emparelhamento - matching
|
|
|
- Nicolas Abreu Galindo
- 8 Há anos
- Visualizações:
Transcrição
1 Técnicas econométricas para avaliação de impacto O uso de algoritmos de emparelhamento - matching Bruno César Araújo Instituto de Pesquisa Econômica Aplicada IPEA Brasília, 7 de maio de 2008
2 Pergunta da aula de hoje Como melhorar a imputação contrafactual e, por conseqüência, a estimativa dos efeitos de um tratamento, a partir do uso de técnicas de emparelhamento?
3 Problema básico de inferência causal Seja D it (0,1) um indicador se um indivíduo i recebeu um tratamento ou não no período t. Seja Y 1 i,t+s (D=1) o valor da variável supostamente impactada pelo tratamento para os indivíduos que receberam o tratamento em t+s, com s 0. Seja Y 0 i,t+s (D=1) o valor desta mesma variável caso este indivíduo que recebeu o tratamento não o tivesse recebido. Assim, o impacto do tratamento sobre os tratados é dado por: ATT = E(Y 1 i,t+s (D=1)) - E(Y 0 i,t+s (D=1))
4 Problema básico de inferência causal Às vezes, estamos também interessados em saber o impacto do tratamento sobre os não-tratados (a fim de estimar possíveis efeitos da expansão de um programa): ATU = E(Y 1 i,t+s (D=0)) - E(Y 0 i,t+s (D=0)) Ou podemos estar interessados no efeito médio do tratamento, em sua forma incondicional: ATE = E(Y 1 i,t+s) - E(Y 0 i,t+s) O problema é que não se observa Y 0 i,t+s e Y 1 i,t+s para um mesmo indivíduo.
5 Problema básico de inferência causal Suponha 2 indivíduos, e ambos podem receber o tratamento. Temos, rigorosamente, 8 possibilidades para a variável de interesse: D Y 1 (.,.) Y 2 (.,.) D 1, D 2 (0,0) Y 1 (0,0) Y 2 (0,0) D 1, D 2 (0,1) Y 1 (0,1) Y 2 (0,1) D 1, D 2 (1,0) Y 1 (1,0) Y 2 (1,0) D 1, D 2 (1,1) Y 1 (1,1) Y 2 (1,1)
6 A hipótese SUTVA A hipótese SUTVA (Stable Unit Treatment Value Assumption) desconsidera efeitos de equilíbrio geral. Assim, ao invés de oito valores possíveis para Y, chegamos a apenas quatro. D Y 1 (.,.) Y 2 (.,.) D 1, D 2 (0,0) Y 1 (0) Y 2 (0) D 1, D 2 (0,1) Y 1 (0) Y 2 (1) Isto é razoável? D 1, D 2 (1,0) Y 1 (1) Y 2 (0) D 1, D 2 (1,1) Y 1 (1) Y 2 (1)
7 Benchmark: experimento aleatório Já vimos que, quando os experimentos são aleatórios, uma boa imputação do contrafactual do grupo de casos é o próprio valor observado da variável de interesse no grupo de controle: ATE = E(y t=1 ) - E( y t=0 ) O qual pode ser calculado a partir da regressão: Y i = α + βd i + ε i d i = 1 quando o indivíduo recebe o tratamento Assim,β= y = E(y t=1 ) - E( y t=0 )
8 E quando o experimento não for aleatório? Em verdade, se a participação no tratamento depende, por exemplo, da expectativa com respeito a seus benefícios, a seleção deixa de ser aleatória. Nestes casos, é razoável supor que a simples diferença das médias não será uma boa estimativa do ATE. Mesmo a estimativa DD não será razoável, uma vez que ela apenas lida com efeitos fixos no tempo. O que fazer? Caso se saiba as variáveis determinantes da auto-seleção, podese utilizar técnicas relacionadas a seleção em observáveis. Caso não sejam sabidas estes determinantes, utiliza-se técnicas de seleção em não-observáveis.
9 Esquematicamente... Kitchen-sink Exp. Aleatório? Não Ignorabilidade? Sim Métodos com PS (PSM, IPW) Diferença de Médias, Regressão, DD Sim Não Matching Diferença de Médias, Regressão, DD Técnicas de IV, Heckman
10 Seleção em observáveis Quando as fontes da auto-seleção são conhecidas na forma de uma matriz de características (X), podemos usar a hipótese de ignorabilidade do tratamento. Hipótese 1 (Abadie e Imbens, 2002): Condicional às características X, D e (y 1, y 0 ) são independentes: E(y 1 X,D)= E(y 1 X) e E(y 0 X,D)=E(y 0 X) ATT(X)=E(y 1 - y 0 X,D=1) e ATE(X) = E(y 1 - y 0 X)
11 Seleção em observáveis Outra hipótese importante se refere à identificação: é preciso haver indivíduos que não recebam o tratamento mesmo que tenham características muito semelhantes aos que o recebem: Hipótese 2: c < Pr(D=1 X=x) < 1-c, para algum c > 0.
12 Como realizar a seleção em observáveis? Existem basicamente quatro formas de se realizar ATE sob seleção em observáveis: Modelos de regressão com variáveis X e interações (aulas 3 e 4); Uso de técnicas de emparelhamento (matching) para a construção de grupos de casos e controles (aula de hoje); Matching baseado em modelo probabilístico (PSM próxima aula); Modelos de regressão que utilizam o IPW.
13 Uma palavra de atenção Ao estimar ATE e suas variações a partir de seleção em observáveis, é preciso estar atento a: A seleção em observáveis e a aleatoriedade condicional do tratamento (hipótese 1) são hipóteses que não estão sujeitas a teste; O conjunto de observáveis deve ser suficiente, i.e, deve conter todas as variáveis determinantes da participação no tratamento (sob pena do viés de variáveis omitidas); Deve haver empresas com X=x que recebam e outras que não recebam o tratamento (caso contrário, não é possível imputar o contrafactual- hipótese 2).
14 Modelos de regressão com variáveis X e interações A inclusão de controles pelas características individuais pode seguir a estratégia de Rubin (1977): Y it =α+α 1 d t + α 2 d j + βd jt +Xγ + (X-E(X))d jt ω +ε ijt
15 Métodos de Matching Como vimos, não podemos estimar diretamente ATE a partir da diferença de médias, pois o tratamento não é aleatório. Contudo, supondo que a seleção se baseia em características observáveis, e que existem indivíduos de mesmos determinantes da seleção (ou suficientemente próximos) tais que um recebe o tratamento e o outro não, é razoável supor que estes indivíduos formem um par (ou conjunto) casocontrole. Assim, o que é feito na prática é selecionar, a partir da amostra original, um conjunto de casos e controles tais que eles tenham determinantes de seleção muito semelhantes, ao ponto de supormos que, dentro deste grupo, a seleção é aleatória. Posteriormente, aplicam-se as técnicas vistas nas aulas anteriores (teste de médias, regressão, DD, com BS etc).
16 Métodos de Matching Partem do pressuposto da imputação: para quem se observa y 1 supõe-se um y 0 de quem não recebeu o tratamento, mas cujas características lhe sejam semelhantes Em outras palavras, para y i em que D = 1 encontramse y j (e vice-versa) tais que: X i - X j < X i -X k, q.q. k D=0 Então, atribui-se y i (0) = y j (0) = y j, e procede-se analogamente para D = 0 ATE = (1/N) Σ N [D i y i +(1-D i ) y i (1)] (1/N) Σ N [ (1-D i )y i + D i y i (0)]
17 Técnicas de Matching: um balanço A principal vantagem do matching (alguns o chamam de hard matching) é que ele é intuitivo.
18 Técnicas de Matching: um balanço Contudo, suas limitações e questões em aberto são: 1. Como toda técnica que usa seleção em observáveis, depende criticamente desta hipótese. 2. Como proceder em casos de empate? 3. Deve-se fazer matching com ou sem reposição? 4. Que noção de distância. deve-se utilizar?
19 Técnicas de Matching: um balanço 5. X i - X j em geral não é zero, e pode surgir um viés assintótico. Além do mais, este viés aumenta com a dimensão de X (ponto para o uso de PSM!) 6. Problemas com as variâncias: Não é correto dizer que Var(ATE) é calculada por procedimentos tradicionais. O problema não desaparece com bootstrap de número finito de pares, nem assintoticamente.
20 Felizmente... Abadie et al. (2004) implementaram no Stata uma rotina que permite corrigir boa parte do viés no ATE a partir da incorporação de informação de um modelo probabilístico de participação no tratamento. Basicamente, estima-se: u D = E(Y(D) X=x) para os grupos de casos (D=1) e controles (D=0) por meio de um OLS e incorpora-se esta informação na imputação contrafactual (para a fórmula exata, veja artigo de Abadie et al., 2004 e Abadie e Imbens, 2002). Analogamente, o algoritmo dos autores estima consistentemente a variância do ATE, permitindo inclusive a opção homoscedasticidade/heteroscedasticidade entre os grupos.
Técnicas econométricas para avaliação de impacto O uso de algoritmos de emparelhamento baseados em escore de propensão propensity score matching
Técnicas econométricas para avaliação de impacto O uso de algoritmos de emparelhamento baseados em escore de propensão propensity score matching Bruno César Araújo Instituto de Pesquisa Econômica Aplicada
Técnicas econométricas para avaliação de impacto O uso de métodos de regressão e introdução aos métodos de diferençasdas-diferenças
Técnicas econométricas para avaliação de impacto O uso de métodos de e introdução aos métodos de diferençasdas-diferenças Bruno César Araújo Instituto de Pesquisa Econômica Aplicada IPEA Brasília, 30 de
Variáveis Instrumentais
Técnicas Econométricas para Avaliação de Impacto Variáveis Instrumentais Guilherme Issamu Hirata Centro Internacional de Pobreza (IPC/PNUD) Brasília, 2 de maio de 28. Introdução Qualidade do Ensino: Escola
AULAS 25 E 26 VARIÁVEIS INSTRUMENTAIS
1 AULAS 25 E 26 VARIÁVEIS INSTRUMENTAIS Ernesto F. L. Amaral 11 e 13 de junho de 2013 Técnicas Avançadas de Avaliação de Políticas Públicas (DCP 098) Fonte: Curso Técnicas Econométricas para Avaliação
Econometria para Avaliação de Políticas Públicas
Aula 1: Propensity Score Itaú Social 08/01/2016 Revisão Introdução O problema da identi cação Como determinar se há efeito causal de um programa social em alguma variável de interesse. Exemplo 1: Programa
AULAS 20 E 21 ESCORE DE PROPENSÃO DE PAREAMENTO
1 AULAS 20 E 21 ESCORE DE PROPENSÃO DE PAREAMENTO Ernesto F. L. Amaral 21 e 23 de maio de 2013 Técnicas Avançadas de Avaliação de Políticas Públicas (DCP 098) Fonte: Curso Técnicas Econométricas para Avaliação
AULAS 04, 05 E 06 AVALIAÇÃO UTILIZANDO EXPERIMENTOS
1 AULAS 04, 05 E 06 AVALIAÇÃO UTILIZANDO EXPERIMENTOS Ernesto F. L. Amaral 14, 19 e 21 de março de 2013 Técnicas Avançadas de Avaliação de Políticas Públicas (DCP 098) Fonte: Curso Técnicas Econométricas
Linha Técnica Sessão VI Métodos de Homogeneização
Impact Evaluation Linha Técnica Sessão VI Métodos de Homogeneização Human Development Network Spanish Impact Evaluation Fund www.worldbank.org/sief Quando podemos usar homogeneização? E se a designação
Econometria para Avaliação de Políticas Públicas
Aula 2: O Método de Diferenças em Diferenças Itaú Social 11/01/2016 Método extremamente popular nos últimos quinze anos. Exemplos de aplicação são os mais diversos: avaliação de programas de treinamento,
ESTATÍSTICA COMPUTACIONAL
ESTATÍSTICA COMPUTACIONAL Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário (bootstrap) Este método foi proposto por Efron
Análise de Causalidade e o Problema da Avaliação de Impacto
Técnicas Econométricas para Avaliação de Impacto Análise de Causalidade e o Problema da Avaliação de Impacto Rafael Perez Ribas Centro Internacional de Pobreza Brasília, 09 de abril de 2008 Introdução
Séries Temporais e Modelos Dinâmicos. Econometria. Marcelo C. Medeiros. Aula 12
em Econometria Departamento de Economia Pontifícia Universidade Católica do Rio de Janeiro Aula 12 Regressão com Variáveis Não-Estacionárias Considere três processos estocásticos definidos pelas seguintes
Avaliação experimental
Técnicas Econométricas para Avaliação de Impacto Avaliação experimental Fabio Veras Soares Centro Internacional de Pobreza (IPEA/PNUD) Brasília, 16 de abril de 2008. Introdução: como aleatorização resolve
Aula 2 Tópicos em Econometria I. Porque estudar econometria? Causalidade! Modelo de RLM Hipóteses
Aula 2 Tópicos em Econometria I Porque estudar econometria? Causalidade! Modelo de RLM Hipóteses A Questão da Causalidade Estabelecer relações entre variáveis não é suficiente para a análise econômica.
1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3.
1 1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. Modelo de Resultados Potenciais e Aleatorização (Cap. 2 e 3
Aula 2 Uma breve revisão sobre modelos lineares
Aula Uma breve revisão sobre modelos lineares Processo de ajuste de um modelo de regressão O ajuste de modelos de regressão tem como principais objetivos descrever relações entre variáveis, estimar e testar
Lucas Santana da Cunha de junho de 2017
VARIÁVEL ALEATÓRIA Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 19 de junho de 2017 Uma função que associa um número real aos resultados
Econometria. Econometria ( ) O modelo de regressão linear múltipla. O modelo de regressão linear múltipla. Aula 2-26/8/2010
Aula - 6/8/010 Econometria Econometria 1. Hipóteses do Modelo de RLM O modelo de regressão linear múltipla Estudar a relação entre uma variável dependente e uma ou mais variáveis independentes. Forma genérica:
AULA 17 MÉTODO DE DIFERENÇA EM DIFERENÇAS
1 AULA 17 MÉTODO DE DIFERENÇA EM DIFERENÇAS Ernesto F. L. Amaral 09 de maio de 2013 Técnicas Avançadas de Avaliação de Políticas Públicas (DCP 098) Fonte: Curso Técnicas Econométricas para Avaliação de
AULA 29 Aplicação do método de diferença em diferenças
1 AULA 29 Aplicação do método de diferença em diferenças Ernesto F. L. Amaral 29 de novembro de 2011 Avaliação de Políticas Públicas (DCP 046) EXPERIMENTO NATURAL 2 Em economia, muitas pesquisas são feitas
1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3.
1 1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. Modelo de Resultados Potenciais e Aleatorização (Cap. 2 e 3
Econometria. Econometria MQO MQO. Resíduos. Resíduos MQO. 1. Exemplo da técnica MQO. 2. Hipóteses do Modelo de RLM. 3.
3. Ajuste do Modelo 4. Modelo Restrito Resíduos Resíduos 1 M = I- X(X X) -1 X Hipóteses do modelo Linearidade significa ser linear nos parâmetros. Identificação: Só existe um único conjunto de parâmetros
Análise Multivariada Aplicada à Contabilidade
Mestrado e Doutorado em Controladoria e Contabilidade Análise Multivariada Aplicada à Contabilidade Prof. Dr. Marcelo Botelho da Costa Moraes www.marcelobotelho.com [email protected] Turma: 2º / 2016 1 Agenda
Linha Técnica Sessão I: Inferência Causal
Impact Evaluation Linha Técnica Sessão I: Inferência Causal Human Development Human Network Development Network Middle East and North Africa Region World Bank Institute Spanish Impact Evaluation Fund www.worldbank.org/sief
Inventário Florestal. Amostragem
Inventário Florestal Amostragem 1 Definição: Seleção de uma parte (amostra) de um todo (população), coletando na parte selecionada, algumas informações de interesse, com o objetivo de tirar conclusão (inferência)
Econometria - Lista 6
Econometria - Lista 6 Professores: Hedibert Lopes, Priscila Ribeiro e Sérgio Martins Monitores: Gustavo Amarante e João Marcos Nusdeo Exercício 1 A curva de Phillips desempenha um papel fundamental na
Econometria para Avaliação de Políticas Públicas
Aula 3: LATE Itaú Social 13/01/2016 Auto-seleção nos não-observáveis. Como estimar o ATE quando Pr [T = 1jY (1), Y (0), X ] 6= Pr [T = 1jX ] = p (X ) Na literatura econométrica, tem-se um problema equivalente:
Prof. Dr. Lucas Santana da Cunha de maio de 2018 Londrina
Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 21 de maio de 2018 Londrina 1 / 14 Variável aleatória Introdução Definição Uma função que associa um número real
Séries Temporais e Modelos Dinâmicos. Econometria. Marcelo C. Medeiros. Aula 9
em Econometria Departamento de Economia Pontifícia Universidade Católica do Rio de Janeiro Aula 9 Data Mining Equação básica: Amostras finitas + muitos modelos = modelo equivocado. Lovell (1983, Review
AULA 10 - MQO em regressão múltipla: Propriedades Estatísticas (Variância)
AULA 10 - MQO em regressão múltipla: Propriedades Estatísticas (Variância) Susan Schommer Econometria I - IE/UFRJ Variância dos estimadores MQO Vamos incluir mais uma hipótese: H1 [Linear nos parâmetros]
1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3.
1 1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. Modelo de Resultados Potenciais e Aleatorização (Cap. 2 e 3
TÉCNICAS DE AMOSTRAGEM
TÉCNICAS DE AMOSTRAGEM Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Amostragem estratificada Divisão da população em
AULA 07 Inferência a Partir de Duas Amostras
1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,
Análise de Dados Longitudinais Aula
1/35 Análise de Dados Longitudinais Aula 08.08.2018 José Luiz Padilha da Silva - UFPR www.docs.ufpr.br/ jlpadilha 2/35 Sumário 1 Revisão para dados transversais 2 Como analisar dados longitudinais 3 Perspectiva
AULA 03 Estimativas e tamanhos amostrais
1 AULA 03 Estimativas e tamanhos amostrais Ernesto F. L. Amaral 03 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade
ANÁLISE DE SÉRIES TEMPORAIS
ANÁLISE DE SÉRIES TEMPORAIS Ralph S. Silva http://www.im.ufrj.br/ralph/seriestemporais.html Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Estimação
Intervalos Estatísticos para uma única Amostra - parte I
Intervalos Estatísticos para uma única Amostra - parte I Intervalo de confiança para média 14 de Janeiro Objetivos Ao final deste capítulo você deve ser capaz de: Construir intervalos de confiança para
AULA 11 Heteroscedasticidade
1 AULA 11 Heteroscedasticidade Ernesto F. L. Amaral 30 de julho de 2012 Análise de Regressão Linear (MQ 2012) www.ernestoamaral.com/mq12reg.html Fonte: Wooldridge, Jeffrey M. Introdução à econometria:
AULA 9 - MQO em regressão múltipla: Propriedades Estatísticas (Valor Esperado)
AULA 9 - MQO em regressão múltipla: Propriedades Estatísticas (Valor Esperado) Susan Schommer Econometria I - IE/UFRJ Valor esperado dos estimadores MQO Nesta aula derivamos o valor esperado dos estimadores
Probabilidades. Wagner H. Bonat Elias T. Krainski Fernando P. Mayer
Probabilidades Wagner H. Bonat Elias T. Krainski Fernando P. Mayer Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 06/03/2018 WB, EK, FM ( LEG/DEST/UFPR
Modelos de Regressão Linear Simples - parte I
Modelos de Regressão Linear Simples - parte I Erica Castilho Rodrigues 19 de Agosto de 2014 Introdução 3 Objetivos Ao final deste capítulo você deve ser capaz de: Usar modelos de regressão para construir
Cap. 4 - Estimação por Intervalo
Cap. 4 - Estimação por Intervalo Amostragem e inferência estatística População: consiste na totalidade das observações em que estamos interessados. Nº de observações na população é denominado tamanho=n.
Gabarito - Lista 5 - Questões de Revisão
Gabarito - Lista 5 - Questões de Revisão Monitores: Camila Steffens e Matheus Rosso Parte I - Teoria assintótica 1. Enuncie a lei dos grandes números e o teorema central do limite. A LGN em sua expressão
Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística
Introdução ao Planejamento e Análise Estatística de Experimentos Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Agora,
População e Amostra. População: O conjunto de todas as coisas que se pretende estudar. Representada por tudo o que está no interior do desenho.
População e Amostra De importância fundamental para toda a análise estatística é a relação entre amostra e população. Praticamente todas as técnicas a serem discutidas neste curso consistem de métodos
4.1 Conceitos Básicos em Reamostragem
4 Reamostragem O tipo de estatística não-paramétrica que foi ensinado no passado desempenhou um importante papel na análise de dados que não são contínuos e, portanto, não podem empregar a distribuição
TÉCNICAS DE AMOSTRAGEM
TÉCNICAS DE AMOSTRAGEM Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Definições e Notação Estimação Amostra Aleatória
Universidade Federal de Lavras
Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 6 a Lista de Exercícios Teoria da Estimação pontual e intervalar 1) Marcar como verdadeira ou falsa as seguintes
Técnicas computacionais em probabilidade e estatística II
Técnicas computacionais em probabilidade e estatística II Universidade de São Paulo Instituto de Matemática e Estatística http:www.ime.usp.br/ mbranco AULA 1: Problemas Computacionais em Inferência Estatística.
Variáveis Aleatórias Discretas e Distribuição de Probabilidade
Variáveis Aleatórias Discretas e Distribuição de Probabilidades 01 de Abril de 2014 Objetivos Ao final deste capítulo você deve ser capaz de: Determinar probabilidades a partir de funções de probabilidade
Cap. 8 - Variáveis Aleatórias
Variáveis Aleatórias Discretas: A de Poisson e Outras ESQUEMA DO CAPÍTULO 8.1 A DISTRIBUIÇÃO DE POISSON 8.2 A DISTRIBUIÇÃO DE POISSON COMO APROXIMAÇÃO DA DISTRIBUIÇÃO BINOMIAL 8.3 O PROCESSO DE POISSON
Modelo de Regressão Múltipla
Modelo de Regressão Múltipla Modelo de Regressão Linear Simples Última aula: Y = α + βx + i i ε i Y é a variável resposta; X é a variável independente; ε representa o erro. 2 Modelo Clássico de Regressão
Econometria em Finanças e Atuária
Ralph S. Silva http://www.im.ufrj.br/ralph/especializacao.html Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Maio-Junho/2013 Modelos condicionalmente
Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise. Período 2017.
Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2017.1 Distribuições Amostrais O intuito de fazer uma amostragem
Análise Multivariada Aplicada à Contabilidade
Mestrado e Doutorado em Controladoria e Contabilidade Análise Multivariada Aplicada à Contabilidade Prof. Dr. Marcelo Botelho da Costa Moraes www.marcelobotelho.com [email protected] Turma: 2º / 2016 1 Agenda
TESTE DE MANN-WHITNEY
TESTE DE MANN-WHITNEY A importância deste teste é ser a alternativa não paramétrica ao teste t para a diferença de médias. Sejam (X,X,...,X n ) e (Y,Y,...,Y m ) duas amostras independentes, de tamanhos
Princípios em Planejamento e Análise de Dados Ecológicos. Regressão linear. Camila de Toledo Castanho
Princípios em Planejamento e Análise de Dados Ecológicos Regressão linear Camila de Toledo Castanho 217 Conteúdo da aula 1. Regressão linear simples: quando usar 2. A reta de regressão linear 3. Teste
MÉTODOS QUANTITATIVOS APLICADOS À AVALIAÇÃO DE POLÍTICAS PÚBLICAS USANDO STATA. Prof. Leonardo Sangali Barone
MÉTODOS QUANTITATIVOS APLICADOS À AVALIAÇÃO DE POLÍTICAS PÚBLICAS USANDO STATA Prof. Leonardo Sangali Barone Objetivos do Curso O curso tem como objetivo oferecer ao participante instrumental básico para
AULA 1 - Modelos determinísticos vs Probabiĺısticos
AULA 1 - Modelos determinísticos vs Probabiĺısticos Susan Schommer Econometria I - IE/UFRJ O que é Econometria? Aplicação de métodos estatísticos e matemáticos para analisar os dados econômicos, com o
Análise da Regressão múltipla: MQO Assintótico y = β 0 + β 1 x 1 + β x +... β k x k + u 3. Propriedades assintóticas Antes, propriedades sobre amostra
Análise da Regressão múltipla: MQO Assintótico Capítulo 5 do Wooldridge Análise da Regressão múltipla: MQO Assintótico y = β 0 + β 1 x 1 + β x +... β k x k + u 3. Propriedades assintóticas Antes, propriedades
Inferência Estatistica
Inferência Estatistica Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Modelos e Inferência Um modelo é uma simplificação da realidade (e alguns
Séries Temporais e Modelos Dinâmicos. Econometria. Marcelo C. Medeiros. Aula 4
em Econometria Departamento de Economia Pontifícia Universidade Católica do Rio de Janeiro Aula 4 O Processo Média-Móvel Muitas vezes, a estrutura auto-regressiva não é suficiente para descrever totalmente
Uma estatística é uma característica da amostra. Ou seja, se
Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral
AULAS 25 E 26 Heteroscedasticidade
1 AULAS 25 E 26 Heteroscedasticidade Ernesto F. L. Amaral 10 e 15 de junho de 2010 Métodos Quantitativos de Avaliação de Políticas Públicas (DCP 030D) Fonte: Wooldridge, Jeffrey M. Introdução à econometria:
AULAS 01, 02 E 03 CAUSALIDADE
1 AULAS 01, 02 E 03 CAUSALIDADE Ernesto F. L. Amaral 05, 07 e 12 de março de 2013 Técnicas Avançadas de Avaliação de Políticas Públicas (DCP 098) Fonte: Curso Técnicas Econométricas para Avaliação de Impacto
Análise de Regressão Linear Simples e
Análise de Regressão Linear Simples e Múltipla Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução A análise de regressão estuda o relacionamento entre uma variável
Estatística Aplicada
Estatística Aplicada Intervalos de Confiança Professor Lucas Schmidt www.acasadoconcurseiro.com.br Estatística Aplicada INTERVALOS DE CONFIANÇA Processos de estimação Estimação por ponto: o processo em
Introdução à Inferência Estatística
Introdução à Inferência Estatística Prof. Cícero Quarto www.cicerocq.com Slides produzidos a partir de suas anotações de aula do curso de Especialização em Estatística, Turma 2018/UEMA, assim como, aprofundados
Mestrado Profissionalizante em Finanças as e Economia Empresarial FGV / EPGE Prof. Eduardo Ribeiro Julho Setembro 2007
Projeções de Séries S Temporais Econometria dos Mercados Financeiros Mestrado Profissionalizante em Finanças as e Economia Empresarial FGV / EPGE Prof. Eduardo Ribeiro Julho Setembro 2007 Objetivo do curso
AULA 13 Análise de Regressão Múltipla: MQO Assimptótico
1 AULA 13 Análise de Regressão Múltipla: MQO Assimptótico Ernesto F. L. Amaral 15 de abril de 2010 Métodos Quantitativos de Avaliação de Políticas Públicas (DCP 030D) Fonte: Wooldridge, Jeffrey M. Introdução
Modelos de Regressão Linear Simples parte I
Modelos de Regressão Linear Simples parte I Erica Castilho Rodrigues 27 de Setembro de 2017 1 2 Objetivos Ao final deste capítulo você deve ser capaz de: Usar modelos de regressão para construir modelos
Variáveis Instumentais. Raphael Corbi. Universidade de São Paulo. Agosto 2017
Raphael Corbi Universidade de São Paulo Agosto 2017 Variáveis Instrumentais grande questão da econometria aplicada é causalidade variéveis instrumentais é a grande ferramenta para: (i) viés de omissão
AULAS 28 E 29 Análise de Regressão Múltipla com Informações Qualitativas
1 AULAS 28 E 29 Análise de Regressão Múltipla com Informações Qualitativas Ernesto F. L. Amaral 07 e 09 de dezembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Wooldridge, Jeffrey M. Introdução à
Capítulo 4 Inferência Estatística
Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a diferença de
Inferência Estatística:
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Inferência Estatística: Princípios de Bioestatística decidindo na presença de incerteza Aula 8: Intervalos
AULA 09 Análise de regressão múltipla com informações qualitativas
1 AULA 09 Análise de regressão múltipla com informações qualitativas Ernesto F. L. Amaral 25 de julho de 2013 Análise de Regressão Linear (MQ 2013) www.ernestoamaral.com/mq13reg.html Fonte: Wooldridge,
1 Probabilidade - Modelos Probabilísticos
1 Probabilidade - Modelos Probabilísticos Modelos probabilísticos devem, de alguma forma, 1. identificar o conjunto de resultados possíveis do fenômeno aleatório, que costumamos chamar de espaço amostral,
Endogeneidade, Variáveis Instrumentais e Modelos de Equações Estruturais
1 Endogeneidade, Variáveis Instrumentais e Modelos de Equações Estruturais Ernesto F. L. Amaral Magna M. Inácio 21 de outubro de 2010 Tópicos Especiais em Teoria e Análise Política: Problema de Desenho
Professora Ana Hermínia Andrade. Período
Estimação intervalar Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2017.1 Estimação Intervalar Vimos que como
Análise Bayesiana de Dados - Aula 1 -
Análise Bayesiana de Dados - Aula 1 - Márcia D Elia Branco Universidade de São Paulo Instituto de Matemática e Estatística www.ime.usp.br/ mbranco - sala 295-A - Paradigmas Bayesiano Introdução Fazer inferência
