2 Aparato Experimental
|
|
|
- Ian Veiga Gil
- 8 Há anos
- Visualizações:
Transcrição
1 Capítulo Aparato Experimental 2.1 Princípio de Funcionamento do Ciclo de Absorção Para o desenvolvimento deste trabalho foi utilizado uma unidade de refrigeração por absorção completa da Electrolux modelo M-B - RA 125 a gás de amônia e água, para os experimentos e adaptações. A unidade adaptada utiliza a amônia como o refrigerante e água como o absorvente e tem a capacidade de resfriamento de aproximadamente 80W. O conjunto é extremamente compacto, como pode ser observado nas Figuras 2.1 (a) e (b). Figura 2.1 Unidade de refrigeração por Absorção, (a) Vista Lateral Esquerda, (b) Vista Posterior. O ciclo de refrigeração por absorção, mostrado na Figura 2.1, não possui partes móveis, justificando assim a sua peculiaridade e economia tanto na manutenção quanto na instalação. Mesmo compacto, encontraram-se temperaturas de até 22 C no evaporador. O esquema do ciclo de absorção está mostrado na Figura 2.2. No esquema apresentam-se as várias seções do ciclo. No trecho (C), é fornecido calor de uma fonte quente, representado por Q 3. No sistema original ELETROLUX, a fonte é uma resistência elétrica com potência de 80 W. Será demonstrado neste trabalho, que é possível aproveitar o calor de rejeito de fontes térmicas para o aquecimento do tubo bomba do ciclo de refrigeração por absorção.
2 Capítulo 2 9 Figura 2.2 Esquema do ciclo de refrigeração por absorção. Ao se colocar em funcionamento o ciclo de absorção, com o aquecimento do tubo bomba em (C), a solução de amônia e água (água destilada a 66% e amônia a 34% - valores aproximados, Dossat, 1961), começa o seu movimento por convecção natural. Conforme mostra o esquema, existem dois tubos concêntricos em (C). Uma seção do tubo, seção K K, está ilustrada na Figura 2.2. No tubo central, uma solução forte de amônia e água é transportada para cima por diferença de densidade. Quando a solução chega na parte mais alta do tubo central, a água retorna pelo tubo externo, voltando para o tanque de
3 Capítulo 2 10 absorção. A amônia, na fase vapor, e a uma temperatura de aproximadamente 150 C, caminha pelo tubo (D), que é um pré-condensador, para o condensador. A amônia é resfriada pela troca de calor com o ambiente, representado por Q 2. A amônia não é totalmente condensada no condensador, coexistindo uma parte líquida e vapor. A amônia liquida, mais pesada, vai para o tubo do evaporador e o vapor de amônia, mais leve, segue pelo tubo (E) ao tanque de absorção (G). A amônia liquida, que sai do condensador e entra no evaporador, se expande para um tubo de área maior. Nesse momento, absorve o hidrogênio que vem do absorvedor e do tubo (H). O absorvedor é construído em forma de serpentina espiral, a fim de evitar que a solução fique estagnada e não prejudique a circulação do hidrogênio. No evaporador ocorre a troca de calor com a carga térmica Q 1, conseguiu-se temperaturas na ordem de 20 C. No evaporador, conforme mostrado na seção J J, da Figura 2.2, existem três tubos, sendo dois deles concêntricos. No tubo interno flui gás hidrogênio, e no tubo externo flui amônia e hidrogênio, que retorna para o tanque de absorção. No tanque de absorção, a amônia e o hidrogênio, proveniente do evaporador, se misturam com a água que lá está contida. Como a amônia tem mais afinidade com a água, ela libera o hidrogênio, que flui, por ser mais leve, para o tubo (H) e pelo absorvedor. Com a mistura de amônia e água, e a liberação do hidrogênio, forma-se uma solução forte novamente, deslocando-se para os tubos concêntricos (C), e então reiniciando o ciclo. 2.2 As Etapas Experimentais Para o desenvolvimento deste trabalho, foram elaboradas três etapas distintas. Primeiro foram feitas medidas de temperatura em todos os pontos do ciclo, indicados na Figura 2.2. Utilizou-se, inicialmente, uma resistência elétrica com potência de 140W, como fonte térmica. Esta etapa foi importante para o conhecimento do funcionamento do ciclo, suas temperaturas e o coeficiente de desempenho, COP. Na segunda etapa do trabalho, a resistência elétrica foi substituída por um soprador térmico que fornece uma potência de até 1400W. O soprador térmico simula uma fonte de rejeito de calor.
4 Capítulo 2 11 As experiências feitas, tanto na primeira etapa quanto na segunda etapa, mostram que o ciclo de refrigeração por absorção sofre variações rápidas de temperatura, quando a potência térmica fornecida varia. Isso pode ser um problema quando se utiliza fontes térmicas flutuantes, como o calor fornecido pelos gases de exaustão de um motor de combustão interna. Para a minimização deste problema, construiu-se um regenerador, com o intuito de manter as temperaturas no aquecedor constantes, quando a potência térmica fosse variada. O estudo do efeito da presença deste regenerador caracterizou a terceira etapa do presente trabalho. 2.3 Descrição do Aparato Experimental Neste item, será apresentado o aparato experimental para o desenvolvimento deste trabalho. Serão descritas as etapas do ciclo funcionando com resistência elétrica, com soprador térmico sem com regenerador. Como este ciclo é considerado praticamente isobárico (ASHRAE, 1994), ressaltamos que não foram feitas modificações no sistema original, devido ao desconhecimento das cargas e volumes de amônia e água. As vazões das soluções, forte e fraca, nas seções da tubulação do sistema, também não foram medidas, devido à estanqueidade da tubulação e receio de vazamentos da carga do refrigerante O Ciclo de Absorção com Resistência Elétrica O equipamento de absorção utilizado foi uma unidade de refrigeração por absorção MÓDULO ELÉTROLUX RA 125 selado tipo MB, que está mostrada na Figura 2.1. O principio de funcionamento do ciclo foi descrito na seção 2 e está esquematizado na Figura 2.2. A resistência elétrica utilizada tem uma potência máxima de 140W. O esquema elétrico das ligações, esta mostrado na Figura 2.3.
5 Capítulo 2 12 Figura 2.3 Esquema elétrico das ligações. Na Figura 2.3, (1) é um controlador/variador de voltagem, varivolt, tipo VM 215, com entrada de 220V e saída de 0 a 240V, que tem o objetivo de variar a tensão elétrica e como conseqüência a variação da potência na resistência ( de 0 até 140W). Em (2), foi utilizado um leitor da potência, voltagem e corrente multímetro digital YOCOGAWA WT 130. Dessa forma pode-se variar e controlar a potência elétrica da resistência, para a determinação do coeficiente de desempenho do ciclo COP em várias faixas de potências. Como câmara fria, foi confeccionada uma caixa de isopor, com espessura 20mm, e de dimensões de 240 x 250 x 240 mm, como está mostrado na Figura 2.4. Figura 2.4 Esquema da câmara fria.
6 Capítulo 2 13 Para a simulação da carga térmica, foi colocada, no interior da câmara fria, uma lâmpada com potência de 60W, ligada também a outro Varivolt, (4), tipo VM 115, entrada 127V e saída de 0 a 130V, observado na Figura 2.3, em (4). Desta forma, com os dois variadores de tensão, pode-se variar a potência fornecida na resistência elétrica e a carga térmica simulada pela lâmpada. Para as medidas das temperaturas em todo o ciclo, foram utilizados oito termopares tipo K, marca OMEGA, e um termômetro analógico a álcool, marca INCONEL, faixa de temperaturas de 10 C a C, ± 0,5 C, para a medida da temperatura ambiente. Os termopares foram ligados a três termômetros digitais tipo multímetro, modelo - MD 5770 A, marca ICEL GUBINTEC com faixa de temperaturas de 60 C até C. Os oito termopares foram dispostos conforme ilustrado na Figura 2.2, representados por: T 1, T 2, T 3, T 4, T 5, T 6, T 7, e T 8,. Os termopares foram distribuídos da seguinte maneira: T 1 temperatura no evaporador T 2 temperatura na entrada do gerador T 3 temperatura na saída do gerador T 4 temperatura na câmara do evaporador T 5 temperatura na entrada do condensador T 6 temperatura na saída do condensador T 7 temperatura na saída do soprador T 8 temperatura na entrada do soprador T amb. temperatura ambiente O Ciclo de Absorção com Soprador sem Regenerador O equipamento de absorção utilizado, é o mesmo da Figura 2.1, entretanto foi utilizado um soprador tipo, BOSCH com potência máxima de 1400W, tendo temperatura no primeiro estágio, de 300 C, temperatura no segundo estágio, de 500 C e com vazão de 400 l/min.
7 Capítulo 2 14 Figura 2.5 Vista lateral do aparato com soprador. Nesta segunda etapa, o soprador térmico foi escolhido com o intuito de simular o calor de rejeito de um processo industrial ou do motor de combustão interna, devido à simplicidade de adaptação, operação, controle, custo e construção do trocador de calor e do regenerador. Como pode ser observado na Figura 2.5, o soprador foi fixado na parte posterior do aparato. O fluxo de ar quente é direcionado para o interior do trocador de calor. O trocador de calor, tipo tubo e carcaça, com passe simples, foi construído especialmente para esta aplicação. A carcaça do trocador foi confeccionada em chapa de alumínio dupla, com 255 mm de comprimento por 70 mm de diâmetro interno e 100 mm de diâmetro externo. Uma camada de lã de rocha foi introduzida entre as chapas, como isolante térmico. A Figura 2.6 mostra que o trocador de calor foi colocado de forma que envolvesse o tubo gerador. O fluxo de ar quente circula em torno do tubo gerador aquecendo a solução amônia e água. A temperatura de entrada do ar ambiente no soprador é medida em T 8. Na saída do trocador de calor é medida a temperatura T 7.
8 Capítulo 2 15 Figura 2.6 Esquema do trocador de calor com o soprador.
9 Capítulo O Ciclo de Absorção com Soprador e com Regenerador O equipamento utilizado foi o representado na Figura 2.5, com pequenas modificações no trocador de calor. Nesta terceira etapa, como material de enchimento do regenerador, foi utilizado palha de aço n 2 marca SUZANBRIL. Como será mostrado no capítulo três, foi observado que, ao se variar a potência fornecida tanto na resistência elétrica quanto no soprador, a temperatura no evaporador rapidamente variava. Tal fato causava um problema para o funcionamento em regime transiente, diminuindo o coeficiente de desempenho do ciclo para uma pequena potência fornecida. Como este trabalho visa, também, a utilização do ciclo de absorção em veículo automotor, em substituição ao sistema convencional de compressão de vapor, e como as variações de energia térmica fornecidas são inevitáveis, devido às variações de carga no motor, foi introduzido um regenerador. O regenerador impõe uma certa inércia térmica ao ciclo, minimizando as variações bruscas de temperatura no evaporador. O esquema de adaptação do trocador de calor está representado na Figura 2.7, onde se observa, no interior do trocador de calor, uma massa de 25 g de palha de aço n 2 e o volume interno de 9,3 x 10-4 m 3. Figura 2.7 Esquema do trocador de calor com regenerador.
10 Capítulo 2 17 A relação entre o volume de vazio (V v ) e o volume total (V T ) do trocador de calor fornece a porosidade ε do regenerador, (Siqueira, 2000), onde, podemos calcular a porosidade ε do regenerador por: V ε = V (2.1) VT 4.m ε = 1 2 πd Lρ (2.2) onde: m é a massa de palha de aço em (kg) D é o diâmetro interno em (m) L é o comprimento em (m) ρ é a massa específica da palha de aço em (kg/m 3 ) A massa específica da palha de aço foi medida experimentalmente, (Siqueira, 2000), encontrando-se ρ = 7,0 ± 0,8 % g/ml. A partir da equação (2.2), a porosidade encontrada foi de 0, Redução dos dados experimentais Para o cálculo do coeficiente de desempenho de Carnot, COP Carnot, as temperaturas foram medidas nos diversos pontos do ciclo como discutido no item Calculou-se a temperatura média de cada seção a partir da entrada e saída de cada seção. T 1 temperatura absoluta calculada do evaporador T 2 temperatura absoluta calculada do condensador T 3 temperatura absoluta calculada do gerador As substâncias no ciclo de absorção encontram-se operando num recipiente rígido e não há entrada de trabalho mecânico. Considera-se um ciclo reversível, no qual o sistema recebe calor Q 3 no tubo bomba à temperatura T 3 e Q 1 no evaporador à temperatura T 1, e libera calor Q 2 no condensador, à temperatura T 2.
11 Capítulo 2 18 Logo, pela primeira lei da termodinâmica, tem-se: Q 1 + Q3 = Q2 (2.3) Pela segunda lei da termodinâmica, pode-se escrever: Q1 ' T1 Q3 Q2 + = (2.4) ' ' T3 T2 O coeficiente de desempenho de Carnot pode ser escrito como: Q 1 COP = (2.5) Q Na equação (2.5), Q 1 é o calor trocado no evaporador e Q 3 é o calor trocado no tubo gerador. Considerando-se as equações (2.3) e (2.5) tem-se: 3 T' 1 (T' 3 T' 2 ) COP = (2.6) T' (T' T' ) O desenvolvimento da equação (2.6) é apresentado no Apêndice A. Na equação (2.6), aplica-se T1+ T4 T' 1 = (2.7a) 2 T5 + T6 T' 2 = (2.7b) 2 T2 + T3 T' 3 = (2.7c) 2
12 Capítulo 2 19 T 1, T 2, T 3, T 4, T 5, T 6, T 7 e T 8 são as temperaturas absolutas definidas na seção 2.2.1, (Figura 2.1) e T 1, T 2 e T 3 são as temperaturas médias. Um esquema para o cálculo do coeficiente de desempenho esta mostrado na Figura 2.8 (Radermarcher e Antoniolli, 2001) Figura 2.8 Esquema de distribuição de energia e temperatura no ciclo. O coeficiente de desempenho térmico, COP Térmico, é definido como sendo a razão entre a taxa de retirada de calor no evaporador e a potência elétrica fornecida.
PME 3344 Exercícios - Ciclos
PME 3344 Exercícios - Ciclos 13) Exercícios sobre ciclos 1 v. 2.0 Exercício 01 Água é utilizada como fluido de trabalho em um ciclo Rankine no qual vapor superaquecido entra na turbina a 8 MPa e 480 C.
Refrigeração e Ar Condicionado
Refrigeração e Ar Condicionado Condensadores Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal de
Problema 1 Problema 2
1 Problema 1 7ª Edição Exercício: 2.42 / 8ª Edição Exercício: 1.44 A área da seção transversal da válvula do cilindro mostrado na figura abaixo é igual a 11cm 2. Determine a força necessária para abrir
MOTORES TÉRMICOS AULA 3-7 SISTEMAS DE POTÊNCIA A VAPOR PROF.: KAIO DUTRA
MOTORES TÉRMICOS AULA 3-7 SISTEMAS DE POTÊNCIA A VAPOR PROF.: KAIO DUTRA Modelando Sistemas de Potência a Vapor A grande maioria das instalações elétricas de geração consiste em variações das instalações
3. Revisão bibliográfica
40 3. Revisão bibliográfica 3.1. O ciclo de refrigeração por compressão de vapor Um dos métodos mais usados para se retirar calor de um ambiente a ser refrigerado é a utilização do sistema de compressão
PME 3344 Exercícios - Ciclos
PME 3344 Exercícios - Ciclos 13) Exercícios sobre ciclos 1 v. 2.0 Exercício 01 Água é utilizada como fluido de trabalho em um ciclo Rankine no qual vapor superaquecido entra na turbina a 8 MPa e 480 C.
Refrigeração e Ar Condicionado
Refrigeração e Ar Condicionado Ciclo de Refrigeração por Compressão de Vapor Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia
PME 3344 Termodinâmica Aplicada
PME 3344 Termodinâmica Aplicada 12) Ciclos de Refrigeração 1 v. 3.0 Ciclos de refrigeração A transferência de calor de compartimentos de baixa temperatura para outros a temperaturas maiores é chamada de
ÁREA DE ESTUDO: CÓDIGO 16 TERMODINÂMICA APLICADA, MECÂNICA DOS FLUIDOS E OPERAÇÕES UNITÁRIAS
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO CEARÁ DIRETORIA DE GESTÃO DE PESSOAS COMISSÃO COORDENADORA DE CONCURSOS CONCURSO PÚBLICO PROFESSOR EFETIVO EDITAL Nº 10/DGP-IFCE/2010 ÁREA DE ESTUDO:
Exercícios e exemplos de sala de aula Parte 1
PME2398 Termodinâmica e suas Aplicações 1 o semestre / 2013 Prof. Bruno Carmo Exercícios e exemplos de sala de aula Parte 1 Propriedade das substâncias puras: 1- Um tanque rígido com volume de 1m 3 contém
Classificação de Tipos de Sistemas de Climatização
Classificação de Tipos de Sistemas de Climatização PME 2515 Alberto Hernandez Neto -Direitos autorais reservados - É proibida a reprodução deste material sem a autorização expressa do autor 1/45 Critérios
Nota: Campus JK. TMFA Termodinâmica Aplicada
TMFA Termodinâmica Aplicada 1) Considere a central de potência simples mostrada na figura a seguir. O fluido de trabalho utilizado no ciclo é água e conhece-se os seguintes dados operacionais: Localização
MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS
MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 4-5 SISTEMAS DE POTÊNCIA A VAPOR PROF.: KAIO DUTRA Modelando Sistemas de Potência a Vapor A grande maioria das instalações elétricas de geração consiste em
UNIVERSIDADE EDUARDO MONDLANE FACULDADE DE ENGENHARIA Departamento de Engenharia Mecânica
UNIVERSIDADE EDUARDO MONDLANE FACULDADE DE ENGENHARIA Departamento de Engenharia Mecânica PROJECTO DO CURSO PROJECÇÃO DE UMA FORNALHA PARA QUEIMA DE BIOMASSA PARA ALIMENTAR UM CICLO DE REFRIGERAÇÃO POR
3. Um gás ideal passa por dois processos em um arranjo pistão-cilindro, conforme segue:
1. Um arranjo pistão-cilindro com mola contém 1,5 kg de água, inicialmente a 1 Mpa e título de 30%. Esse dispositivo é então resfriado até o estado de líquido saturado a 100 C. Calcule o trabalho total
Refrigeração e Ar Condicionado
Refrigeração e Ar Condicionado Ciclo de Refrigeração Por Absorção Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade
Universidade do Vale do Rio dos Sinos PPGEM Programa de Pós-Graduação de Engenharia Mecânica
Universidade do Vale do Rio dos Sinos PPGEM Programa de Pós-Graduação de Engenharia Mecânica SIMULAÇÃO DE CICLO TÉRMICO COM DUAS CALDEIRAS EM PARALELO: COMBUSTÃO EM GRELHA E EM LEITO FLUIDIZADO Herson
Ciclos de Produção de Frio
Ciclos de Produção de Frio Prof. José R. Simões Moreira EPUSP/PME/SISEA E-mail: [email protected] www.pme.poli.usp.br/sisea Julho/2003 COGEN Cogeração, auto-produção e produção independente Pressão Princípio
4 SISTEMAS DE ABSORÇÃO
44 4 SISTEMAS DE ABSORÇÃO O francês Ferdinand Carré inventou o sistema de absorção e tirou uma patente nos Estados Unidos em 1860. O primeiro uso do referido sistema nos Estados Unidos foi provavelmente
Dispositivos com escoamento em regime permanente
Dispositivos com escoamento em regime permanente Bocais e difusores Os bocais e difusores normalmente são utilizados em motores a jato, foguetes, ônibus espaciais e até mesmo em mangueiras de jardim. Um
Exercícios sugeridos para Ciclos de Refrigeração
Exercícios sugeridos para Ciclos de Refrigeração 11-13 (Cengel 7ºed) - Um ciclo ideal de refrigeração por compressão de vapor que utiliza refrigerante R134a como fluido de trabalho mantém um condensador
TRANSFERÊNCIA DE CALOR
UNIVERSIDADE DE SÃO PAULO Faculdade de Ciências Farmacêuticas FBT0530 - Física Industrial TRANSFERÊNCIA DE CALOR A maioria dos processos que acontecem nas indústrias farmacêutica e de alimentos envolve
MANUAL DA BOMBA DE CALOR
MANUAL DA BOMBA DE CALOR Novembro de 2012 Índice 1. Nomenclatura... 2 2. Regras básicas na realização da experiência... 3 3. Objectivos Experiência... 4 4. Descrição da instalação... 5 4.1. Painel Solar
Refrigeração e Ar Condicionado
Refrigeração e Ar Condicionado Introdução aos Ciclos Refrigeração por Compressão de Vapor Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade
Operações Unitárias II Lista de Exercícios 1 Profa. Dra. Milena Martelli Tosi
1. Vapor d água condensado sobre a superfície externa de um tubo circular de parede fina, com diâmetro interno igual a 50 mm e comprimento igual a 6 m, mantém uma temperatura na superfície externa uniforme
Lista de exercícios LOB1019 Física 2
Lista de exercícios 02 1. Tão rapidamente a Terra foi formada, o calor liberado pelo decaimento de elementos radioativos elevaram a sua temperatura média interna de 300 para 3000K (valor atual). Supondo
Termodinâmica 12. Alexandre Diehl. Departamento de Física - UFPel
Termodinâmica 12 Alexandre Diehl Departamento de Física - UFPel Ciclo termodinâmico Definição Sequência de processos termodinâmicos aplicados sobre um sistema, tal que o mesmo é levado desde o seu estado
LISTA DE EXERCÍCIOS 3
LISTA DE EXERCÍCIOS 3 ANÁLISE VOLUME DE CONTROLE 1) Óleo vegetal para cozinha é acondicionado em um tubo cilíndrico equipado com bocal para spray. De acordo com o rótulo, o tubo é capaz de fornecer 560
Ciclos Termodinâmicos de Refrigeração. STE Termodinâmica Aplicada II
Ciclos Termodinâmicos de Refrigeração STE010-13 - Termodinâmica Aplicada II - 2017 1 Objetivos Introduzir os conceitos de refrigeradores e bombas de calor e medir sua performance; Analisar o ciclo ideal
Capítulo 1 1. Figura Ciclo de absorção acionado pelo calor de rejeito do motor de combustão interna.
Capítulo 1 1 1 Introdução Este estudo experimental descreve a adaptação e modificação de uma unidade de refrigeração por absorção, transformando-a num aparato para investigação e coleta de dados. Estuda-se
Lista de Exercícios Solução em Sala
Lista de Exercícios Solução em Sala 1) Um conjunto pistão-cilindro área de seção transversal igual a 0,01 m². A massa do pistão é 101 kg e ele está apoiado nos batentes mostrado na figura. Se a pressão
Sistemas e Componentes II
Sistemas e Componentes II Alberto Hernandez Neto -Direitos autorais reservados - É proibida a reprodução deste material sem a autorização expressa do autor 1 Serpentina de resfriamento e desumidificação
1ª Lista de Exercícios. Unidade Curricular: FNT22304 Fenômenos dos Transportes CONDUÇÃO
1ª Lista de Exercícios Unidade Curricular: FNT22304 Fenômenos dos Transportes CONDUÇÃO 1.8 Um recipiente de baixo custo para comida e bebida é fabricado em poliestireno (isopor) de 25 mm de espessura (0,023
PME 3344 Termodinâmica Aplicada
PME 3344 Termodinâmica Aplicada 11) Ciclos motores a vapor 1 v. 2.0 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil,
Ciclo e máquinas térmicas
Questão 01 - (UFJF MG) Em um experimento controlado em laboratório, uma certa quantidade de gás ideal realizou o ciclo ABCDA, representado na figura abaixo. desenho abaixo. As transformações FG e HI são
Escola Politécnica da Universidade de São Paulo. Termodinâmica. Ciclos motores a vapor
Termodinâmica Ciclos motores a vapor 1 v. 1.1 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil, operando segundo
Módulo I Ciclo Rankine Ideal
Módulo I Ciclo Rankine Ideal Sistema de Potência a Vapor As usinas de potência a vapor são responsáveis pela produção da maior parte da energia elétrica do mundo. Porém, para o estudo e desenvolvimento
SISTEMAS TÉRMICOS DE POTÊNCIA
SISTEMAS TÉRMICOS DE POTÊNCIA PROF. RAMÓN SILVA Engenharia de Energia Dourados MS - 2013 SISTEMAS DE POTÊNCIA A VAPOR 2 SIST. POTÊNCIA A VAPOR Diferente do ciclo de potência a gás, no ciclo de potência
SISTEMAS TÉRMICOS DE POTÊNCIA
SISTEMAS TÉRMICOS DE POTÊNCIA SISTEMAS DE POTÊNCIA A VAPOR Prof. Dr. Ramón Silva - 2015 O objetivo dessa aula é relembrar os conceitos termodinâmicos do ciclo Rankine e introduzir aos equipamentos que
MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS
MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 6-8 MELHORANDO O DESEMPENHO PROF.: KAIO DUTRA Superaquecimento Como não estamos restritos a ter vapor saturado na entrada da turbina, uma energia adicional
Modelagem de equipamentos térmicos Trocadores de calor
Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica Modelagem de equipamentos térmicos Trocadores de calor Introdução Trocadores de calor Equipamentos que realizam
26/08/ Agosto/2012
26/08/2012 1 Agosto/2012 Refrigeração. 26/08/2012 2 Circuito Frigorifico O ciclo de refrigeração ou ciclo frigorífico é um ciclo termodinâmico que constitui o modelo matemático que define o funcionamento
Lista de problemas número 1. Exercícios de Refrigeração e Psicrometria A) REFRIGERAÇÃO
Lista de problemas número 1 Exercícios de Refrigeração e Psicrometria A) REFRIGERAÇÃO 1) Determinar as propriedades do R-134 nas seguintes condições: a) t = - 40 o C x = 1 b) p = 1 MPa t = 80 0 C c) p
Capitulo 3 O Aparato Experimental
Capitulo 3 O Aparato Experimental O presente capítulo tem como objetivo, descrever a RTC construída no Laboratório de Engenharia Química do Centro Universitário da FEI, contemplando a instrumentação, as
Lista 3. Projeto e Simulação de Sistemas Térmicos 2017/2. Resolva os seguintes exercícios:
Projeto e Simulação de Sistemas Térmicos 2017/2 Lista 3 Resolva os seguintes exercícios: 1. A temperatura do ar em uma câmara frigorífica deve ser mantida a -23 C, através de um ciclo de compressão de
Aula 7 Refrigeração e bombeamento de calor
Universidade Federal do ABC P O S M E C Aula 7 Refrigeração e bombeamento de calor MEC202 Refrigeração Transferência de calor a partir de uma região de temperatura mais baixa para uma região com temperatura
Classificação de Trocadores de Calor
Trocadores de Calor Trocadores de Calor Equipamento usados para implementar a troca de calor entre dois ou mais fluidos sujeitos a diferentes temperaturas são denominados trocadores de calor Classificação
PME 3344 Termodinâmica Aplicada
PME 3344 Termodinâmica Aplicada 10) Ciclos motores a vapor 1 v. 2.0 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil,
Refrigeração e Ar Condicionado
Refrigeração e Ar Condicionado Evaporadores Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal de Juiz
Seu equipamento em suas mãos! Software que permite integração via micro e celular. CLP-Central de Controle
Linha MGD TermoChiller Linha MGD Aquecimento e refrigeração em um só equipamento. Preparado para trabalhar com faixa de operação de 10⁰C a 90⁰C. A versão com duas saídas controla dois pontos de água independentes,uma
Escola Politécnica da Universidade de São Paulo. Termodinâmica. Conceitos Fundamentais. v. 1.0
Termodinâmica Conceitos Fundamentais 1 v. 1.0 Sistema termodinâmico quantidade de matéria com massa e identidade fixas sobre a qual nossa atenção é dirigida. Volume de controle região do espaço sobre a
PROGRAMA DE ENSINO CÓDIGO DISCIPLINA OU ESTÁGIO SERIAÇÃO IDEAL/PERÍODO Termodinâmica I Transferências de Calor e Massa I
PROGRAMA DE ENSINO UNIDADE UNIVERSITÁRIA: UNESP CÂMPUS DE ILHA SOLTEIRA CURSO: ENGENHARIA (Resolução UNESP nº 74/04 - Currículo: 4) HABILITAÇÃO: OPÇÃO: DEPARTAMENTO RESPONSÁVEL: Engenharia Mecânica CÓDIGO
CICLOS MOTORES A VAPOR. Notas de Aula. Prof. Dr. Silvio de Oliveira Júnior
CICLOS MOTORES A VAPOR Notas de Aula Prof. Dr. Silvio de Oliveira Júnior 2001 CICLO RANKINE ESQUEMA DE UMA CENTRAL TERMELÉTRICA A VAPOR REPRESENTAÇÃO ESQUEMÁTICA DA TERMELÉTRICA DIAGRAMAS DO CICLO IDEAL
7 TORRES DE RESFRIAMENTO E CONDENSADORES EVAPORATIVOS
91 7 TORRES DE RESFRIAMENTO E CONDENSADORES EVAPORATIVOS A maioria dos equipamentos dos sistemas de refrigeração rejeita calor para a atmosfera. Embora existam aplicações onde o calor rejeitado do ciclo
TERMODINÂMICA APLICADA
TERMODINÂMICA APLICADA Livro Texto adotado: Fundamentos da Termodinâmica Claus Borgnakke/ Richard E. Sonntag Editora Blucher. Samuel Sander de Carvalho [email protected] Juiz de Fora -MG
Escola Politécnica da Universidade de São Paulo. Termodinâmica. 10) Ciclos motores a vapor. v. 2.5
Termodinâmica 10) Ciclos motores a vapor 1 v. 2.5 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil, operando segundo
Condensadores. Principais Tipos. Resfriados a ar sistema de ar condicionado e refrigeração comercial
Condensadores Principais Tipos Resfriados a ar sistema de ar condicionado e refrigeração comercial Condensadores Resfriados a água sistema de ar condicionado e refrigeração comercial Trocador casco e tubo
CAPÍTULO I. 1 Introdução Motivação
CAPÍTULO I 1 Introdução. 1.1. Motivação A busca por melhores eficiências, menor consumo de energia e maior conforto é cada vez mais um objetivo perseguido por todos. Os fabricantes de veículos não são
) (8.20) Equipamentos de Troca Térmica - 221
onde: v = &m = Cp = h lv = U = A = T = t = volume específico vazão em massa (Kg/h) calor específico calor latente de vaporização coeficiente global de troca térmica área de transmissão de calor temperatura
Faculdade de Zootecnia e Engenharia de Alimentos Departamento de Engenharia de Alimentos
UNIVERSIDADE DE SÃO PAULO Faculdade de Zootecnia e Engenharia de Alimentos Departamento de Engenharia de Alimentos 1 a Lista de Exercícios (2014) ZEA 0466 TERMODINÂMICA Profa. Alessandra Lopes de Oliveira
Lista de exercícios Caps. 7 e 8 TMEC-030 Transferência de Calor e Massa Período especial 2017/2
Lista de exercícios Caps. 7 e 8 TMEC-030 Transferência de Calor e Massa Período especial 2017/2 1. (Incropera et al., 6 ed., 7.2) Óleo de motor a 100ºC e a uma velocidade de 0,1 m/s escoa sobre as duas
Geração de Energia Elétrica
Geração de Energia Elétrica Geração Termoelétrica a Joinville, 11 de Abril de 2012 Escopo dos Tópicos Abordados Conceitos básicos de termodinâmica; Centrais Térmicas a : Descrição de Componentes (Caldeira+Turbina);
PROVA DE FÍSICA 2º ANO - 2ª MENSAL - 2º TRIMESTRE TIPO A
PROVA DE FÍSICA º ANO - ª MENSAL - º TRIMESTRE TIPO A 01) No gráfico abaixo, temos uma seqüência de transformações gasosas, que seguem a seguinte ordem: ABCDA. De acordo com o apresentado, assinale verdadeiro
4. Resultados Parâmetros de desempenho Variáveis de controle Tipo de nanopartícula
4. Resultados No presente capítulo serão discutidos os resultados da simulação do ciclo de refrigeração por compressão de vapor utilizando nanofluidos como fluido secundário no evaporador. 4.1. Parâmetros
Lista de Exercícios 9 Teoria cinética dos gases, Primeira e Segunda leis da Termodinâmica
Lista de Exercícios 9 Teoria cinética dos gases, Primeira e Segunda leis da Termodinâmica Exercícios Sugeridos (14 de novembro de 2008) A numeração corresponde ao Livro Texto. 16.19 Um balão de ar quente
MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS
MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 1-3 TERMODINÂMICA APLICADA AS MÁQUINAS TÉRMICAS PROF.: KAIO DUTRA Diagrama de Fases Estado líquido Mistura bifásica líquido-vapor Estado de vapor Conservação
U = 1.5 m/s T m,e = 20 o C T p < 200 o C
Ex. 7-32 Ar deve ser usado para resfriar um material sólido no qual ocorre geração interna de calor. Furos de 1cm de diâmetro foram feitos no material. A espessura da placa é de 8 cm e a condição térmica
Instruções. Leia as questões antes de respondê-las. A interpretação da questão faz parte da avaliação.
Nome: Curso: RA: Instituto de Ciências Exatas e Tecnológicas Campus Indianópolis SUB Termodinâmica Básica Turma: Data: Instruções Leia as questões antes de respondê-las. A interpretação da questão faz
Trocador de calor tubo-em-tubo Tipo HE
MAKING MODERN LIVING POSSIBLE Ficha técnica Trocador de calor tubo-em-tubo Tipo HE O trocador de calor tipo HE é usado principalmente para realizar a transferência de calor entre as linhas de líquido e
TUBULAÇÕES INDUSTRIAS AULA 4 Prof. Clélio AULA 4. Volume I do Livro Texto CONTEÚDO: Capítulo 7. Purgadores de Vapor, Separadores Diversos e Filtros.
AULA 4 Volume I do Livro Texto CONTEÚDO: Capítulo 7 Purgadores de Vapor, Separadores Diversos e Filtros. 1 LINHAS DE VAPOR Nas linhas de vapor sempre haverá água líquida (condensado) resultante da condensação
Trocador de calor tubo-em-tubo Tipo HE
Ficha técnica Trocador de calor tubo-em-tubo Tipo HE O trocador de calor tipo HE é usado principalmente para realizar a transferência de calor entre as linhas de líquido e de sucção da instalação de refrigeração.
1º SIMULADO DISCURSIVO IME FÍSICA
FÍSICA Questão 1 Considere o veículo de massa M percorrendo uma curva inclinada, de ângulo, com raio R constante, a uma velocidade V. Supondo que o coeficiente de atrito dos pneus com o solo seja, calcule
Escola Politécnica da Universidade de São Paulo. Termodinâmica. Ciclos de Refrigeração. v. 2.0
Termodinâmica Ciclos de Refrigeração 1 v. 2.0 Ciclo de refrigeração A transferência de calor de compartimentos de baixa temperatura para outros a temperaturas maiores é chamada de refrigeração; Equipamentos
Capítulo 5: Análise através de volume de controle
Capítulo 5: Análise através de volume de controle Segunda lei da termodinâmica Conversão de energia EM-54 Fenômenos de Transporte Variação de entropia em um sistema Num sistema termodinâmico a equação
Módulo II Processo Reversível e Irreversível, Ciclos (Potência, Refrigeração e Bomba de Calor) de Carnot
Módulo II Processo Reversível e Irreversível, Ciclos (Potência, Refrigeração e Bomba de Calor) de Carnot Processos Reversíveis e Irreversíveis Nenhuma máquina térmica pode ter eficiência 100% de acordo
Cap. 4: Análise de Volume de Controle
Cap. 4: Análise de Volume de Controle AR Ar+Comb. www.mecanicavirtual.org/carburador2.htm Cap. 4: Análise de Volume de Controle Entrada, e Saída, s Conservação da Massa em um Sistema dm dt sist = 0 Conservação
Página 01/07 boletim técnico Outubro / 2017 título: lançamento das novas unidades condensadoras set free (sigma) alta resistência à corrosão
Página 01/07 título: lançamento das novas unidades condensadoras set free (sigma) alta resistência à corrosão SUMÁRIO: Informativo de lançamento das novas Unidades Condensadoras Set Free (Sigma) Alta Resistência
Trabalho em uma transformação
Trabalho em uma transformação Trabalho (W) é uma medida da energia transferida pela aplicação de uma força ao longo de um deslocamento W = a b F dx A unidade de trabalho, no SI, é o Joule (J); 1 J = 1
Física 20 Questões [Médio]
Física 20 Questões [Médio] 01 - (UFRRJ ) Uma pessoa retira um botijão de gás de um local refrigerado e o coloca em um outro lugar, sobre o qual os raios solares incidem diretamente. Desprezando qualquer
Refrigeração e Ar Condicionado
Refrigeração e Ar Condicionado Compressores Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal de Juiz
8º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Cusco, 23 a 25 de Outubro de 2007
1 8º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Cusco, 23 a 25 de Outubro de 2007 UTILIZACÂO DE UM MODELO MATEMÁTICO PARA ALTERACÂO NA ESCALA DE UM ROTÂMETRO PARA OPERAR COM UM FLUIDO QUALQUER Dias
Disciplina : Termodinâmica. Aula 14 Segunda Lei da Termodinâmica
Disciplina : Termodinâmica Aula 14 Segunda Lei da Termodinâmica Prof. Evandro Rodrigo Dário, Dr. Eng. Introdução a segunda lei da termodinâmica Uma xícara de café quente deixado em uma sala mais fria,
ANÁLISE ENERGÉTICA DE UM SISTEMA DE REFRIGERAÇÃO POR ABSORÇÃO UTILIZANDO A MISTURA AMÔNIA-ÁGUA.
ANÁLISE ENERGÉTICA DE UM SISTEMA DE REFRIGERAÇÃO POR ABSORÇÃO UTILIZANDO A MISTURA AMÔNIA-ÁGUA. Luís Felipe Ribeiro Romano [Voluntário], Rubens Gallo [orientador], Rafael Santiago de Campos [Colaborador]
Exame de Admissão 2016/1 Prova da área de termo fluidos Conhecimentos específicos
Exame de Admissão 2016/1 Prova da área de termo fluidos Conhecimentos específicos 1ª. Questão (1 ponto) Considere uma bomba centrífuga de 20 kw de potência nominal, instalalada em uma determinada planta
Cap 18 (8 a edição) Temperatura, Calor e Primeira lei da termodinâmica
Termodinâmica: estuda a energia térmica. Cap 18 (8 a edição) Temperatura, Calor e Primeira lei da termodinâmica O que é temperatura: mede o grau de agitação das moléculas. Um pedaço de metal a 10 o C e
TABELA DE PREÇOS FABRICO DE TERMOACUMULADORES E BOMBAS DE CALOR
TABELA DE PREÇOS FABRICO DE TERMOACUMULADORES E BOMBAS DE CALOR 2 www.atila.pt 3 TERMOACUMULADORES ELÉTRICOS E DE INÉRCIA EM AÇO CARBONO BI-CERAMIFICADO Capacidade (L) Água da Companhia 10 145 25 155 50
GERAÇÃO, TRANSMISSÃO E DISTRIBUIÇÃO DE ENERGIA DE ELÉTRICA
Universidade do Estado de Mato Grosso Campus Sinop Faculdade de Ciências Exatas e Tecnológicas GERAÇÃO, TRANSMISSÃO E DISTRIBUIÇÃO DE ENERGIA DE ELÉTRICA ROGÉRIO LÚCIO LIMA Sinop Outubro de 2016 Principais
Evaporador de Ar Forçado Baixa Velocidade. Dupla saída de ar Baixa velocidade. Bandeja interna
302 770 00 27 3397 Evaporador de Ar Forçado Baixa Velocidade Dupla saída de ar Baixa velocidade Bandeja interna Características Técnicas Bandeja interna que evita fugas de ar e concentra fluxo de água
Refrigeração e Ar Condicionado
Refrigeração e Ar Condicionado Sistemas de Múltiplos Estágios Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade
A máquina cíclica de Stirling
A máquina cíclica de Stirling TEORIA A máquina de Stirling (Fig. 1) é uma máquina cíclica a ar quente, com a qual vamos investigar experimentalmente o ciclo de Stirling, e demonstrar o funcionamento de
c c podem ser eliminados e os dois calores específicos
ENERGIA INTERNA, ENTALPIA E CALORES ESPECÍFICOS DE SÓLIDOS E LÍQUIDOS Uma substância cujo volume específico (ou densidade) é constante é chamada de substância incompressível. Os volumes específicos de
Universidade Federal de Santa Catarina EMC Refrigeração e Condicionamento de Ar Prof.: Cláudio Melo
Universidade Federal de Santa Catarina EMC 5472 - Refrigeração e Condicionamento de Ar Prof.: Cláudio Melo EXERCÍCIOS SUPLEMENTARES DE CONDICIONAMENTO DE AR 01) Uma câmara frigorífica para resfriamento
Exercícios e exemplos de sala de aula Parte 3
Introdução à transferência de calor PME2398 Termodinâmica e suas Aplicações 1 o semestre / 2013 Prof. Bruno Carmo Exercícios e exemplos de sala de aula Parte 3 1- Uma placa de alumínio, com 4mm de espessura,
Física e Química A 10.º ano
Energia, fenómenos térmicos e radiação II Física e Química A 10.º ano 1. Responde às seguintes questões. Num dia de inverno, a temperatura no exterior é de - 3ºC e a temperatura no interior de um apartamento
Sistemas de Refrigeração Parte I
Sistemas de Refrigeração Parte I 1 Tópicos da Aula de Hoje Introdução / definições sobre sistemas de refrigeração Ciclo de refrigeração por compressão Fatores que influenciam o desempenho do sistema de
