A produção, a transmissão e a distribuição de eletricidade demandam investimentos altos, tecnologia avançada e pessoal capacitado.

Tamanho: px
Começar a partir da página:

Download "A produção, a transmissão e a distribuição de eletricidade demandam investimentos altos, tecnologia avançada e pessoal capacitado."

Transcrição

1 MUSEU LIGHT DA ENERGIA CADERNO DO PROFESSOR A energia elétrica é essencial para o desenvolvimento econômico e social. Esta apostila tem a proposta de desenvolver conceitos e abordagens sobre o tema energia, energia elétrica e meio ambiente, auxiliando o professor para que a visita com seus alunos ao Museu Light da Energia tenha um rendimento ainda melhor. Serve ainda de convite aos professores para a reflexão sobre questões como: a importância da energia na nossa vida, a nossa responsabilidade em utilizá-la de modo sustentável, e também sobre o papel do educador no despertar dessa consciência nas futuras gerações. Ela move a produção, os serviços públicos e os eletrodomésticos da nossa casa, trazendo conforto e bem-estar para o nosso cotidiano. Muitas pessoas usam a eletricidade como se ela aparecesse nas tomadas e interruptores num passe de mágica, sem ligar para o desperdício ou imaginando que não há problema em dela usufruir sem pagar pelo seu uso. Isso é um engano que prejudica a todos. A produção, a transmissão e a distribuição de eletricidade demandam investimentos altos, tecnologia avançada e pessoal capacitado. Nesta oportunidade, além de conhecer um pouco mais sobre energia e eletricidade, vamos ter a chance de rever nossos hábitos e conhecer dicas de como usar a eletricidade com segurança e sem desperdício. 1

2 Sumário O Museu Light da Energia... 3 Energia, a força que nos move Fontes de energia Formas de energia Átomo e eletricidade O fenômeno eletromagnético A energia elétrica e o conforto que ela nos traz Como se produz energia elétrica A conta de energia elétrica Fontes de energia elétrica Usando a energia elétrica com segurança Usando a energia elétrica com responsabilidade Sites para pesquisa Oficina pedagógica

3 Revista para os alunos Site para ser visitado 3

4 Existem diversas formas de energia: cinética, potencial, elétrica, térmica, química etc. A ENERGIA QUE NOS MOVE O conceito de energia foi estabelecido por Isaac Newton, no século XVII: Energia é a capacidade de um sistema físico realizar trabalho. De lá para cá, tal como qualquer conceito científico, ele evoluiu ao longo do tempo. Mas para nossos objetivos, a ideia de trabalho entendida como processos, mudanças de estado ou configuração de sistema já dá conta do recado. Há diversos exemplos que se podem oferecer sobre a presença de energia ao nosso redor. Também são diversos os sinais de quanto dela dependemos, pois afinal é graças à energia que podemos nos mover. Uma folha que cai, uma flor que se abre, um rio que corre, o nascimento de um ser vivo, uma simples caminhada, tudo depende de energia para acontecer. Desde uma lâmpada que se acende até o mais sofisticado dos sistemas, tudo precisa de energia para funcionar. Esses exemplos nos lembram que, seja no ambiente natural ou no construído pelos homens, a necessidade de energia para que tudo funcione é semelhante. Um aspecto muito importante da energia é que toda forma de energia pode ser. transformada em qualquer outra. Quando esfregamos um dedo sobre uma mesa, por exemplo, o dedo esquenta; é a energia mecânica sendo transformada em calor. Quando andamos ou corremos, estamos transformando energia química (adquirida dos alimentos) em energia cinética. Sustentabilidade é cuidar bem do planeta de forma a garantirmos os recursos naturais para uso das gerações atuais e futuras.. E como é que conseguimos gerar grandes quantidades de energia para sustentar nosso modelo de vida? Usando os chamados recursos naturais. 4

5 FONTES DE ENERGIA Eu sou o sol, sou eu que brilho pra você meu amor... Jorge Ben Jor Fonte primária é a fonte de energia que se encontra diretamente na natureza, como por exemplo, o petróleo. O sol é a grande fonte de energia para o nosso planeta. De fato, sem a energia do sol as plantas não fariam fotossíntese, os ventos não se formariam, o ciclo da água não se efetivaria e a vida não existiria. Além do calor e da luz solar, a tração animal, a água, os ventos, o carvão mineral, os gêiseres e as fontes termais, o petróleo, o gás natural, a chamada biomassa dos vegetais e as marés são exemplos de recursos naturais que tem sido usados como fontes de energia. Síntese das fontes e usos da energia Fonte secundária é produzida a partir de outra fonte, como por exemplo, a gasolina. Fonte: educadora.blogspot.com 5

6 FORMAS DE ENERGIA A energia mecânica pode ser cinética ou potencial. A energia cinética está sempre associada ao movimento: se um objeto estiver parado, sua energia cinética é zero. Repare que a energia cinética depende do estado de movimento de quem observa. Por exemplo, o motorista de um ônibus em movimento possui energia cinética igual a zero para um passageiro do ônibus, mas diferente de zero para quem está parado do lado de fora na calçada. A energia mecânica pode ser armazenada sob a forma de energia potencial. Ao esticarmos uma mola, por exemplo, ela armazenará uma certa energia potencial (nesse caso, chamada de elástica). Se soltarmos a mola, a energia potencial elástica armazenada se transforma em energia cinética. Se segurarmos um objeto a uma certa altura, ele terá armazenada uma certa quantidade de energia potencial (nesse caso, chamada de gravitacional). Ao soltarmos o objeto, ele cai, transformando a energia potencial em energia cinética. Energia química: é a energia potencial das ligações químicas entre os átomos. Ela está associada, por exemplo, à queima ou combustão presentes na gasolina, nos derivados de petróleo e até mesmo nos alimentos que se transformam em nosso organismo. Energia térmica: como o nome sugere, apresenta-se na forma de calor. A resistência do chuveiro de nossas casas é uma fonte de energia térmica. O conjunto das reações químicas do nosso corpo (metabolismo) produz a energia térmica, e é por isso que temos uma temperatura corporal. O calor do sol é outro exemplo de energia térmica. Energia luminosa: é a energia das ondas eletromagnéticas situadas na região visível do espectro eletromagnético. Quando um raio de luz atinge o nosso olho, essa energia é convertida em energia elétrica, que viaja pelos nervos da visão até o cérebro, gerando uma imagem. Em uma usina hidrelétrica, a água do reservatório possui energia potencial. Quando forçada a entrar nos dutos, a água adquire energia cinética. Ao chegar nas pás das turbinas, essa mesma água vence a inércia da turbina e a faz girar, adquirindo também energia cinética. As turbinas giram os imãs do gerador, que produzem a energia elétrica. A energia luminosa é também indispensável para um fenômeno essencial à vida: a fotossíntese. A fotossíntese gera energia para as plantas clorofiladas, resultando na liberação, na atmosfera, do oxigênio fundamental para nossas vidas. É importante notar, contudo, que ondas eletromagnéticas fora do espectro visível também possuem energia: ninguém consegue enxergar ondas de rádio, por exemplo, mas elas transportam a energia que fazem funcionar os aparelhos de rádio e TV. 6

7 A Praça das Energias do Museu Light da Energia é um espaço onde se pode brincar e ao mesmo tempo aprender alguns conceitos importantes sobre formas de energia, por exemplo o conceito físico de conservação de energia. Segundo esse conceito a energia não se perde, mas simplesmente muda de forma, ainda que esta forma seja uma dissipação, ou comumente conhecida como perda. Sabendo que a energia se conserva, que a potencial se transforma em cinética e esta por sua vez em potencial, podeíamos pensar que o balanço deveria permanecer em movimento indefinidamente após um único empurrão. Mas não é o que acontece: em dado momento o balanço para. Nos balanços com correntes de comprimentos desiguais pode-se observar que os movimentos de subir e descer acontecem em tempos diferentes, dependendo do tamanho da corrente. Assim quanto menor o comprimento da corrente, menor será o tempo para completar um ciclo, ou seja, haverá maior frequência de movimento. Por que isso acontece? Quando um balanço chega ao ponto mais alto, a energia se apresenta como energia potencial gravitacional. Quando o movimento de volta é iniciado, essa energia potencial é transformada em energia de movimento (energia cinética), que será máxima no ponto mais baixo. Nesse ponto, toda a energia potencial foi transformada em energia cinética, e a velocidade será máxima. O balanço com a corrente mais longa pode ir mais alto, e terá maior energia potencial. Consequentemente atingirá maior velocidade no ponto mais baixo. Por outro lado, quanto maior a corrente, maior o período de oscilação. Por causa disso, os balanços com corrente menor oscilam mais rápido, apesar de terem velocidade máxima menor, e os de corrente maior oscilam mais lentamente, apesar de terem velocidade máxima maior. Isso se dá por causa do atrito com o ar, e também do atrito da corrente com o suporte. O atrito dissipa energia, fazendo o brinquedo parar. A frequência do movimento no balanço só depende do comprimento da corrente e da gravidade local. Ou seja, pessoas com pesos diferentes não alteram o período do movimento. 7

8 São muitos os exemplos de transformação de energia. Outro exemplo prático de transformação da energia de uma forma em outra pode ser experimentado na bicicleta, também encontrada na Praça das Energias: uma coluna de luzes que se acendem indica a energia produzida pelas pedaladas. [Repare que a bicicleta tem um dínamo, componente que transforma a energia do movimento conhecida como cinética em energia elétrica.] Para fazer a bicicleta funcionar, é preciso aplicar a energia potencial do corpo (já resultante da energia química dos alimentos) que se transforma em energia cinética, esta por sua vez, se transforma em eletricidade, que também se transforma em energia luminosa. O princípio é semelhante ao usado na maioria dos geradores de eletricidade (alternador de carro, usinas hidrelétrica, nuclear, termelétrica etc.): um ímã gira entre várias bobinas (fios enrolados), e o seu movimento entre os anéis de fios produz a corrente elétrica, que, no caso da bicicleta, faz acender a coluna de luzes. energia quimica Na fotossíntese, a energia luminosa do sol se converte, nas plantas, em energia química. energia luminosa energia potencial energia elétrica energia cinética Em nossas casas, a energia elétrica é transformada em iluminação, refrigeração, calor, imagem, som etc. 8

9 O Fenômeno da Ressonância Os balanços acoplados são uma oportunidade para aprender sobre transferência de energia e ressonância. Repare que os dois balanços estão pendurados em uma mesma estrutura. Ao impulsionar apenas um deles, a energia é transmitida, aos poucos, de um balanço para o outro, através do movimento da barra em que ambos estão pendurados. Isso acontece até os dois terem praticamente o mesmo movimento. Essa transferência tão eficiente só ocorre porque os dois balanços têm o mesmo comprimento das correntes e podem balançar no mesmo período. Esse fenômeno é chamado de RESSONÂNCIA. É importante ressaltar que a ressonância não é uma forma de energia, mas uma forma de transferência de energia de um sistema físico para outro, e é característica de sistemas que oscilam. Um exemplo de aplicação do fenômeno da ressonância no dia a dia é o rádio de pilha. Todas as estações transmissoras emitem suas ondas de rádio ao mesmo tempo, mas o rádio só detecta aquela que escolhemos ouvir. Como isso acontece? Circuitos eletrônicos possuem frequências de ressonância. Quando sintonizamos o rádio em uma dada estação, estamos colocando o circuito eletrônico em ressonância com a onda de rádio emitida por aquela estação. Para mudar de estação, temos que mudar a frequência de ressonância no rádio. 9

10 No experimento das rampas, a direção da força que atua no corpo que desce é sempre tangente à rampa. No caso da rampa reta, a tangente é sempre paralela à rampa e, portanto a direção da força é constante durante todo o movimento. No caso da rampa curva, a tangente muda em cada ponto da rampa, fazendo a força mudar de direção ao longo do movimento. Entre um escorregador com rampa em curva e outro com rampa reta, qual o mais rápido? E por quê? No primeiro, o tempo para chegar embaixo é menor. No ponto de partida, a energia potencial é a mesma nas duas rampas (para a mesma massa). Na rampa reta, porém a força que atua sobre o corpo é constante durante todo o trajeto, uma vez que a inclinação é constante. O primeiro caso é o do movimento uniformemente acelerado, em que a velocidade aumenta linearmente com o tempo de descida. Se no entanto a rampa tiver uma forma parabólica, por exemplo, a velocidade aumenta exponencialmente com o tempo de descida! Já na rampa curva essa força vai aumentando à medida que o corpo escorrega, fazendo com que a velocidade aumente mais rapidamente do que na rampa reta. Cabe notar que, como os dois escorregadores chegam no mesmo ponto, desprezando-se o atrito, a energia cinética total final será a mesma nos dois casos. 10

11 Os átomos possuem uma propriedade chamada momento magnético, que se assemelha a uma agulha de bússola. Em geral, nos materiais, essas agulhas apontam aleatoriamente no espaço. Mas em outros materiais elas se ordenam e apontam para a mesma direção. Neste experimento lúdico temos um pêndulo com ímã, dentro de uma estrutura piramidal. Os visitantes são estimulados a usar varas metálicas e tentar atrair o pêndulo para si, encostando a extremidade da vara num dos pontos do ímã. Assim podem observar que polaridades opostas se atraem e polaridades iguais se repelem. Evidencia-se assim a propriedade de atração e repulsão presente no campo invisível em torno dos imãs, o chamado CAMPO MAGNÉTICO.. O campo magnético gerado por um ímã varia espacialmente, decaindo com o aumento da distância do ímã. A variação espacial do campo magnético é a responsável pela força magnética, que atrai ou repele outros ímãs. É por essa mesma razão que aqueles enfeites de geladeira, calendários ou telefones de pizzarias feitos com materiais magnéticos grudam na geladeira. A compreensão do fenômeno magnético foi muito importante para a concepção dos geradores de energia elétrica. Em seu interior, o campo magnético é utilizado para transformar energia cinética em corrente elétrica. 11

12 Aristóteles achava que as cores eram propriedades dos objetos, e não da luz. Leonardo da Vinci foi o primeiro a afirmar que a cor é uma propriedade da luz, e não dos objetos. Foi Isaac Newton quem mostrou que a luz poderia ser decomposta em cores com um prisma. Ele provou que a cor era uma propriedade da luz e não dos objetos, e demonstrou ainda que a cor branca é uma mistura de cores (e não uma cor individual). O senso comum nos induz a pensar que a luz solar tem apenas uma cor, mas a árvore de prismas oferece a oportunidade de observação de alguns de seus diferentes espectros. Quando a luz solar incide nos prismas, podemos observar pequenos arco-íris projetados. Isso ocorre porque quando a luz atinge um prisma, passando do ar para o vidro, ela tem o seu caminho desviado. É o fenômeno de REFRAÇÃO. Quanto mais perto do vermelho for a cor, maior o desvio; quanto mais próximo estiver do azul, menor ele será. Assim, o prisma consegue separar as cores, desviando cada uma para um lado e criando o arco-íris. Na natureza, quando a luz do sol incide sobre as gotículas de chuva que vagam suspensas, passando do ar para a água, ocorre o mesmo fenômeno, nesse caso o arco-íris de verdade, com suas sete lindas cores. Que tal construir com os alunos um disco de Newton? Nossa retina é um exemplo de sistema que converte energia luminosa em energia elétrica! O olho humano enxerga do vermelho (450 THz) ao violeta (750 THz). Outros animais enxergam outras faixas: as cobras enxergam no infravermelho (350 THz), e as abelhas, no ultravioleta (1000 THz). O espectro eletromagnético, no entanto, é muito mais amplo do que isso, contendo, por exemplo, ondas de rádio, raios gama, raios X etc. 12

13 Os raios UV podem afetar a estrutura da nossa pele, causando o envelhecimento precoce e outros problemas mais graves. Por isso, proteja-se do sol intenso e use sempre filtro solar! Flashes de câmeras fotográficas e fotocopiadoras produzem grande quantidade de radiação UV. Por isso o uso de câmeras com flashes é proibido nos museus. Entre os tipos de luzes emitidas pelo sol existem algumas que nossos olhos não conseguem ver. Entre elas estão os raios ultra violeta (UV). A maior parte da radiação UV emitida pelo sol é absorvida na atmosfera. Neste experimento, as bolinhas brancas, quando expostas aos raios solares, mudam de cor. Por que isso acontece? Devido à presença dos raios UV, que são muito energéticos. Observe, pelos buracos da tampa de metal, como eles são capazes de mudar até a cor das bolinhas. Em seguida, gire a tampa e veja como as bolinhas que não estavam expostas ao sol ficam bem mais claras. A luz negra pode ser gerada a partir de lâmpadas fluorescentes. Algumas substâncias absorvem esses componente da radiação UV, excitando átomos e moléculas, que, ao perderem o excesso de energia, emitem uma luz azulada. Esse efeito é muito explorado em danceterias. As bolinhas são feitas de um material que absorve radiação UV e emite luz azul. Esse fenômeno é chamado de FLUORESCÊNCIA, e é o mesmo observado em danceterias com luz negra. 13

14 Um cabo de guerra muito especial também está presente na Praça das Energias. O sistema de roldanas é muito utilizado em guindastes, para levantar grandes pesos. Devido à presença das roldanas, este cabo de guerra pode surpreender seus participantes. Um único operador pode vencer de vários outros reunidos. Por que isso acontece? Um sistema de roldanas permite que a força aplicada a uma corda seja dividida em tantas partes quantas forem as polias existentes no sistema. Também servem para ajudar as pessoas a levantar peso, com um mínimo de esforço. 14

15 ÁTOMO E ELETRICIDADE A ciência nos ensina que toda a matéria é feita de átomos e que estes são dotados de um núcleo onde se encontram os prótons e os nêutrons e em torno do qual orbitam os elétrons. Em alguns elementos, como por exemplo, a maioria dos metais, encontramos elétrons que, por não estarem tão apegados ao seu núcleo, podem se mover de um átomo para outro. Eles são chamados de elétrons livres. A presença desses elétrons livres, quando estimulados pela presença de um campo magnético, facilita a indução de corrente elétrica. A visita ao Museu Light da Energia pode ser uma ótima oportunidade para os alunos aprenderem um pouco mais sobre os átomos, elétrons livres, percepção da existência do campo magnético dos ímãs e como tudo isso se junta no gerador de eletricidade que alimenta equipamentos e eletrodomésticos. Os cientistas descobriram 115 tipos de átomos estáveis que com diferentes combinações entre si produzem tudo o que conhecemos no Universo. Na Tabela Periódica encontramos informações sobre os átomos dos elementos químicos. Cabe notar que além dos átomos estáveis descritos na Tabela Periódica existem também átomos instáveis (que emitem algum tipo de radiação). Um desses é o urânio 235, que tem a capacidade de liberar energia quando sofrem fissão. Essa energia pode ser usada nos reatores nucleares para a produção de eletricidade. Esse também é um bom tema de pesquisa para os alunos. Modelo atômico simplificado. Átomo é a menor partícula que caracteriza um elemento químico Um bom exemplo para dar aos alunos do que é um átomo: Imagine, por exemplo, uma barra de ouro. Divida-a ao meio. Pegue uma das metades e divida-a novamente em duas metades. Se fosse possível repetir esse procedimento um grande número de vezes (por exemplo: após divisões), chegaríamos à menor partícula com as características do ouro: um átomo de ouro. Sugira aos alunos pesquisas sobre esse elemento químico cujo símbolo é Au. 15

16 Curiosidade histórica Há muito os humanos buscam compreender como a matéria é constituída. Que tal um passeio no tempo para examinar algumas das propostas dos cientistas sobre o assunto? Demócrito, pensador grego que viveu no século V a.c., foi o primeiro pensador a formular o conceito de átomo como a menor parte da matéria. Ele concebeu um modelo em que os átomos se reuniam e se encaixavam, tal como as peças de um o Lego, para formar a matéria. Desde então surgiram vários outros modelos. Dalton afirmava que o átomo era uma partícula elementar, minúscula e indivisível. Segundo seu modelo, a matéria se assemelha a um conjunto de bolinhas de gude. Thompson descobriu que o átomo era carregado de partículas negativas. Entretanto, ele pensava que essas partículas ficavam como que entremeando uma espécie de massa de carga positiva. Por esse motivo, seu modelo atômico ficou conhecido como pudim de passas. Rutherford descobriu que o átomo é constituído por um núcleo (positivo) e por elétrons que ficam a sua volta, e deduziu que essas partículas se comportavam tal como os planetas que giram ao redor do sol. DIFERENTES MODELOS ATÔMICOS Modelo atômico de Demócrito Modelo atômico de Dalton Modelo atômico de Thompson Bohr concluiu que os elétrons só podem se movimentar ao redor do núcleo se estiverem organizados em órbitas ou camadas específicas. No modelo quântico, o elétron é considerado uma partícula-onda que se move num orbital. Modelo atômico de Rutherford Modelo atômico de Bohr Modelo atômico quântico (o mais atual) 16

17 Os fios que conduzem eletricidade até nossas casas são em geral feitos de cobre. Condutores elétricos Já mencionamos que em alguns materiais, como a maioria dos metais, os elétrons têm grande mobilidade e conseguem pular entre os átomos. Esses materiais, portanto, facilitam a condução de eletricidade. Por isso são chamados de condutores elétricos. Plásticos são em geral bons isolantes elétricos, por isso recobrem os fios e as ferramentas dos funcionários que trabalham mexendo na rede elétrica. Exemplos de bons condutores elétricos são o cobre e o ouro, entre outros. Por outro lado, há materiais com pouca mobilidade entre seus elétrons, como é o caso da madeira, do vidro, do plástico, da borracha e do algodão, o que dificulta a condução elétrica são conhecidos como isolantes elétricos. Um dos melhores isolantes elétricos que existe é o diamante. Em alguns materiais, a condutividade elétrica é intermediária entre condutores e isolantes: eles são chamados de semicondutores, e formam a matéria-prima dos chips de computadores. O silício e o germânio são exemplos de materiais semicondutores. Ao percorrer um fio condutor, a corrente elétrica produz calor. É o chamado efeito Joule, e ocorre por causa das colisões entre os elétrons que conduzem a corrente e os átomos que formam o material do fio. 17

18 Curiosidade histórica O filósofo grego Tales de Mileto, que viveu entre a.c., observou um fenômeno que envolvia um pedaço de âmbar (resina petrificada), um pedaço de pele de animal e o atrito entre os dois. Tales de Mileto Ele percebeu que um pedaço de âmbar, esfregado com a pele de algum animal, adquiria a capacidade de atrair penas, folhas e outras pequenas coisas (objetos de pequena massa). Isso despertou sua curiosidade e a dos homens que prosseguiram investigando o fenômeno através dos séculos. Esse processo foi chamado de eletrização. Hoje se sabe que o atrito transfere elétrons de um corpo para o outro. Diz-se que o corpo que ganha elétrons fica negativamente carregado, e o que perde fica positivamente carregado. Outra observação importante, efetivada ao longo da experiência, é que corpos com cargas diferentes se atraem, e corpos com cargas iguais se repelem. Âmbar eletrizado Que tal replicar a experiência? Um pente plástico passado no cabelo fica eletrizado e consegue atrair pequenos pedaços de linha ou de papel. 18

19 Estados da matéria Podemos dizer que, dependendo do movimento dos átomos nas moléculas, a matéria se apresenta em diferentes estados: Estado sólido - quando os átomos se encontram em baixo estado de agitação, mais átomos podem se concentrar em um mesmo espaço físico. Neste estado, a forma e o volume do material são fixos. Por exemplo: um caderno, um lápis, os cristais etc. Estado líquido - nele encontramos algum grau de dispersão nas moléculas constituintes. A matéria mantém fixo o volume, mas a forma é variável e assume o formato do seu recipiente. Por exemplo: a água, o álcool etc. Estado gasoso - nesse estado o grau de dispersão das partículas que compõem a matéria é bastante significativo, e por isso tanto a forma como o volume são variáveis. Por exemplo, o ar, as nuvens etc. Plasma é considerado o quarto estado da matéria, pois não é sólido, nem líquido, nem gasoso. É formado por elétrons e núcleos livres após a desmontagem dos átomos de gases em altas temperaturas. Nesse estado as partículas se encontram dispersas como no estado gasoso, porém com a presença de elétrons livres, íons e átomos neutros em proporções variadas. Para que a matéria se encontre nesse estado são necessárias uma grande quantidade de energia e temperaturas extremamente elevadas. O plasma é ótimo condutor de eletricidade, forma corrente elétrica em seu interior. Com isso, gera um campo magnético e ainda emite ondas eletromagnéticas. A aurora boreal é causada pelo choque entre jatos de partículas carregadas emitidas pelo sol (elétrons e prótons) com átomos da atmosfera terrestre. 19

20 Interagir com a Esfera de Plasma presente no Museu da Energia é, com certeza, uma interessante experiência sensorial para os alunos Visitante do Museu Light da Energia explora o experimento da esfera de plasma Esfera de Plasma O sistema consiste em um eletrodo central, dentro de uma esfera de vidro, que contém um gás inerte a baixas pressões. No eletrodo, aplica-se uma tensão altíssima, na faixa de 5 mil volts. A esfera de vidro, ao contrário, está a um potencial muito baixo. A alta tensão próxima ao centro ioniza o gás, e as descargas elétricas começam a acontecer; a diferença de potencial entre o centro da esfera e o vidro faz com que se formem os raios dentro do globo, de forma semelhante ao que ocorre nas tempestades. Como o potencial é o mesmo em toda a superfície da esfera, os raios ficam sem direção. No entanto, quando encostamos os dedos na superfície, modificamos o potencial naquele ponto, e os raios então são atraídos para lá. Os raios atraídos para um ponto tornam-se mais brilhantes por causa do aumento da corrente elétrica, que pode chegar a algumas dezenas de miliamperes. 20

21 O FENÔMENO ELETROMAGNÉTICO Lembra quando falamos de eletrização? Dissemos que um corpo fica eletrizado porque captou ou cedeu elétrons. Se captou, ficou carregado negativamente, já que a carga do elétron é negativa. Se cedeu, ficou carregado positivamente. Dizemos então que cada um desses corpos ficou com um determinado potencial elétrico. A diferença de potencial (d.d.p.) entre corpos com cargas de sinais opostos produz um movimento de elétrons entre eles. Quando ligamos esses dois corpos por um fio condutor, naturalmente elétrons vão fluir do corpo carregado negativamente para o carregado positivamente, formando a corrente elétrica. A Terra possui um campo magnético, é por esse motivo que as bússolas apontam sempre para o Norte, o que ajuda os viajantes a se situar. Uma pilha, dessas que utilizamos em rádios, é um exemplo de objeto que mantém uma diferença de potencial entre dois terminais, um positivo e outro negativo. Quando conectadas em um rádio, elas alimentam o circuito eletrônico que faz o aparelho funcionar. As tomadas de nossas casas, onde conectamos nossos eletrodomésticos, também mantêm uma d.d.p., sustentada pela energia elétrica fornecida pela Light. Nas usinas, essa energia é produzida em geradores. O gerador é um conjunto formado por um eixo com fios de cobre enrolados (bobina) que pode girar (rotor) entre dois ímãs fixos (estator) ou ao contrário, como acontece nos geradores das usinas de energia elétrica, onde o que gira são os ímãs. Os ímãs possuem um campo magnético e, quando são movidos próximos a uma bobina, provocam o movimento dos elétrons do fio de cobre, induzindo uma corrente elétrica. Os visitantes do Museu Light da Energia tem a oportunidade de experimentar o funcionamento de um gerador a manivela. A indução eletromagnética é, portanto, o princípio básico de funcionamento dos geradores, que assim transformam energia mecânica em energia elétrica. 21

22 O fenômeno eletromagnético pode ser observado no Museu Light da Energia através do Ferrofluido. Os ferrofluidos possuem inúmeras aplicações em eletrônica, engenharia mecânica, engenharia aeroespacial, na medicina e até nas artes plásticas. Trata-se de um líquido contendo partículas muito pequenas de um material ferromagnético, na escala nanoscópica (1 bilionésimo do metro). As partículas se comportam como agulhas de bússolas e são atraídas por campos magnéticos, além de se atraírem mutuamente. Um pó contendo as partículas ferromagnéticas é misturado em um líquido (que pode ser até mesmo água). As moléculas do líquido aderem à superfície das pequenas partículas, evitando que elas grudem umas nas outras, formando aglomerados. Ao aproximarmos um ímã de um ferrofluido, observamos que as partículas es se acumulam ao longo das linhas de campo magnético. As experiências de Kim Pimmel com material magnético Visitante do Museu Light da Energia explora o experimento com ferrofluido. 22

23 Unidade de Medidas Elétricas As grandezas físicas importantes para fins de descrição da produção, distribuição, e comercialização da energia elétrica são a tensão elétrica (medida em volts), a energia (medida em joules), a potência (medida em watts, ou quilowatts) e o quilowatt-hora (kwh), usado para medir o consumo. Volt Medida de tensão elétrica ou, equivalentemente, de d.d.p. Nas residências, as tomadas são em geral de 127 V ou 220 V. Joule Unidade de energia ou trabalho. Uma pedra de 10 kg, sustentada a 1 m de altura do chão, possui 10 joules de energia potencial gravitacional. Um carro de 500 kg se movendo a 100 km/h tem cerca de 190 mil joules de energia cinética. Para fervermos 1 litro de água, precisamos fornecer aproximadamente Joules de energia térmica. Potência reativa, ou kvarh Trata-se da potência elétrica armazenada por exemplo em certos tipos de eletrodomésticos, que contem motores elétricos. Ela retorna à rede de distribuição, causando sobrecarga no sistema de distribuição. Watt Unidade de potência. Potência é a medida da produção de energia por unidade de tempo. Uma lâmpada de 100 watts produz 100 Joules de energia por segundo. Um chuveiro elétrico de watts, ou 5 kw, dissipa joules de energia por segundo na água que passa por ele. A potência da usina hidrelétrica de Itaipu é de watts ( MW), e da usina nuclear de Angra dos Reis é de watts (657 MW). Quilowatt-hora (kwh) Unidade de consumo de energia. 1 kwh equivale a joules. Uma lâmpada de 100 watts (ou seja, 0,1 kw), acesa por 1 h, consome 0,1 kwh de energia. Se o preço de 1 kwh for de 30 centavos, essa lâmpada gastará 3 centavos por cada hora que ficar acesa. Parece pouco, mas ficando acesa apenas 1 hora por dia, uma única lâmpada consome R$ 11 por ano! Usina nuclear de Angra dos Reis Usina hidrelétrica de Itaipu 23

24 ENERGIA E O CONFORTO QUE ELA NOS TRAZ A energia elétrica pode ser transformada em luz, calor, frio e movimento. Mas será que ela é mesmo importante no nosso dia a dia? Para responder essa pergunta basta lembrar quantos equipamentos são alimentados por ela. Ela acende lâmpadas, iluminando os ambientes, liga a televisão e o aparelho de som (que nos distraem), aparelhos de ar condicionado, que nos refrescam quando está muito quente, e mantém a geladeira ligada, permitindo conservar os alimentos. Elevadores e escadas rolantes precisam dela para funcionar e nos permitem alcançar andares altos sem esforço. Os computadores precisam de eletricidade, bem como o transporte urbano de trens e metrô. Nos hospitais, além da iluminação, a energia elétrica é fundamental para o funcionamento de equipamentos dos quais dependem muitas vidas. Para promover o aquecimento, a energia elétrica também é muito eficiente, em chuveiros elétricos, ferros de passar roupa, secadores e chapinhas de cabelo, secadoras de roupa. Funciona ainda como força motriz em ventiladores, batedeiras, liquidificadores, máquinas de lavar roupas, além de motores de grandes indústrias, bombeamento de água, sistema de irrigação e muitos outros. Também no lazer, como cinemas, teatros, shoppings, casas de espetáculos, a eletricidade é essencial, assim como em todo tipo de serviço, como lojas, escritórios, supermercados, bancos etc. Depois de lembrar os seus variados usos, compreendemos porque a falta dessa energia, ainda que por pouco tempo, traz tantos transtornos, principalmente nos grandes centros urbanos. Fica assim mais fácil reconhecer a importância do trabalho da distribuidora de energia elétrica. É fácil também perceber que o desenvolvimento econômico e social depende de uma boa oferta desta energia. Por este motivo o setor elétrico é um setor que precisa continuamente de investimentos financeiros e de pesquisa científica. A partir da apresentação de alguns exemplos de usos da energia elétrica, estimule os alunos a pesquisa e indicar outros exemplos, construindo painéis com desenhos e fotos desses usos. E aproveite para discutir como seria o cotidiano sem essa energia, os problemas e as alternativas para tal situação. Os alunos incentivados podem ser aqueles que um dia farão novas descobertas e trarão novas soluções para o bem- estar da humanidade. 24

25 COMO SE PRODUZ ELETRICIDADE Embora possamos encontrá-la nos raios e mesmo em nosso corpo (os neurônios, por exemplo, são células que se comunicam por pulsos elétricos), a eletricidade não se encontra disponível na natureza em quantidade para atender nosso consumo. Parodiando os antigos, podemos dizer que a energia elétrica não dá em árvores, mas ela pode ser produzida em usinas, a partir de várias fontes, inclusive o carvão vegetal. Uma vez produzida, ela não pode ser armazenada devendo ser distribuída e consumida. Por isso as usinas são dimensionadas para um determinado consumo previsto. O desenvolvimento da tecnologia para geração e distribuição da energia elétrica tornou-a acessível e de fácil utilização sendo fundamental, hoje, no desenvolvimento econômico de qualquer país. O princípio básico do funcionamento de uma usina geradora de energia elétrica é sempre o mesmo. O que muda nas diversas formas de geração de eletricidade é o que faz girar a turbina que aciona o gerador. Ou seja a fonte. O princípio da geração de eletricidade é a aplicação nas pás de uma força mecânica que gira um conjunto de ímãs (aproximando-os e afastando-os da bobina) induzindo a formação de corrente elétrica. Visitante do Museu Light da Energia explora o experimento gerador de eletricidade. 25

26 No Brasil, a maior parte da eletricidade que consumimos é de origem hidráulica, isto é, vem de usinas que usam a água para mover as pás das turbinas que acionam os geradores. A Light inaugurou sua primeira hidrelétrica em 1908, na cidade de Piraí (RJ). Basicamente, uma usina hidrelétrica compõe-se das seguintes partes: reservatório, barragem, sistemas de captação e adução de água (que levam a água até as pás das turbinas), casa de força (onde se encontram o gerador e a turbina) e o sistema de devolução de água ao leito do rio. A usina de Fontes era a maior do Brasil, capaz de atender toda a demanda do Rio de Janeiro, que tinha então 800 mil habitantes. Nessa usina a barragem ficava no topo do morro, e a água descia pelos tubos até o edifício onde ficavam as turbinas e os geradores. Hoje a empresa tem cinco usinas hidrelétricas e é capaz de produzir 18% da energia que fornece aos consumidores. Nas termoelétricas temos as caldeiras que produzem o vapor que faz girar as pás das turbinas, que por sua vez acionam o gerador. São vários os elementos que podem ser usados para aquecer a caldeira, entre eles, carvão mineral, carvão vegetal, combustíveis derivados do petróleo, biomassa ou mesmo biodiesel. Nos reatores nucleares, por exemplo, a fissão nuclear produz energia que aquece a água de um reservatório, gerando vapor que faz girar as pás do gerador de eletricidade. São conhecidas por isto como usinas termonucleares. Bagaço de cana é um dos vários exemplos de biomassa utilizada nas termoelétricas 26

27 Termossolar é o nome da geração de energia elétrica na qual se utilizam espelhos que captam raios solares dirigindo-os para um boiler que aquece a água até torná-la vapor. O vapor gerado movimenta a turbina que aciona o gerador. Na busca para atender o consumo cada vez maior de energia elétrica e ao mesmo tempo atentos ao cuidado ambiental, os cientistas vêm desenvolvendo muitas pesquisas com as chamadas fontes renováveis. Solar fotovoltaica é uma forma de geração de energia elétrica, que não usa gerador. As placas fotovoltaicas, feitas de silício, são capazes de transformar os raios solares em eletricidade. A energia das marés também pode ser utilizada para acionar geradores de eletricidade, tal como no experimento da COPPE em Pacem, no Ceará. A energia eólica usa a força dos ventos para acionar o gerador e sua participação vem crescendo na matriz elétrica brasileira. 27

28 Resumidamente são cinco etapas a serem destacadas nos caminhos que a energia elétrica percorre: usinas geradoras, subestações elevadoras, sistema de transmissão, subestações abaixadoras e sistema de distribuição. CAMINHOS DA ELETRICIDADE Uma vez produzida, a eletricidade precisa chegar aos centros consumidores. Do gerador até a tomada há um longo caminho, muito trabalho e muita gente e tecnologia envolvidas. A usina geradora, como diz o nome, é o local onde se produz energia elétrica, e que, conforme já mencionado, pode ser hidráulica, térmica ou eólica, conforme a fonte cuja energia impulsiona a turbina. Nas subestações elevadoras a tensão gerada a V ou V é transformada em V ou V (ou outra que se faça necessária). O equipamento que faz isso é um transformador. Essa transformação possibilita o transporte da energia elétrica por longas distâncias. Quanto maior a tensão nas linhas, menor o calor gerado na condução de eletricidade. Dessa maneira, reduzem-se as perdas do sistema durante a transmissão. Geração nas usinas hidrelétricas: Quanto maiores o volume, a velocidade da água e a altura da queda, maior o potencial de aproveitamento do rio na geração de eletricidade. A Light possui apenas uma linha de transmissão e uma extensa rede de subtransmissão com voltagem de V. São mais de torres, com km de linhas aéreas e 165 km de linhas subterrâneas. Sistemas de transmissão. As linhas de transmissão transportam energia elétrica por cabos aéreos, subterrâneos e até mesmo submarinos. O Brasil tem mais de 900 linhas de transmissão operadas por diversas empresas. O conjunto de linhas de transmissão, as subestações de transmissão e as usinas geradoras formam o Sistema Interligado Nacional de Energia. O setor elétrico brasileiro define como transmissão as linhas com voltagem maior ou igual a V. 28

29 Subestações abaixadoras. A energia elétrica não pode chegar ao seu destino na mesma tensão em que é transmitida, pois essa tensão ou voltagem alta queimaria os aparelhos elétricos. As subestações abaixadoras têm transformadores que convertem a tensão de V ou V (ou outra, que se faça necessária) em V ou V para entrar na cidade. Nas redes aéreas ou subterrâneas a tensão é novamente reduzida para entrar nas nossas casas em 127 V ou 220 V. São 87 subestações abaixadoras que a Light possui, e você já deve ter visto alguma delas. É comum vermos essas subestações nos nossos bairros.. Sistemas de Distribuição. Das subestações abaixadoras, a eletricidade segue para as ruas por linhas aéreas ou subterrâneas. Nesse trajeto a tensão ainda é de V ou V. Antes de chegar ao seu destino a eletricidade passa por transformadores que reduzem a tensão para 127 V ou 220 V, que são as voltagens usadas em residências, comércio e outros. A distribuição de energia elétrica no Brasil é efetuada por concessionárias regionais, como a Light, que recebem a energia das geradoras e das transmissoras e a levam aos usuários. São elas que fazem o contato com os consumidores e recebem o pagamento direto pelo fornecimento de energia elétrica. Dos transformadores de ruas saem fios ou cabos, aéreos ou subterrâneos, que entram nas residências e são ligados a uma caixa de entrada. Ali estão a chave geral e o medidor de energia (antigamente chamado de relógio de luz ). A chave geral permite que o circuito elétrico da casa seja desligado, se necessário, e o medidor mede a energia consumida, que será cobrada na conta de luz. 29

30 A CONTA DE ENERGIA ELÉTRICA O consumo dos equipamentos tem um custo que é cobrado na conta de energia elétrica. Em nossas casas a cobrança é feita mensalmente e baseia-se numa tarifa de energia. É cobrado um valor em reais (R$) por quilowatt-hora (kwh). Esse valor é o resultado da multiplicação da energia consumida no mês pela tarifa aplicada. O registro do consumo é feito pelo medidor de energia elétrica, popularmente conhecido como relógio. As empresas distribuidoras normalmente divulgam em seus sites o detalhamento das tarifas Mais de 40% do valor da conta é composto de encargos e tributos. Entenda melhor a conta. Valor da energia é o custo com compra de energia elétrica adquirida das empresas geradoras. Valor da transmissão é o custo do serviço de transmissão de energia elétrica. Valor da distribuição é o custo com distribuição de energia elétrica. Encargos setoriais são contribuições definidas em leis aprovadas pelo Congresso Nacional. Conta de Consumo de Combustíveis, Reserva Global de Reversão, Taxa de Fiscalização de Serviços de Energia Elétrica, Conta de Desenvolvimento Energético, Encargos de Serviços do Sistema, Pesquisa e Desenvolvimento e Eficiência Energética, Operador Nacional do Sistema e PROINFA. No site da Light, por exemplo, é possível conhecer melhor as tarifas residenciais, não residenciais, tarifa social etc. Clicar em clientes / informações ao cliente / tarifas e tributos Tributos PIS, COFINS e ICMS. 41,23% 4,76% 30,88% transmissão geração 23,13% distribuição encargos+tributos 30

31 A seguir apresentamos dados fundamentais da conta de consumo doméstico. Vencimento é a data limite para pagamento da conta. Existem seis datas disponíveis, que variam conforme a Unidade de Leitura. Classe é a classificação do tipo de cliente (se é residencial, comercial etc.) e o tipo de fase (monofásico, bifásico, trifásico). Referência bancária é o número utilizado para colocar a conta em débito automático. Número da fatura é o número utilizado em fiscalizações. Número do medidor identifica o equipamento que mede o consumo de eletricidade. Medição atual tem a data e o valor da leitura atual. Medição anterior tem a data e o valor da leitura anterior. Constante do medidor é usado para cálculo do consumo mensal. Esse número é estabelecido pelo fabricante de acordo com o tipo de equipamento. O tipo de medidor (constante 1, 10 etc.) é definido conforme a carga instalada. Consumo kwh é o resultado da seguinte conta: (leitura atual leitura anterior) x constante do medidor. Nº dias é o intervalo entre a data de medição atual e a data de medição anterior. Média diária é o resultado da seguinte conta: consumo kwh / nº dias. É o campo de descrição de consumo que mais nos chama a atenção. Nesse campo são detalhados o consumo de eletricidade e, conforme o caso, outros itens, como multas, juros, parcelamentos e taxas como contribuição de iluminação pública. O valor total da conta em R$ é o resultado da seguinte conta: preço unitário R$ x quantidade kwh. O preço unitário é a tarifa que inclui ICMS, PIS e COFINS.. Código do cliente e código da instalação identificam o cliente e o local de consumo e são solicitados nos contatos feitos com a Light. CFOP (Códigos Fiscais de Operações e Prestações) identificam a natureza das operações de circulação de mercadorias e de serviços. A data prevista da próxima leitura avisa quando o leiturista fará a nova leitura do medidor. O gráfico de consumo médio mostra o consumo médio (em kwh) de energia elétrica dos últimos 12 meses. 31

32 FONTES DE ENERGIA ELÉTRICA Já vimos que a eletricidade é um elemento fundamental do mundo moderno, que nos traz conforto, qualidade de vida e segurança. Sabemos que é uma das formas de energia mais usadas, graças à facilidade de transporte e ao baixo índice de perda energética durante a conversão em luz, movimento ou frio/calor. Vimos também que o que diferencia um tipo de geração de outro é a fonte primária que lhe dará origem. Energia Renovável As fontes podem ser renováveis ou não renováveis Ao falarmos de energia renovável, três fatores precisam ser avaliados: o tempo necessário para a renovação, a disponibilidade e o custo da tecnologia para explorá-la. Quando os estoques naturais levam muito tempo para serem repostos, como por exemplo, o caso do petróleo, em que são necessárias condições geológicas tão especiais que a reposição só ocorre em milhões de anos ou no caso do urânio, cujos recursos terrestres são finitos, dizemos que são fontes não renováveis. Outras fontes de energia como a madeira, necessária para a obtenção de lenha e carvão vegetal, levam anos para serem repostos. Mas há também fontes abundantes na natureza, como o vento, os raios solares ou a água dos rios e oceanos, estes são exemplos de fontes renováveis. Resíduos Um subproduto indesejável da transformação de energia são os resíduos, responsáveis pela poluição. Resíduo é tudo o que sobra de qualquer processo de transformação como, por exemplo, as emissões de CO2 resultantes da queima de combustível de veículos ou o lixo radiativo de uma usina nuclear. A geração hidráulica, maior fonte de energia elétrica no Brasil, não gera resíduos durante a sua produção. Quando o processo de transformação de energia produz pouco ou nenhum resíduo, dizemos que se trata de energia limpa. A energia elétrica pode ser produzida em grandes quantidades a partir de diversas fontes de energia que nos são fornecidas pela natureza, entre elas: petróleo e seus derivados, gás natural, carvão mineral, energia solar, energia geotérmica, energia hidráulica, biomassa e biodiesel, energia eólica, energia das marés. A fonte de energia é considerada renovável se o seu estoque é reposto rapidamente e a tecnologia para explorá-la está disponível a um custo razoável. O impacto ambiental pode vir dos resíduos, como a poluição do ar causada pela queima de gás nas usinas termoelétricas, do lixo atômico, ou de vazamentos de material radiativo em caso de acidentes em usinas nucleares. Além desses, as alterações climáticas, o prejuízo ao habitat ou rotas migratórias de animais ou mesmo o esgotamento de recursos naturais, constituem outros impactos. Esses estão entre os cuidados que se deve ter na produção de energia elétrica. 32

33 Dicas e cuidados: USANDO A ENERGIA ELÉTRICA COM SEGURANÇA Ao refletir sobre qualidade de vida, não podemos deixar de lado a questão da segurança no consumo da eletricidade. Seu uso requer atenção especial para evitar acidentes provocados por choques, curtos-circuitos e sobrecargas. O choque elétrico, por exemplo, pode até causar a morte em algumas situações. No meio em que vivemos choques elétricos com maior ou menor gravidade, são comuns, pois nossas casas estão cheias de tomadas, fios, chuveiros elétricos e outros equipamentos. Para evitar os riscos é importante haver um bom isolamento do sistema elétrico. Além disso, deve-se procurar um especialista sempre que for necessário mexer nas instalações. Afinal, ele sabe lidar com elas. Nas ruas são comuns os acidentes com crianças que soltam pipa perto da rede elétrica. Alerte seus alunos sobre esse risco! Durante as tempestades, o risco é ainda maior por causa da água, que pode conduzir eletricidade. Proteja-se em lugar seguro! Cabe notar que a água pura é péssima condutora de eletricidade, mas as sujeiras que se misturam a ela, no caso da água da chuva, sobretudo em enchentes, permitem a condução elétrica. A água do mar, por sua vez, é ótima condutora de eletricidade, por causa do sal que ela contém. Todos podemos e devemos fazer a nossa parte, evitando situações de risco. Evite ligar mais equipamentos do que as instalações suportam Não utilize aparelho doméstico estando com as mãos ou pés molhados. Nunca desligue um aparelho elétrico da tomada puxando pelo fio. Só limpe seus eletrodomésticos após desligá-los e retirá-los da tomada. Jamais enfie garfos, facas ou outros objetos dentro dos aparelhos, principalmente quando estiverem ligados. Chame um eletricista quando precisar trocar ou consertar as instalações elétricas. Fios soltos na rua? Avise a concessionária de energia elétrica e passe longe Oriente os alunos a não soltar pipa perto da rede elétrica. E nem balões, pois esses também podem cair nas redes elétricas e provocar graves acidentes. 33

34 USANDO A ENERGIA ELÉTRICA COM RESPONSABILIDADE Vimos a importância da eletricidade para o conforto das pessoas e para o desenvolvimento econômico. Vimos também que para gerar eletricidade consumimos recursos naturais, e sabemos que isso afeta o planeta. Estima-se que no Brasil mais de 10% do consumo de energia anual é desperdiçado. Isso significa cerca de 44 bilhões de kwh jogados fora todos os anos e equivale a metade do consumo anual do estado mais industrializado do país. Algo precisa ser feito para mudar esse cenário. O uso da eletricidade deve ser feito de forma responsável. A eficiência energética aparece então como um valioso instrumento para atender as demandas sem aumentar a pressão sobre os recursos naturais. Pois, ao mesmo tempo que ela se volta para os aspectos tecnológicos, buscando melhorar o desempenho de consumo dos equipamentos, facilita a tomada de decisão dos usuários no ato de compra. É também necessário investir na formação de hábitos de consumo sem desperdício. Essa ideia é relativamente nova, é um desdobramento das discussões mundiais sobre as condições de vida no planeta. A decisão da compra pode ser orientada pela presença do Selo do PROCEL que indica o nível de eficiência nos equipamentos expostos nas lojas. Os equipamentos mais eficientes são enquadrados na classe A do Inmetro. O setor industrial pode colaborar aumentando e adequando a eficiência energética de máquinas, processos, procedimentos e produtos, através do aperfeiçoamento das rotinas de manutenção e verificação do funcionamento de equipamentos e instalações. No comércio, a contribuição se dá pela escolha de materiais adequados para a construção e reforma das instalações, com especial atenção aos sistemas de refrigeração e iluminação. Na hora de adquirir um eletrodoméstico novo para sua residência, observe o selo do PROCEL. Graças a ele, você pode escolher um equipamento que oferece o mesmo conforto consumindo menos energia. Não é legal?! Deixar lâmpadas e equipamentos ligados sem estar sendo usados é desperdício de energia. Mudando esse hábito você só tem a ganhar! O poder público pode ajudar obtendo maior eficiência nas instalações, como na iluminação, trocando lâmpadas ineficientes por outras de melhor rendimento. Enquanto que o setor agrícola, pode fazer parte da corrente de responsabilidade, por exemplo, melhorando os sistemas de irrigação. 34

35 Nas escolas, o estímulo à observação dos hábitos de alunos, professores, funcionários e seus familiares pode ser uma saída, pois é uma boa forma de combater desperdícios. Ao final deste material você vai encontrar uma série de sugestões de como se evitar o desperdício. Ainda, com relação ao uso com responsabilidade vamos enfocar a questão das ligações clandestinas. Um sério problema enfrentado pelas empresas de distribuição são as ligações clandestinas. Os famosos gatos. Estas ligações causam perdas comerciais enormes, uma vez que a empresa distribuidora paga pela eletricidade comprada das geradoras, impostos e taxas, e custo da manutenção da rede de distribuição. Além disso, as ligações clandestinas colocam em risco os usuários e a própria rede elétrica, aumentando ainda mais o custo da manutenção. O emaranhado de fios e as conexões malfeitas podem gerar curtoscircuitos, causando danos aos equipamentos do próprio usuário, além de sobrecarga no sistema levando à interrupção do fornecimento de eletricidade. Isso sem falar em acidentes com risco de vida. Assim uma ação impensada, que aparentemente resolve o problema de um indivíduo, pode provocar grandes prejuízos para a coletividade. A Light faz vistorias em locais com suspeita de fraude e conta com o Disque Light para receber denúncias a fim de coibir essa prática que prejudica a todos. O pagamento da conta em dia também é igualmente importante para o bom fluxo de fornecimento de energia. Gatos colocam em risco a segurança da rede elétrica. São muitas as iniciativas da Light para coibir a prática do desvio de energia elétrica, mas a educação é sem dúvida um componente importante para a solução desse problema. O indivíduo educado para práticas de cidadania compreende melhor o alcance de suas ações para a sociedade e percebe o que deve e o que não deve fazer, e que suas ações tem consequências, que podem inclusive prejudicar os outros. 35

36 SITES PARA PESQUISA Site de busca sobre ciências. - Site do Centro Brasileiro de Pesquisas Físicas. cisco.com.br - Site educativo. - Site do Instituto de Física da UFRJ. - Site do Instituto de Pós-Graduação e Pesquisa de Engenharia da UFRJ. - Site educativo de física. - Site sobre a história da eletricidade e história das usinas (com fotos). - Site educativo. Site sobre história do átomo. Site com link de vários departamentos da UERJ. Uma importante ferramenta para pesquisa tanto de professores quanto de alunos é a INTERNET. Por isso, indicamos alguns endereços que podem ser visitados para aprofundar temas abordados nesta apostila. - Site da usina de Itaipu com acesso a várias empresas do setor energético. - Site de jornalismo científico. - Site oficial da Eletrobrás. - Site sobre partículas elementares. - Site Educativo. Sites sobre Energias Renováveis Sites com vídeos da Light 36

37 OFICINAS PEDAGÓGICAS Como parte de uma estratégia de atendimento diferenciado a Light criou o Dia do Professor. Nesse dia, é oferecida a um grupo de professores uma oficina pedagógica no período de 2 horas, para melhor aproveitamento do conteúdo apresentado na exposição, em horário agendado. Esperamos assim que os professores se sintam mais seguros sobre o assunto e preparem seus alunos para que usufruam melhor de sua visita. Na primeira meia hora haverá uma dinâmica de respiração para sentir melhor a energia que circula em nossos corpos e mantém nossa vitalidade. Esta parada nos prepara para prosseguir. A seguir selecionamos algumas atividades: 1. Identificando as atividades mais apropriadas para os alunos Para essa atividade utilizaremos a memória da própria visita ao Museu estimulando os professores a identificar os conteúdos dos experimentos e o que é mais indicado para seus alunos. Identificando os Experimentos Identificando o Conteúdo Indicação para os Alunos Alto Baixo 37

38 Identificando os Experimentos Identificando o Conteúdo Indicação para os Alunos Alto Baixo 38

39 2. Eletricidade em casa sem desperdício: Já faço / Posso fazer Esta atividade tem como objetivo estimular o olhar sobre nossos hábitos cotidianos em relação ao consumo doméstico. É uma atividade muito simples e fácil de fazer em sala de aula com seus alunos, promovendo um debate sobre os resultados. Identifique, e assinale com um X, entre as dicas abaixo, aquelas que voce já faz. E aproveite para saber um pouco mais sobre hábitos de consumo responsável. No verão mantenha a chave seletora na posição média ou verão. Não demore muito no banho. O chuveiro elétrico consome muita energia. Desligue o chuveiro quando estiver se ensaboando: isso economiza água e energia. A utilização de energia solar, através de coletores solares, é muito eficiente para o pré-aquecimento da água. Acumule a maior quantidade de roupas possível e passe todas de uma vez só. Passe primeiro as roupas que precisam de temperaturas mais baixas (tecidos leves). Quando a temperatura estiver mais alta, passe as roupas de texturas mais grossas. Depois de desligar o ferro, aproveite enquanto ele está quente para passar as roupas mais leves. Evite acender lâmpadas durante o dia. Faça melhor uso da iluminação natural. Abra bem as janelas, cortinas e persianas. Nos locais ocupados por mais de três horas diárias, utilize lâmpadas fluorescentes compactas. 39

40 Pinte o teto e paredes internas com cores claras. Isso evita o uso de lâmpadas de maior potência. Mantenha lâmpadas e luminárias limpas para permitir a reflexão máxima da luz. Desligue as luzes nos locais onde não há ninguém. Proteja a parte externa do aparelho condicionador de ar dos raios do sol. E não bloqueie as grades de ventilação externas. Libere a saída de ar do aparelho evitando cortinas, persianas, armários ou estantes na frente. Deixe janelas e portas fechadas quando o aparelho estiver ligado. Procure utilizar toda a capacidade da máquina de lavar em uma mesma lavagem. Evite usá-la muitas vezes por semana. Limpe o filtro da maquina de lavar roupa com frequência e utilize a dosagem correta de sabão para não precisar repetir a operação de enxágue. Escolha a geladeira com capacidade adequada às necessidades da família. Lembre-se: quanto maior o aparelho, maior o consumo de energia. Escolha a geladeira com capacidade adequada às necessidades da família. Lembre-se: quanto maior o aparelho, maior o consumo de energia. Escolha a geladeira com capacidade adequada às necessidades da família. Lembre-se: quanto maior o aparelho, maior o consumo de energia. 40

41 Analise o tipo, o modelo, a capacidade e o preço e compare os dados das etiquetas do Procel que indicam o consumo de energia elétrica de cada aparelho. Instale a geladeira em local bem ventilado e evite proximidade com fogões, aquecedores ou áreas expostas ao sol. Evite abrir a porta sem necessidade ou deixá-la aberta. Quando abrimos a porta da geladeira, o ar frio sai e o ar quente do ambiente entra. Isso faz com que o motor seja acionado, aumentando o consumo de energia. Alimentos ainda quentes guardados na geladeira também aumentam o consumo de energia. Degele a geladeira periodicamente e deixe que se formem camadas espessas de gelo. O gelo é um ótimo isolante térmico. Uma camada de gelo de 1 centímetro pode provocar um aumento de consumo de energia de até 20%! Evite forrar as prateleiras da geladeira com vidros ou plásticos. Isso dificulta a circulação do ar frio. térmico. Uma camada de gelo de 1 centímetro pode provocar um aumento de consumo de energia de até 20%! Secar roupas atrás da geladeira não é aconselhável. A grade quente que ali está é o trocador de calor da geladeira. É por ali que sai o ar quente que é retirado de dentro da geladeira. térmico. Uma camada de gelo de 1 centímetro pode provocar um aumento de consumo de energia de até 20%! 41

42 Patrocínio: Correalização: Realização: Oficinas e Caderno do Professor: 42

a Energia em casa Da usina até sua casa

a Energia em casa Da usina até sua casa a Energia em casa Da usina até sua casa Para ser usada nas cidades, a energia gerada numa hidrelétrica passa por uma série de transformações A eletricidade é transmitida de uma usina até os centros de

Leia mais

Disciplina: Fontes Alternativas de Energia

Disciplina: Fontes Alternativas de Energia Disciplina: Fontes Alternativas de Parte 1 Fontes Renováveis de 1 Cronograma 1. Fontes renováveis 2. Fontes limpas 3. Fontes alternativas de energia 4. Exemplos de fontes renováveis 1. hidrelétrica 2.

Leia mais

Geração, Transmissão e Distribuição de Energia Elétrica

Geração, Transmissão e Distribuição de Energia Elétrica Geração, Transmissão e Distribuição de Energia Elétrica Existem diversas maneiras de se gerar energia elétrica. No mundo todo, as três formas mais comuns são por queda d água (hidroelétrica), pela queima

Leia mais

Profa. Dra. Vivian C. C. Hyodo

Profa. Dra. Vivian C. C. Hyodo Profa. Dra. Vivian C. C. Hyodo A Energia e suas Fontes Fontes de Energia Renováveis Fontes de Energia Não-Renováveis Conclusões Energia: Capacidade de realizar trabalho Primeira Lei da Termodinâmica: No

Leia mais

Geração e Aproveitamento de Energia Elétrica Capítulo 07 (pág. 115) Acendimento de uma lâmpada

Geração e Aproveitamento de Energia Elétrica Capítulo 07 (pág. 115) Acendimento de uma lâmpada Geração e Aproveitamento de Energia Elétrica Capítulo 07 (pág. 115) - Uma corrente elétrica não pode ser vista, mas seus efeitos podem ser percebidos; Acendimento de uma lâmpada Diferença de potencial

Leia mais

Atividade experimental Gerando energia elétrica com a luz do Sol

Atividade experimental Gerando energia elétrica com a luz do Sol Atividade experimental Gerando energia elétrica com a luz do Sol É impossível imaginar o mundo atual sem energia elétrica. Pense em todas as atividades que você realiza em um dia na sua casa; em várias

Leia mais

UNIVERSIDADE ESTADUAL DO MATO GROSSO DO SUL UEMS CURSO DE FÍSICA LABORATÓRIO DE FÍSICA II. Gerador de Van De Graaff

UNIVERSIDADE ESTADUAL DO MATO GROSSO DO SUL UEMS CURSO DE FÍSICA LABORATÓRIO DE FÍSICA II. Gerador de Van De Graaff UNIVERSIDADE ESTADUAL DO MATO GROSSO DO SUL UEMS CURSO DE FÍSICA LABORATÓRIO DE FÍSICA II Gerador de Van De Graaff Objetivos gerais: Ao término desta atividade o aluno deverá ser capaz de: - identificar

Leia mais

Eletricidade. Levanta, acende a luz. Toma um banho quente. Prepara seu lanche com auxílio da torradeira elétrica.

Eletricidade. Levanta, acende a luz. Toma um banho quente. Prepara seu lanche com auxílio da torradeira elétrica. Eletricidade e automação A UU L AL A O operário desperta com o toque do rádiorelógio. Levanta, acende a luz. Toma um banho quente. Prepara seu lanche com auxílio da torradeira elétrica. Um problema Sai

Leia mais

Disciplina: Eletrificação Rural. Unidade 3 Geração, transmissão e distribuição da energia elétrica.

Disciplina: Eletrificação Rural. Unidade 3 Geração, transmissão e distribuição da energia elétrica. UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE SOLOS E ENGENHARIA AGRÍCOLA Disciplina: Eletrificação Rural Unidade 3 Geração, transmissão e distribuição da energia elétrica.

Leia mais

Matriz de referência de Ciências da Natureza e suas Tecnologias

Matriz de referência de Ciências da Natureza e suas Tecnologias Matriz de referência de Ciências da Natureza e suas Tecnologias Competência de área 1 Compreender as ciências naturais e as tecnologias a elas associadas como construções humanas, percebendo seus papéis

Leia mais

Hoje estou elétrico!

Hoje estou elétrico! A U A UL LA Hoje estou elétrico! Ernesto, observado por Roberto, tinha acabado de construir um vetor com um pedaço de papel, um fio de meia, um canudo e um pedacinho de folha de alumínio. Enquanto testava

Leia mais

Energia e Meio Ambiente

Energia e Meio Ambiente INSTITUTO BRASIL SOLIDÁRIO Energia e Meio Ambiente Rodrigo Valle Cezar O que é Energia INSTITUTO BRASIL SOLIDÁRIO Tudo o que existe no mundo é energia. A luz O calor A matéria Os Átomos As estrelas A

Leia mais

SIMULADO ABERTO ENEM 2015

SIMULADO ABERTO ENEM 2015 SIMULADO ABERTO ENEM 2015 1) A figura mostra a bela imagem de um gato ampliada pela água de um aquário esférico. Trata-se de uma imagem virtual direita e maior. A cerca do fenômeno óptico em questão, é

Leia mais

Capítulo 1: Eletricidade. Corrente continua: (CC ou, em inglês, DC - direct current), também chamada de

Capítulo 1: Eletricidade. Corrente continua: (CC ou, em inglês, DC - direct current), também chamada de Capítulo 1: Eletricidade É um fenômeno físico originado por cargas elétricas estáticas ou em movimento e por sua interação. Quando uma carga encontra-se em repouso, produz força sobre outras situadas em

Leia mais

Corrente elétrica corrente elétrica.

Corrente elétrica corrente elétrica. Corrente elétrica Vimos que os elétrons se deslocam com facilidade em corpos condutores. O deslocamento dessas cargas elétricas é chamado de corrente elétrica. A corrente elétrica é responsável pelo funcionamento

Leia mais

Circuitos Elétricos 1º parte. Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento

Circuitos Elétricos 1º parte. Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento Circuitos Elétricos 1º parte Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento Introdução Um circuito elétrico é constituido de interconexão de vários

Leia mais

Sitec Power Soluções em Energia ENERGIA REATIVA E FATOR DE POTÊNCIA

Sitec Power Soluções em Energia ENERGIA REATIVA E FATOR DE POTÊNCIA ENERGIA REATIVA E FATOR DE POTÊNCIA O QUE É ENERGIA ATIVA E REATIVA? Sim, mas apesar de necessária, a utilização de Energia Reativa deve ser a menor possível. O excesso de Energia Reativa exige condutores

Leia mais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais LEI DE OHM Conceitos fundamentais Ao adquirir energia cinética suficiente, um elétron se transforma em um elétron livre e se desloca até colidir com um átomo. Com a colisão, ele perde parte ou toda energia

Leia mais

Eletrodinâmica. Circuito Elétrico

Eletrodinâmica. Circuito Elétrico Eletrodinâmica Circuito Elétrico Para entendermos o funcionamento dos aparelhos elétricos, é necessário investigar as cargas elétricas em movimento ordenado, que percorrem os circuitos elétricos. Eletrodinâmica

Leia mais

Introdução ao Sistema Elétrico

Introdução ao Sistema Elétrico Fundação Universidade INTRODUÇÃO Federal de Mato AO Grosso SISTEMA do Sul ELÉTRICO 1 Princípios de Eletricidade e Eletrônica Introdução ao Sistema Elétrico Universidade Federal de Mato Grosso do Sul FAENG

Leia mais

Aula 5 A energia não é o começo de tudo, mas já é um início

Aula 5 A energia não é o começo de tudo, mas já é um início Aula 5 A energia não é o começo de tudo, mas já é um início Itens do capítulo 5 A energia não é o começo de tudo, mas já é o início 5. A energia não é o começo de tudo, mas já é o início 5.1 O consumo

Leia mais

Eletricidade Aula 1. Profª Heloise Assis Fazzolari

Eletricidade Aula 1. Profª Heloise Assis Fazzolari Eletricidade Aula 1 Profª Heloise Assis Fazzolari História da Eletricidade Vídeo 2 A eletricidade estática foi descoberta em 600 A.C. com Tales de Mileto através de alguns materiais que eram atraídos entre

Leia mais

Lição 5. Instrução Programada

Lição 5. Instrução Programada Instrução Programada Lição 5 Na lição anterior, estudamos a medida da intensidade de urna corrente e verificamos que existem materiais que se comportam de modo diferente em relação à eletricidade: os condutores

Leia mais

Analisando graficamente o exemplo das lâmpadas coloridas de 100 W no período de três horas temos: Demanda (W) a 100 1 100 100.

Analisando graficamente o exemplo das lâmpadas coloridas de 100 W no período de três horas temos: Demanda (W) a 100 1 100 100. Consumo Consumo refere-se à energia consumida num intervalo de tempo, ou seja, o produto da potência (kw) da carga pelo número de horas (h) em que a mesma esteve ligada. Analisando graficamente o exemplo

Leia mais

Vamos fazer um mundo melhor?

Vamos fazer um mundo melhor? Vamos fazer um mundo melhor? infanto-junvenil No mundo em que vivemos há quase 9 milhões de espécies de seres vivos, que andam, voam, nadam, vivem sobre a terra ou nos oceanos, são minúsculos ou enormes.

Leia mais

Professor Ventura Ensina Tecnologia

Professor Ventura Ensina Tecnologia Professor Ventura Ensina Tecnologia Experimento PV001 Maquete com Instalação Elétrica Ensino Fundamental Direitos Reservados = Newton C. Braga 1 Maquete com Instalação Elétrica Você gostaria de aprender

Leia mais

Ciências E Programa de Saúde

Ciências E Programa de Saúde Governo do Estado de São Paulo Secretaria de Estado da Educação Ciências E Programa de Saúde 19 CEEJA MAX DADÁ GALLIZZI PRAIA GRANDE SP Comece fazendo o que é necessário, depois o que é possível, e de

Leia mais

Corrente alternada. Chamamos de corrente elétrica, o movimento ordenado de elétrons dentro de um fio condutor.

Corrente alternada. Chamamos de corrente elétrica, o movimento ordenado de elétrons dentro de um fio condutor. Corrente alternada Chamamos de corrente elétrica, o movimento ordenado de elétrons dentro de um fio condutor. A corrente elétrica pode ser contínua (quando movimento é em uma única direçaõ e sentido) ou

Leia mais

ENEM 2014/2015 Física (Prova Amarela) Prof. Douglas Almeida

ENEM 2014/2015 Física (Prova Amarela) Prof. Douglas Almeida Questão 46 Nesta questão, o candidato precisa saber que um filtro de luz realiza a refração seletiva, deixando passar as cores que o compõe e absorvendo substancialmente as outras cores. Assim, para absorver

Leia mais

Princípios 6 Transformação de energia solar em eletricidade 6 Modelo solar com um módulo solar 7

Princípios 6 Transformação de energia solar em eletricidade 6 Modelo solar com um módulo solar 7 Bem-vindo ao mundo da linha PROFI fischertechnik 3 Energia no dia a dia 3 Óleo, carvão, energia nuclear 4 Água e vento 4 Energia solar 5 A energia 5 Energia solar 6 Princípios 6 Transformação de energia

Leia mais

Introdução à Eletricidade e Lei de Coulomb

Introdução à Eletricidade e Lei de Coulomb Introdução à Eletricidade e Lei de Coulomb Introdução à Eletricidade Eletricidade é uma palavra derivada do grego élektron, que significa âmbar. Resina vegetal fossilizada Ao ser atritado com um pedaço

Leia mais

Disciplina: ENERGIA E BIOENERGIA

Disciplina: ENERGIA E BIOENERGIA Disciplina: ENERGIA E BIOENERGIA Energia. Conceito. Origem e interação entre as fontes e formas de energia. Conversão de energia. Unidades de energia. Prof. Dr. Eduardo Di Mauro Departamento de Física,

Leia mais

www.soumaisenem.com.br

www.soumaisenem.com.br 1. (Enem 2011) Uma das modalidades presentes nas olimpíadas é o salto com vara. As etapas de um dos saltos de um atleta estão representadas na figura: Desprezando-se as forças dissipativas (resistência

Leia mais

REVISÃO ENEM. Prof. Heveraldo

REVISÃO ENEM. Prof. Heveraldo REVISÃO ENEM Prof. Heveraldo Fenômenos Elétricos e Magnéticos Carga elétrica e corrente elétrica. Lei de Coulomb. Campo elétrico e potencial elétrico. Linhas de campo. Superfícies equipotenciais. Poder

Leia mais

O ELÉTRON QUEM SOU EU

O ELÉTRON QUEM SOU EU QUEM SOU EU Meu nome é elétron! Sou uma partícula muito pequena. Ninguém pode me ver. Mas estou em toda parte. Faço parte do ar, da água, do solo e do fogo. Nunca estou parado. Sou muito rápido. Gosto

Leia mais

Estabilizada de. PdP. Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006

Estabilizada de. PdP. Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006 TUTORIAL Fonte Estabilizada de 5 Volts Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006 PdP Pesquisa e Desenvolvimento de Produtos http://www.maxwellbohr.com.br

Leia mais

Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL. Introdução

Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL. Introdução Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL Esta aula apresenta o princípio de funcionamento dos motores elétricos de corrente contínua, o papel do comutador, as características e relações

Leia mais

CIÊNCIAS 9º Ano do Ensino Fundamental. Professora: Ana Paula Souto. Se precisar use as equações: i = ΔQ Δt ; E = PΔt.

CIÊNCIAS 9º Ano do Ensino Fundamental. Professora: Ana Paula Souto. Se precisar use as equações: i = ΔQ Δt ; E = PΔt. CIÊNCIAS º Ano do Ensino Fundamental Professora: Ana Paula Souto Nome: n o : Turma: Exercícios Estudo da eletricidade (PARTE ) Se precisar use as equações: i = ΔQ Δt ; E = PΔt V = Ri ; P = Vi ) Observe

Leia mais

ENERGIA Fontes e formas de energia Impactos ambientais. Prof. Dra. Carmen Luisa Barbosa Guedes

ENERGIA Fontes e formas de energia Impactos ambientais. Prof. Dra. Carmen Luisa Barbosa Guedes ENERGIA Fontes e formas de energia Impactos ambientais Prof. Dra. Carmen Luisa Barbosa Guedes Disciplina: - 2014 A energia esta envolvida em todas as ações que ocorrem no UNIVERSO FONTES DE ENERGIA FONTES

Leia mais

Potência elétrica e consumo de energia

Potência elétrica e consumo de energia Potência elétrica e consumo de energia Um aparelho, submetido a uma diferença de potencial, tensão, percorrido por uma corrente elétrica desenvolve uma potência elétrica dada pelo produto entre a tensão

Leia mais

Sistematização das questões desenvolvidas pelos estudantes na atividade da primeira semana

Sistematização das questões desenvolvidas pelos estudantes na atividade da primeira semana Sistematização das questões desenvolvidas pelos estudantes na atividade da primeira semana A energia empreendida no processo de floração se equivale a energia empreendida no processo de "secagem" das flores?

Leia mais

Dicas de segurança www.eletropaulo.com.br Atendimento ao Cliente - 0800 72 72 120 Atendimento de Emergência-0800 72 72 196

Dicas de segurança www.eletropaulo.com.br Atendimento ao Cliente - 0800 72 72 120 Atendimento de Emergência-0800 72 72 196 Dicas de segurança Dicas de segurança Fios e cabos partidos Cuidado: a eletricidade não tem cheiro, nem cor. Não se aproxime dos fios caídos ou pendurados, nem toque em pessoas ou objetos que estejam em

Leia mais

CADERNO DE ATIVIDADES

CADERNO DE ATIVIDADES COLÉGIO ARNALDO 2014 CADERNO DE ATIVIDADES CIÊNCIAS Aluno (a): 5º ano Turma: Professor (a): Valor: 20 pontos CONTEÚDOS ORIENTAÇÕES Releia os registros do seu caderno, os conteúdos dos livros e realize

Leia mais

É O COMBATE DO DESPERDÍCIO DE ENERGIA ELÉTRICA. É OBTER O MELHOR RESULTADO, DIMINUINDO O CONSUMO, SEM PREJUÍZO DE SEU CONFORTO E LAZER.

É O COMBATE DO DESPERDÍCIO DE ENERGIA ELÉTRICA. É OBTER O MELHOR RESULTADO, DIMINUINDO O CONSUMO, SEM PREJUÍZO DE SEU CONFORTO E LAZER. É O COMBATE DO DESPERDÍCIO DE ENERGIA ELÉTRICA. É OBTER O MELHOR RESULTADO, DIMINUINDO O CONSUMO, SEM PREJUÍZO DE SEU CONFORTO E LAZER. Na verdade você corre o risco de molhar o medidor e causar Curto-circuito.

Leia mais

As estações do ano acontecem por causa da inclinação do eixo da Terra em relação ao Sol. O movimento do nosso planeta em torno do Sol, dura um ano.

As estações do ano acontecem por causa da inclinação do eixo da Terra em relação ao Sol. O movimento do nosso planeta em torno do Sol, dura um ano. PROFESSORA NAIANE As estações do ano acontecem por causa da inclinação do eixo da Terra em relação ao Sol. O movimento do nosso planeta em torno do Sol, dura um ano. A este movimento dá-se o nome de movimento

Leia mais

CONCEITOS INICIAIS PARA DIMENSIONAMENTO SISTEMA FOTOVOLTAICO EM RESIDÊNCIAS

CONCEITOS INICIAIS PARA DIMENSIONAMENTO SISTEMA FOTOVOLTAICO EM RESIDÊNCIAS CONCEITOS INICIAIS PARA DIMENSIONAMENTO SISTEMA FOTOVOLTAICO EM RESIDÊNCIAS Introdução a Engenharia Professores: Márcio Zamboti Fortes e Vitor Hugo Ferreira (UFF) Bruno Henriques Dias e Flávio Gomes (UFJF)

Leia mais

P R O V A DE FÍSICA II

P R O V A DE FÍSICA II 1 P R O V A DE FÍSICA II QUESTÃO 16 A figura mostra uma barra rígida articulada no ponto O. A barra é homogênea e seu peso P está em seu ponto médio. Sobre cada uma de suas extremidades são aplicadas forças

Leia mais

5 Montagem Circuítos

5 Montagem Circuítos Montagem 5 Circuítos Ambiente de trabalho: Para trabalhar com montagem eletrônica e reparação de equipamentos o técnico precisa de algumas ferramentas, são elas: 1 - Ferro de solda: O ferro de solda consiste

Leia mais

EDUCAÇÃO E MEIO AMBIENTE. 1.0 Introdução

EDUCAÇÃO E MEIO AMBIENTE. 1.0 Introdução EDUCAÇÃO E MEIO AMBIENTE 1.0 Introdução O presente trabalho é resultado de uma visão futurística acerca da preservação do meio ambiente e da manutenção da vida. Alguns anos de estudo e pesquisas na área

Leia mais

478 a.c. Leucipo e seu discípulo Demócrito

478 a.c. Leucipo e seu discípulo Demócrito MODELOS ATÔMICOS 478 a.c. Leucipo e seu discípulo Demócrito - A matéria após sofrer várias subdivisões, chegaria a uma partícula indivisível a que chamaram de átomo. - ÁTOMO a = sem tomos = divisão - Esta

Leia mais

EnErgia Elétrica Em tudo Ensino Fundamental I

EnErgia Elétrica Em tudo Ensino Fundamental I em tudo Energia elétrica Ensino Fundamental I Em tudo, energia elétrica. 1 Para chegar até nossas casas, ela passa pelos cabos elétricos instalados nas torres e nos postes e deve sempre percorrer seu caminho

Leia mais

Sumário. Prefácio... xi. Prólogo A Física tira você do sério?... 1. Lei da Ação e Reação... 13

Sumário. Prefácio... xi. Prólogo A Física tira você do sério?... 1. Lei da Ação e Reação... 13 Sumário Prefácio................................................................. xi Prólogo A Física tira você do sério?........................................... 1 1 Lei da Ação e Reação..................................................

Leia mais

Jimboê. Ciências. Avaliação. Projeto. 5 o ano. 3 o bimestre

Jimboê. Ciências. Avaliação. Projeto. 5 o ano. 3 o bimestre Professor, esta sugestão de avaliação corresponde ao terceiro bimestre escolar ou às unidades 5 e 6 do Livro do Aluno. Projeto Jimboê 5 o ano Avaliação 3 o bimestre Avaliação NOME: ESCOLA: PROFESSOR: TURMA:

Leia mais

TELE - VENDAS: (0xx41) 2102-1100 - FAX GRÁTIS: 0800-704 2080

TELE - VENDAS: (0xx41) 2102-1100 - FAX GRÁTIS: 0800-704 2080 TELE - VENDAS: (0xx41) 2102-1100 - FAX GRÁTIS: 0800-704 2080 No tempo das cavernas o que mais impressionava o homem na natureza era o Raio, que nada mais é do que uma descarga da eletricidade contida nas

Leia mais

Tânia observa um lápis com o auxílio de uma lente, como representado nesta figura:

Tânia observa um lápis com o auxílio de uma lente, como representado nesta figura: PROVA DE FÍSICA QUESTÃO 0 Tânia observa um lápis com o auxílio de uma lente, como representado nesta figura: Essa lente é mais fina nas bordas que no meio e a posição de cada um de seus focos está indicada

Leia mais

GERADOR EÓLICO 1 INTRODUÇÃO

GERADOR EÓLICO 1 INTRODUÇÃO FUNDAÇÃO ESCOLA TÉCNICA LIBERATO SALZANO VIEIRA DA CUNHA Projeto de Pesquisa da Primeira Série Série: Primeira Curso: Eletrotécnica Turma: 2123 Sala: 234 Início: 17 de junho de 2009 Entrega: 17 de julho

Leia mais

COLÉGIO NOSSA SENHORA DA PIEDADE. Programa de Recuperação Paralela. 2ª Etapa 2014

COLÉGIO NOSSA SENHORA DA PIEDADE. Programa de Recuperação Paralela. 2ª Etapa 2014 COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Paralela 2ª Etapa 2014 Disciplina: Física Série: 3ª Professor (a): Marcos Vinicius Turma: FG Caro aluno, você está recebendo o conteúdo de recuperação.

Leia mais

Assim como em qualquer problema de engenharia, existem limitações e exigências que você deve cumprir. Aqui estão as diretrizes.

Assim como em qualquer problema de engenharia, existem limitações e exigências que você deve cumprir. Aqui estão as diretrizes. Science Lab Desafio de Engenharia: Construindo um Eletroímã Este Desafio de Engenharia do SEED é para construir o melhor eletroímã que você puder. Seu eletroímã será avaliado pelo peso que ele pode levantar,

Leia mais

Um carro está andando ao longo de uma estrada reta e plana. Sua posição em função do tempo está representada neste gráfico:

Um carro está andando ao longo de uma estrada reta e plana. Sua posição em função do tempo está representada neste gráfico: PROVA DE FÍSICA QUESTÃO 0 Um carro está andando ao longo de uma estrada reta e plana. Sua posição em função do tempo está representada neste gráfico: Sejam v P, v Q e v R os módulos das velocidades do

Leia mais

1) Calcular, em m/s, a velocidade de um móvel que percorre 14,4Km em 3min. a) ( ) 70m/s b) ( ) 80 m/s c) ( ) 90m/s d) ( ) 60m/s

1) Calcular, em m/s, a velocidade de um móvel que percorre 14,4Km em 3min. a) ( ) 70m/s b) ( ) 80 m/s c) ( ) 90m/s d) ( ) 60m/s SIMULADO DE FÍSICA ENSINO MÉDIO 1) Calcular, em m/s, a velocidade de um móvel que percorre 14,4Km em 3min. a) ( ) 70m/s b) ( ) 80 m/s c) ( ) 90m/s d) ( ) 60m/s 2) Um avião voa com velocidade constante

Leia mais

Um pouco de história. Um pouco de história. Um pouco de história. Um pouco de história CORPOS ELETRIZADOS E NEUTROS CARGA ELÉTRICA

Um pouco de história. Um pouco de história. Um pouco de história. Um pouco de história CORPOS ELETRIZADOS E NEUTROS CARGA ELÉTRICA Um pouco de história O conhecimento de eletricidade data de antes de Cristo ~ 600 a.c. Ambar, quando atritado, armazena eletricidade William Gilbert em 1600 conseguiu eletrizar muitas substâncias diferentes

Leia mais

Elaborado pelos alunos do 8º A da Escola Secundária Infante D. Henrique:

Elaborado pelos alunos do 8º A da Escola Secundária Infante D. Henrique: Elaborado pelos alunos do 8º A da Escola Secundária Infante D. Henrique: - Joana Moreira Lima nº16 - José Fernando nº17 - Sandra oliveira nº23 O carvão, o petróleo e o gás natural são combustíveis fósseis.

Leia mais

TÍTULO: GERADOR DE INDUÇÃO COMO ALTERNATIVA DE GERAÇÃO DE ENERGIA ELÉTRICA

TÍTULO: GERADOR DE INDUÇÃO COMO ALTERNATIVA DE GERAÇÃO DE ENERGIA ELÉTRICA TÍTULO: GERADOR DE INDUÇÃO COMO ALTERNATIVA DE GERAÇÃO DE ENERGIA ELÉTRICA CATEGORIA: EM ANDAMENTO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS INSTITUIÇÃO: FACULDADE ANHANGUERA JARAGUÁ DO SUL

Leia mais

ATIVIDADE: USANDO UM ELETROÍMÃ

ATIVIDADE: USANDO UM ELETROÍMÃ ELETROÍMÃS 4.1- ELETROÍMÃS ELETROÍMÃS Você já ficou sabendo que em movimento, como numa corrente elétrica, gera magnetismo. Você também já ficou sabendo que um imã em movimento próximo de um condutor faz

Leia mais

Aula 8. Acesse: http://fuvestibular.com.br/

Aula 8. Acesse: http://fuvestibular.com.br/ Acesse: http://fuvestibular.com.br/ Aula 8 A multiplicação nada mais é que uma soma de parcelas iguais. E a divisão, sua inversa, "desfaz o que a multiplicação faz". Quer ver? Vamos pensar nas questões

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA EXERCÍCIOS NOTAS DE AULA I Goiânia - 014 1. Um capacitor de placas paralelas possui placas circulares de raio 8, cm e separação

Leia mais

Efeitos da Corrente Elétrica. Prof. Luciano Mentz

Efeitos da Corrente Elétrica. Prof. Luciano Mentz Efeitos da Corrente Elétrica Prof. Luciano Mentz 1. Efeito Magnético Corrente elétrica produz campo magnético. Esse efeito é facilmente verificado com uma bússola e será estudado no eletromagnetismo. 2.

Leia mais

(www.inpe.br/webelat/homepage/menu/el.atm/perguntas.e.respostas.php. Acesso em: 30.10.2012.)

(www.inpe.br/webelat/homepage/menu/el.atm/perguntas.e.respostas.php. Acesso em: 30.10.2012.) 1. (G1 - ifsp 2013) Raios são descargas elétricas de grande intensidade que conectam as nuvens de tempestade na atmosfera e o solo. A intensidade típica de um raio é de 30 mil amperes, cerca de mil vezes

Leia mais

Energia Eólica. Atividade de Aprendizagem 3. Eixo(s) temático(s) Ciência e tecnologia / vida e ambiente

Energia Eólica. Atividade de Aprendizagem 3. Eixo(s) temático(s) Ciência e tecnologia / vida e ambiente Energia Eólica Eixo(s) temático(s) Ciência e tecnologia / vida e ambiente Tema Eletricidade / usos da energia / uso dos recursos naturais Conteúdos Energia eólica / obtenção de energia e problemas ambientais

Leia mais

-2014- CONTEÚDO SEPARADO POR TRIMESTRE E POR AVALIAÇÃO CIÊNCIAS 9º ANO 1º TRIMESTRE

-2014- CONTEÚDO SEPARADO POR TRIMESTRE E POR AVALIAÇÃO CIÊNCIAS 9º ANO 1º TRIMESTRE -2014- CONTEÚDO SEPARADO POR TRIMESTRE E POR AVALIAÇÃO CIÊNCIAS 9º ANO 1º TRIMESTRE DISCURSIVA OBJETIVA QUÍMICA FÍSICA QUÍMICA FÍSICA Matéria e energia Propriedades da matéria Mudanças de estado físico

Leia mais

Novo Medidor Eletrônico

Novo Medidor Eletrônico Novo Medidor Eletrônico Neste material, você encontra todas as informações sobre o novo equipamento que vai medir o consumo de energia elétrica da sua instalação. bandeirante Instalação do medidor eletrônico

Leia mais

Ec = 3. 10 5 J. Ec = m v 2 /2

Ec = 3. 10 5 J. Ec = m v 2 /2 GOIÂNIA, / / 015 PROFESSOR: MARIO NETO DISCIPLINA:CIÊNCIA NATURAIS SÉRIE: 9º ALUNO(a): No Anhanguera você é + Enem Uma das formas de energia, que chamamos de energia mecânica, que pode ser das seguintes

Leia mais

Afinal, o que Gerenciamento de Energia tem a ver com Automação Industrial?

Afinal, o que Gerenciamento de Energia tem a ver com Automação Industrial? Afinal, o que Gerenciamento de Energia tem a ver com Automação Industrial? Por Murilo Riet Correa* Da forma como vamos mostrar aqui (com controlador inteligente) tem tudo a ver com automação industrial.

Leia mais

DICAS PARA REDUÇÃO DO CONSUMO DE ENERGIA ELÉTRICA EM CASA

DICAS PARA REDUÇÃO DO CONSUMO DE ENERGIA ELÉTRICA EM CASA DICAS PARA REDUÇÃO DO CONSUMO DE ENERGIA ELÉTRICA EM CASA SELO PROCEL Prefira equipamentos com SELO PROCEL, e/ou consumo A de consumo de energia. GELADEIRA Evitar abrir a porta toda hora. Regular o termostato

Leia mais

- O movimento ordenado de elétrons em condutores

- O movimento ordenado de elétrons em condutores MATÉRIA: Eletrotécnica MOURA LACERDA CORRENTE ELÉTRICA: - O movimento ordenado de elétrons em condutores Os aparelhos eletro-eletrônicos que se encontram nas residências precisam de energia elétrica para

Leia mais

Questão 1. Questão 2. Resposta

Questão 1. Questão 2. Resposta Questão 1 A energia que um atleta gasta pode ser determinada pelo volume de oxigênio por ele consumido na respiração. Abaixo está apresentado o gráfico do volume V de oxigênio, em litros por minuto, consumido

Leia mais

Apague velhos. Acenda uma grande. hábitos. idéia.

Apague velhos. Acenda uma grande. hábitos. idéia. Apague velhos hábitos. Acenda uma grande idéia. Crise Energética Por que todos falam em crise energética? Porque a crise energética sul-americana deixou de ser um cenário hipotético para se transformar

Leia mais

Motores de Indução ADRIELLE DE CARVALHO SANTANA

Motores de Indução ADRIELLE DE CARVALHO SANTANA ADRIELLE DE CARVALHO SANTANA Motores CA Os motores CA são classificados em: -> Motores Síncronos; -> Motores Assíncronos (Motor de Indução) O motor de indução é o motor CA mais usado, por causa de sua

Leia mais

Microfone e altifalante. Conversão de um sinal sonoro num sinal elétrico. sinal elétrico num sinal sonoro.

Microfone e altifalante. Conversão de um sinal sonoro num sinal elétrico. sinal elétrico num sinal sonoro. Microfone e altifalante Conversão de um sinal sonoro num sinal elétrico. Conversão de um sinal elétrico num sinal sonoro. O funcionamento dos microfones e dos altifalantes baseia-se na: - acústica; - no

Leia mais

Grupo Geradores Residenciais. O que mantém sua família unida é a energia que compartilham.

Grupo Geradores Residenciais. O que mantém sua família unida é a energia que compartilham. Grupo Geradores Residenciais O que mantém sua família unida é a energia que compartilham. Gerando os melhores momentos para viver. Você precisa de eletricidade para iluminar os ambientes de sua casa, operar

Leia mais

LEI DE OHM LEI DE OHM. Se quisermos calcular o valor da resistência, basta dividir a tensão pela corrente.

LEI DE OHM LEI DE OHM. Se quisermos calcular o valor da resistência, basta dividir a tensão pela corrente. 1 LEI DE OHM A LEI DE OHM é baseada em três grandezas, já vistas anteriormente: a Tensão, a corrente e a resistência. Com o auxílio dessa lei, pode-se calcular o valor de uma dessas grandezas, desde que

Leia mais

FÍSICA. Sempre que for necessário, utilize g= 10m/s 2

FÍSICA. Sempre que for necessário, utilize g= 10m/s 2 FÍSICA Sempre que for necessário, utilize g= 10m/s 2 28 d Leia com atenção a tira da Turma da Mônica mostrada abaixo e analise as afirmativas que se seguem, considerando os princípios da Mecânica Clássica.

Leia mais

PROVA DE FÍSICA 3 o TRIMESTRE DE 2012

PROVA DE FÍSICA 3 o TRIMESTRE DE 2012 PROVA DE FÍSICA 3 o TRIMESTRE DE 2012 PROF. VIRGÍLIO NOME N o 8 o ANO Olá, caro(a) aluno(a). Segue abaixo uma série de exercícios que têm, como base, o que foi trabalhado em sala de aula durante todo o

Leia mais

Prova Oficial de Física - GABARITO 1 Trimestre/2014 Data: 23/04/2014

Prova Oficial de Física - GABARITO 1 Trimestre/2014 Data: 23/04/2014 Prova Oficial de Física - GABARITO 1 Trimestre/2014 Data: 23/04/2014 CONTEÚDO Corrente Elétrica, Tensão Elétrica, Resistores, 1º Lei de Ohm, 2º Lei de Ohm, Circuitos em Série e Paralelo, Potência Elétrica

Leia mais

A Importância da reciclagem

A Importância da reciclagem Texto 1 A Importância da reciclagem Vanessa Minuzzi Bidinoto Reciclar é economizar energia, poupar recursos naturais e trazer de volta ao ciclo produtivo o que jogamos fora. Para compreendermos a reciclagem

Leia mais

O decibel e seus mistérios - Parte II

O decibel e seus mistérios - Parte II O decibel e seus mistérios - Parte II Autor: Fernando Antônio Bersan Pinheiro Já aprendemos como podemos relacionar decibéis e potências, e já vimos como isso é legal para compararmos potências de sistemas

Leia mais

Prof.: Geraldo Barbosa Filho

Prof.: Geraldo Barbosa Filho AULA 07 GERADORES E RECEPTORES 5- CURVA CARACTERÍSTICA DO GERADOR 1- GERADOR ELÉTRICO Gerador é um elemento de circuito que transforma qualquer tipo de energia, exceto a elétrica, em energia elétrica.

Leia mais

SOLUÇÃO: RESPOSTA (D) 17.

SOLUÇÃO: RESPOSTA (D) 17. 16. O Ceará é hoje um dos principais destinos turísticos do país e uma das suas atrações é o Beach Park, um parque temático de águas. O toboágua, um dos maiores da América Latina, é uma das atrações preferidas

Leia mais

FICHA TÉCNICA Energia Solar Painéis Fotovoltaicos

FICHA TÉCNICA Energia Solar Painéis Fotovoltaicos FICHA TÉCNICA Energia Solar Painéis Fotovoltaicos Nº Pág.s: 6 nº 04 20. Novembro. 2006 Painéis Fotovoltaicos 01 Uma das tecnologias renováveis mais promissoras e recentes de geração de energia eléctrica

Leia mais

FÍSICA 9ºano 3º Trimestre / 2013 BATERIA DE EXERCÍCIOS

FÍSICA 9ºano 3º Trimestre / 2013 BATERIA DE EXERCÍCIOS FÍSICA 9ºano 3º Trimestre / 2013 BATERIA DE EXERCÍCIOS TRABALHO E ENERGIA 1. Uma empilhadeira elétrica transporta do chão até uma prateleira, a uma altura de 6 m do chão, um pacote de 60 kg. O gráfico

Leia mais

Como os seres vivos modificam o ambiente?

Como os seres vivos modificam o ambiente? Como os seres vivos modificam o ambiente? O ar e a água possibilitam a integração dos seres vivos na dinâmica planetária. Por que a parede do copo com água fria fica molhada? Será? Toda matéria é constituída

Leia mais

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de?

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de? Física 01. Um fio metálico e cilíndrico é percorrido por uma corrente elétrica constante de. Considere o módulo da carga do elétron igual a. Expressando a ordem de grandeza do número de elétrons de condução

Leia mais

CAPÍTULO 6 Termologia

CAPÍTULO 6 Termologia CAPÍTULO 6 Termologia Introdução Calor e Temperatura, duas grandezas Físicas bastante difundidas no nosso dia-a-dia, e que estamos quase sempre relacionando uma com a outra. Durante a explanação do nosso

Leia mais

Introdução. Criar um sistema capaz de interagir com o ambiente. Um transdutor é um componente que transforma um tipo de energia em outro.

Introdução. Criar um sistema capaz de interagir com o ambiente. Um transdutor é um componente que transforma um tipo de energia em outro. SENSORES Introdução Criar um sistema capaz de interagir com o ambiente. Num circuito eletrônico o sensor é o componente que sente diretamente alguma característica física do meio em que esta inserido,

Leia mais

Realização: Aquecimento Global. Parceiros: Apoiadores:

Realização: Aquecimento Global. Parceiros: Apoiadores: Realização: Parceiros: Aquecimento Global Apoiadores: O que é o efeito estufa? É um fenômeno natural, provocado por alguns gases da atmosfera, que mantêm o nosso planeta aquecido. Esse processo acontece

Leia mais

Fortaleza Ceará TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014

Fortaleza Ceará TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014 TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014 1. Uma ave marinha costuma mergulhar de uma altura de 20 m para buscar alimento no mar. Suponha que um desses mergulhos tenha sido feito em sentido

Leia mais

DICAS. Instalações elétricas residenciais. 8ª Edição

DICAS. Instalações elétricas residenciais. 8ª Edição DICAS Instalações elétricas residenciais 8ª Edição DICAS PARA INSTALAÇÕES ELÉTRICAS RES CONCEITOS BÁSICOS DE ELETRICIDADE Nos condutores existem partículas invisíveis chamadas de elétrons livres que, assim

Leia mais

E-BOOK 15 DICAS PARA ECONOMIZAR COMBUSTÍVEL

E-BOOK 15 DICAS PARA ECONOMIZAR COMBUSTÍVEL E-BOOK 15 DICAS PARA ECONOMIZAR COMBUSTÍVEL Veja 15 dicas para economizar combustível no carro Da maneira de dirigir à escolha da gasolina, saiba o que pode trazer economia de consumo. Não existe mágica.

Leia mais

MÓDULO 4 Meios físicos de transmissão

MÓDULO 4 Meios físicos de transmissão MÓDULO 4 Meios físicos de transmissão Os meios físicos de transmissão são compostos pelos cabos coaxiais, par trançado, fibra óptica, transmissão a rádio, transmissão via satélite e são divididos em duas

Leia mais