CADERNO DE ATIVIDADES
|
|
|
- Rayssa Galindo Bonilha
- 9 Há anos
- Visualizações:
Transcrição
1 0 Mestrado em Ensino de Ciências e Matemática Área de Concentração: Matemática CADERNO DE ATIVIDADES Utilização de Resolução de Problemas em Fenômenos Físicos da área Eletroeletrônica Mestranda: Vânia Maria Fazito Rezende Teixeira Orientador: Prof. Dr. João Bosco Laudares Belo Horizonte 2013
2 1
3 2 SUMÁRIO APRESENTAÇÃO INTRODUÇÃO PROPOSIÇÃO DAS ATIVIDADES ATIVIDADES SOBRE SISTEMA LINEAR ENVOLVENDO RESOLUÇÃO DE PROBLEMAS DE FENÔMENOS FÍSICOS Atividade Atividade Atividade Atividade Atividade Atividade Atividade
4 3
5 4 Prezado estudante, As atividades apresentadas a seguir fazem parte de um Projeto de Pesquisa de Mestrado, cujo objetivo é avaliar como o ensino da matemática é aplicado nos cursos de Eletroeletrônica, utilizando-se da abordagem de Resolução de Problemas. 1 INTRODUÇÃO Existem vários métodos de ensinar Matemática. Um dos métodos mais recomendados nos cursos profissionalizantes é o da Resolução de Problemas, que consiste em despertar no aluno a curiosidade para solucionar um problema, por meio de indagações estimulantes, possibilitando-lhe alcançar uma solução adequada com raciocínio independente. Este trabalho, aplicado em sala de aula, terá como propósito fazer uma investigação no processo ensino-aprendizagem via Resolução de Problemas, no ensino técnico de Eletrônica. As questões apresentadas centram-se em atividades sobre sistema linear envolvendo resolução de problemas de fenômenos físicos. A aprendizagem na Resolução de Problema será eficaz se gerar no aluno a atitude de procurar respostas para suas próprias perguntas/problemas, buscando questionar ao invés de receber somente respostas prontas e acabadas. Na Resolução de Problemas conforme Polya (2006) é possível observar quatro fases necessárias para o aprendizado do aluno: 1. Compreensão do Problema: para que se possa interpretar o problema, o enunciado verbal precisa ser bem entendido; o aluno deverá identificar as partes principais do problema: incógnita, dados, condicionante, etc. 2. Estabelecimento de um Plano: estabelecer a conexão entre os dados e a incógnita; considerar problemas auxiliares caso não encontre uma conexão imediata; verificar se levou em conta todas as noções essenciais implicadas no problema. 3. Execução do Plano: na execução do plano de resolução de problema é necessário verificar se cada passo está correto e se é possível demonstrálo. 4. Retrospecto: Examinar a solução obtida.
6 5 2 PROPOSIÇÃO DAS ATIVIDADES As atividades apresentadas a seguir relacionam-se a problemas de Matemática e Circuito de Malha, aplicados nos cursos de Eletrônica. A Atividade 1 é introdutória ao sistema linear de 3 equações e 3 variáveis e tem como objetivo resolver um problema que exija um sistema de 3 equações e 3 incógnitas, revisando o processo de resolução desse sistema. A Atividade 2 tem o propósito de resolver um problema de circuito com duas malhas, com sistema linear de equações não homogêneas aplicado nos cursos de Eletrônica. A Atividade 3 tem como objetivo resolver um problema de circuito com três malhas, com sistema linear de equações não homogêneo aplicado nos cursos de Eletrônica. A Atividade 4 tem como objetivo a resolução de um sistema linear não homogêneo de circuito de corrente contínua em duas malhas. A Atividade 5 tem como objetivo resolver um problema de circuito com duas malhas, com sistema linear de equações homogêneas aplicado nos cursos de Eletrônica. A Atividade 6 tem como objetivo resolver um problema de circuito com três malhas, com sistema linear de equações homogêneas aplicado nos cursos de Eletrônica. A Atividade 7 é diferente das seis primeiras. Consistirá em uma atividade prática de montagem de um Circuito Puramente Resistivo de duas malhas, com o propósito da aplicação da Lei de Kirchhoff, resolução do sistema linear e a comprovação dos valores encontrados.
7 6 3 ATIVIDADES SOBRE SISTEMA LINEAR ENVOLVENDO RESOLUÇÃO DE PROBLEMAS DE FENÔMENOS FÍSICOS 3.1 Atividade 1 INTRODUTÓRIA Resolução de um problema que envolve sistema linear, não homogêneo, possível e determinado na aquisição de equipamentos elétricos Objetivo: Resolver um problema que exija um sistema de 3 equações e 3 incógnitas, revisando o processo de resolução deste sistema Metodologia: Dado o problema do sistema linear que envolve 3 equações e 3 incógnitas será elaborado um plano que facilitará a resolução do problema, a análise dos passos efetuados e a compatibilização da solução com os dados. Recordando sistema linear Um sistema de 3 equações e 3 incógnitas é do tipo: a1x b a2x b a 3x b y c1z d1 y c z d y c 2 3 z d 2 3 sendo cada uma das equações do sistema uma equação linear. Equação linear com 3 equações e 3 incógnitas é toda equação do tipo ax +by +cz =d, em que a, b, c e d são números reais; x, y, z são as incógnitas; a, b, c são chamados de coeficientes; e d é termo independente.
8 7 Chama-se solução de um sistema linear com 3 equações e 3 incógnitas a tripla ordenada de números reais (x, y, z) ao conjunto dos números x = k1; y = k2 e z = k3, que é solução, simultaneamente, de todas as equações que constituem o sistema. Para resolver um sistema linear de 3 equações e 3 incógnitas, aplicam-se os seguintes métodos ou processos: - Escalonamento (método de Gauss); - Regra de Cramer; - Substituição. ENUNCIADO Uma loja vende certo equipamento elétrico, que é fabricado por três marcas diferentes: A, B e C. Sendo a marca A, multímetro Brasford, a marca B, multímetro EDA e a marca C, multímetro Minipa. Um levantamento sobre as vendas desse item, realizado durantes três dias consecutivos, revelou que:. no 1º. dia, foram vendidos duas unidades da marca A, um da marca B e um da marca C, resultando um total de vendas igual a R$ 150,00;. no 2º dia, foram vendidos quatro unidades da marca A, três da marca B e nenhum da marca C, num total de R$ 240,00;. no último dia, não houve vendas da marca A, mas foram vendidos cinco da marca B e três da marca C, totalizando R$ 350,00. Qual é o preço do componente fabricado por A? e por B? e por C? 1 - INTERPRETAÇÃO DO ENUNCIADO Verbalização Questão 1: Expresse o problema com suas palavras.
9 8 2 - MODELO MATEMÁTICO Questão 2: Quais as incógnitas do problema? Questão 3: Quais são os dados do problema? problema. Questão 4: Discrimine matematicamente o que se pede na resposta do Questão 5: Monte as equações do sistema do problema. anterior. Questão 6: Caracterize o tipo de sistema linear que você montou no item 3 - RESOLUÇÃO DO PROBLEMA Questão 7: Selecione, dentre os métodos que anunciou, aquele que você vai usar para solucionar esse sistema. Escalonamento - Regra de Cramer - Substituição -
10 9 Questão 8: Resolva o sistema pelo método que você selecionou. Questão 9 Selecione um método diferente da sua escolha. Resolva com esse método. 4 INTERPRETAÇÃO/COMPATIBILIZAÇÃO E RETROSPECTO DA RESOLUÇÃO DO PROBLEMA Questão 10 - Como você compatibilizaria, isto é, compararia sua solução com os dados encontrados do problema? Questão 11 Os dados e a solução são compatíveis? Sim - Não - Se a resposta for não, justifique.
11 Atividade 2 Aplicação de sistema linear, não homogêneo, possível e determinado de 2 equações e 2 incógnitas em Circuito de Duas Malhas Objetivo: Resolver um problema de circuito com duas malhas, com sistema linear de equações não homogêneas aplicado nos cursos de Eletrônica. Metodologia: Dado o problema de circuito de duas malhas que envolve um sistema de 2 equações e 2 incógnitas, será elaborado um plano que facilitará a resolução do problema, a análise dos passos efetuados, e a compatibilização da solução com os dados. Recordando Correntes nas Malhas de Eletricidade Básica Uma malha é qualquer percurso fechado de um circuito. Não se leva em conta se o percurso contém ou não uma fonte de tensão. Ao se resolver um circuito utilizando as correntes nas malhas, precisamos escolher previamente quais os percursos que formarão as malhas. A seguir, designamos para cada malha a sua respectiva corrente de malha. Por conveniência, as correntes de malha são geralmente indicadas no sentido horário. Este sentido é arbitrário, mas o horário é o mais usado. Aplica-se então a lei de Kirchhoff para a tensão ao longo dos percursos de cada malha. As equações resultantes determinam as correntes de malhas desconhecidas. A partir dessas correntes, pode-se calcular a corrente ou tensão de qualquer resistor.
12 11 Lei de Kirchhoff para a Tensão (LKT) A lei de Kirchhoff para a tensão, ou lei das malhas, afirma que a tensão aplicada a um circuito fechado é igual à soma das quedas de tensão naquele circuito. Este fato foi usado no estudo de circuitos em série e foi expresso da seguinte forma: Tensão aplicada = soma de quedas de tensão V A = V 1 + V 2 + V 3, sendo V A a tensão aplicada e V 1, V 2, V 3 as quedas de tensão. Uma outra forma de enunciar a LKT é: A soma algébrica das subidas ou aumentos e das quedas de tensão deve ser igual a zero. Uma fonte de tensão ou f.e.m. é considerada como um aumento de tensão, uma tensão através de um resistor consiste numa queda de tensão. Tensão aplicada soma das quedas de tensão = 0, substituindo por letras: V A - V 1 - V 2 -V 3 = 0 ou V A ( V 1 +V 2 +V 3 ) = 0, ou V = 0 (Fonte: GUSSOW, Milton MS. Eletricidade Básica. São Paulo, 1997, p. 136). ENUNCIADO Dado um circuito (ver figura abaixo) com duas malhas chamadas de malha 1 e malha 2. A malha 1 é formada pelo percurso abcda, e a malha 2 é formada pelo trajeto adefa. Conhecidas as resistências: R 1 = 4Ω, R 2 = 3Ω, R 3 = 2Ω e as tensões: V A = 58 V e V B = 10 V, determine as correntes I 1 e I 2 desse circuito. Diagrama c R 1 = 4 d R 3 = 2 e I1 V1 I2 V3 VA = 58 V V2 R 2 = 3 VB = 10 V I1 I2 Malha 1 Malha 2 b a f
13 INTERPRETAÇÃO DO ENUNCIADO Verbalização Questão 1 - Expresse o problema com suas palavras. 2 - MODELO MATEMÁTICO Questão 2 Quais as incógnitas do problema? Questão 3 - Quais são os dados do problema? Questão 4 - Analise o diagrama de acordo com os dados do problema. problema? Questão 5 Que Lei Física se deve aplicar para a resolução desse
14 13 Questão 6 Monte as equações do sistema do problema. 3 - RESOLUÇÃO DO PROBLEMA Questão 7 Selecione o tipo de sistema que se deve aplicar para a resolução desse circuito. Adição - Substituição - Comparação - Questão 8 Resolva o sistema. 4 INTERPRETAÇÃO/COMPATIBILIZAÇÃO E RETROSPECTO DA RESOLUÇÃO DO PROBLEMA Questão 9 - Como você compatibilizaria, isto é, compararia sua solução com os dados encontrados do problema? Questão 10 Os dados e a solução são compatíveis? Sim - Não - Se a resposta for não, justifique.
15 14 Questão 11 Quais os sentidos das correntes que percorrem o circuito a partir dos valores calculados? Explique. 3.3 Atividade 3 Aplicação de sistema linear, não homogêneo, possível e determinado de 3 equações e 3 incógnitas em Circuito de Três Malhas. Objetivo: Resolver um problema de circuito com três malhas, com sistema linear de equações não homogêneo, aplicado nos cursos de Eletrônica. Metodologia: Dado o problema de circuito de duas malhas que envolve um sistema de 3 equações e 3 incógnitas, será elaborado um plano que facilitará a resolução do problema, a análise dos passos efetuados, e a compatibilização da solução com os dados. Recordando Correntes nas Malhas de Eletricidade Básica Uma malha é qualquer percurso fechado de um circuito. Não se leva em conta se o percurso contém ou não uma fonte de tensão. Ao se resolver um circuito utilizando as correntes nas malhas, precisamos escolher previamente quais os percursos que formarão as malhas. A seguir, designamos para cada malha a sua respectiva corrente de malha. Por conveniência, as correntes de malha são geralmente indicadas no sentido horário. Este sentido é arbitrário, mas o horário é o mais usado. Aplica-se então a lei de Kirchhoff para a tensão ao longo dos percursos
16 15 de cada malha. As equações resultantes determinam as correntes de malhas desconhecidas. A partir dessas correntes, pode-se calcular a corrente ou tensão de qualquer resistor. Lei de Kirchhoff para a Tensão (LKT) A lei de Kirchhoff para a tensão, ou lei das malhas, afirma que a tensão aplicada a um circuito fechado é igual à soma das quedas de tensão naquele circuito. Este fato foi usado no estudo de circuitos em série e foi expresso da seguinte forma: Tensão aplicada = soma de quedas de tensão. V A = V 1 +V 2 +V 3, sendo V A a tensão aplicada e V 1, V 2, V 3 as quedas de tensão. Uma outra forma de enunciar a LKT é: a soma algébrica das subidas ou aumentos e das quedas de tensão deve ser igual a zero. Uma fonte de tensão ou f.e.m. é considerada como um aumento de tensão; uma tensão através de um resistor consiste numa queda de tensão. Tensão aplicada soma das quedas de tensão = 0, substituindo por letras: V A - V 1 - V 2 -V 3 = 0 ou V A ( V 1 +V 2 +V 3 ) = 0, ou V = 0 (Fonte: GUSSOW, Milton MS. Eletricidade Básica. São Paulo, 1997, p.136). ENUNCIADO Dado um circuito (ver figura abaixo) com três malhas chamadas de malha 1, malha 2 e malha 3. Dados V A = 20 V, V B = 5 V, R 1 = 2Ω, R 2 = 3Ω, R 3 =4Ω, R 4 = 5 Ω e R 5 = 6 Ω, calcule todas as correntes do circuito.
17 16 Diagrama V I1 I2 3 5 I3 5V Malha 1 Malha 2 Malha INTERPRETAÇÃO DO ENUNCIADO Verbalização Questão 1 - Expresse o problema com suas palavras 2 - MODELO MATEMÁTICO Questão 2 Quais as incógnitas do problema? Questão 3 Quais os dados do problema? Questão 4 Analise o diagrama de acordo com os dados do problema.
18 17 problema? Questão 5 Que Lei Física se deve aplicar para a resolução desse Questão 6 Monte as equações do sistema do problema. 3 - RESOLUÇÃO DO PROBLEMA Questão 7 Selecione o tipo de sistema que se deve aplicar para a resolução desse circuito. Escalonamento - Regra de Cramer - Substituição - Questão 8 Resolva o sistema. 4 INTERPRETAÇÃO/COMPATIBILIZAÇÃO E RETROSPECTO DA RESOLUÇÃO DO PROBLEMA Questão 9 - Como você compatibilizaria, isto é, compararia sua solução com os dados encontrados do problema?
19 18 Questão 10 Os dados e a solução são compatíveis? Sim - Não - Se a resposta for não, justifique. Questão 11 Quais os sentidos das correntes que percorrem o circuito a partir dos valores calculados? Explique. 3.4 Atividade 4 Aplicação de sistema linear, não homogêneo, possível e determinado de 2 equações e 2 incógnitas em Circuito de Corrente Contínua em Malha (LKC). Objetivo: Resolver um problema de circuito com duas malhas, com sistema linear de equações não homogêneo, aplicado nos cursos de Eletrônica. Metodologia: Dado o problema de circuito de corrente contínua que envolve sistema de 2 equações e 2 incógnitas, será elaborado um plano que facilitará a resolução do problema, a análise dos passos efetuados e a compatibilização da solução com os dados.
20 19 Recordando Corrente Contínua em Eletricidade Básica Lei de Kirchhoff para a Corrente (LKC) A Lei de Kirchhoff para a corrente, ou lei de nós, afirma que a soma das correntes que entram numa junção é igual à soma das correntes que saem da junção. Suponha que tenhamos quatro correntes saindo e entrando numa junção comum ou num ponto, como, por exemplo, o ponto P (figura abaixo). Este ponto comum é também chamado de nó. Soma de todas as correntes que entram = soma de todas as correntes que saem, logo, I 1 + I 2 +I 3 + I 4 = 0. Se considerarmos as correntes que entram numa junção ou nó como positivas (+) e as que saem da mesma junção ou nó como negativas (-), então esta lei afirma também que a soma algébrica de todas as correntes que se encontram numa junção comum é zero. Utilizando o símbolo de somatório,, temos: I = 0. (Fonte: GUSSOW, Milton MS. Eletricidade Básica. São Paulo, 1997, p. 139). ENUNCIADO No circuito indicado pela figura, duas baterias de 110 volts e de 80 volts, e de resistências internas 2 ohms e 2 ohms, alimentam um motor que desenvolve uma f.c.e.m. de 50 volts. Sabendo-se que os fios AB e BC têm comprimentos iguais de 10m e são construídos por material de resistência igual a 0,2 ohms por metro, pede-
21 20 se a intensidade de corrente no motor, quando em movimento, supondo-se sua resistência interna de 2 ohms. Diagrama A B C I1 I2 80 V 2 M V 2 F E D 1 - INTERPRETAÇÃO DO ENUNCIADO Verbalização Questão 1 - Expresse o problema com suas palavras. 2 - MODELO MATEMÁTICO Questão 2 Quais as incógnitas do problema? Questão 3 Quais os dados do problema?
22 21 Questão 4 Analise o diagrama de acordo com os dados do problema. problema? Questão 5 Que Lei Física se deve aplicar para a resolução desse Questão 6 Monte as equações do sistema do problema. 3 - RESOLUÇÃO DO PROBLEMA Questão 7 Selecione o tipo de sistema que se deve aplicar para a resolução desse circuito. Adição - Substituição - Comparação - Questão 8 Resolva o sistema.
23 22 4 INTERPRETAÇÃO/COMPATIBILIZAÇÃO E RETROSPECTO DA RESOLUÇÃO DO PROBLEMA Questão 9 - Como você compatibilizaria, isto é, compararia sua solução com os dados encontrados do problema? Questão 10 Os dados e a solução são compatíveis? Sim - Não - Se a resposta for não, justifique. Questão 11 Quais os sentidos das correntes que percorrem o circuito a partir dos valores calculados. Explique. 3.5 Atividade 5 Aplicação de sistema linear homogêneo, possível e determinado de 2 equações e 2 incógnitas em um Circuito de Duas Malhas. Objetivo: Resolver um problema de circuito com duas malhas, com sistema linear de equações homogêneas, aplicado nos cursos de Eletrônica.
24 23 Metodologia: Dado o problema de circuito de duas malhas que envolve um sistema 2 equações e 2 incógnitas, será elaborado um plano que facilitará a solução do problema, a análise dos passos efetuados e a compatibilização da solução com os dados. Recordando Sistema Linear Homogêneo e Correntes nas Malhas de Eletricidade Básica Sistema Linear Homogêneo Definição: Chama-se Sistema de Equações Lineares Homogêneo nas incógnitas x, y ao conjunto de equações lineares homogêneas nessas incógnitas. Assim, o sistema: a1x b1y 0 a2x b2 y 0 é linear homogêneo nas incógnitas x e y, isto é, o termo independente é igual a zero. Solução de Um Sistema Linear Homogêneo: Um Sistema Linear Homogêneo nas incógnitas x e y admite sempre a solução de x=0 e y =0, denominada solução trivial ou solução imprópria. (OLIVEIRA, Mário de. Álgebra, vol. II. Belo Horizonte, 1966). Correntes nas Malhas de Eletricidade Básica Uma malha é qualquer percurso fechado de um circuito. Não se leva em conta se o percurso contém ou não uma fonte de tensão. Ao se resolver um circuito utilizando as correntes nas malhas, precisamos escolher previamente quais os
25 24 percursos que formarão as malhas. A seguir, designamos para cada malha a sua respectiva corrente de malha. Por conveniência, as correntes de malha são geralmente indicadas no sentido horário. Este sentido é arbitrário, mas o horário é o mais usado. Aplica-se então a lei de Kirchhoff para a tensão ao longo dos percursos de cada malha. As equações resultantes determinam as correntes de malhas desconhecidas. A partir dessas correntes, pode-se calcular a corrente ou tensão de qualquer resistor. Lei de Kirchhoff para a Tensão (LKT) A lei de Kirchhoff para a tensão, ou lei das malhas, afirma que a tensão aplicada a um circuito fechado é igual à soma das quedas de tensão naquele circuito. Este fato foi usado no estudo de circuitos em série e foi expresso da seguinte forma: Tensão aplicada = soma de quedas de tensão V A = V 1 + V 2 + V 3, sendo V A a tensão aplicada e V 1, V 2, V 3 as quedas de tensão. Uma outra forma de enunciar a LKT é: a soma algébrica das subidas ou aumentos e das quedas de tensão deve ser igual a zero. Uma fonte de tensão ou f.e.m. é considerada como um aumento de tensão; uma tensão através de um resistor consiste numa queda de tensão. Tensão aplicada soma das quedas de tensão = 0, substituindo por letras: V A - V 1 - V 2 -V 3 = 0 ou V A ( V 1 + V 2 + V 3 ) = 0, ou V = 0 (Fonte: GUSSOW, Milton MS. Eletricidade Básica. São Paulo, 1997, p. 136). ENUNCIADO Dado um circuito (ver figura abaixo) com duas malhas chamadas de malha 1 e malha 2. Conhecidas as resistências: R 1 = 4Ω, R 2 = 5Ω, R 3 = 3Ω e as tensões:
26 25 V 1 = 30V, V 2 = 25V, V 3 = 10V, V 4 = 20V e V 5 = 15V, determine as correntes I A e I B desse circuito. Diagrama 1 - INTERPRETAÇÃO DO ENUNCIADO Verbalização Questão 1 - Expresse o problema com suas palavras. 2 - MODELO MATEMÁTICO Questão 2 Quais as incógnitas do problema? Questão 3 Quais os dados do problema?
27 26 Questão 4 Analise o diagrama de acordo com os dados do problema Questão 5 Que Lei Física se deve aplicar para a resolução desse problema? Questão 6 Monte as equações do sistema do problema. Questão 7 Verifique que o sistema de equações é homogêneo, como é possível e determinado suas soluções são nulas. Comprove utilizando um método de resolução. Adição - Substituiçã - Comparação RESOLUÇÃO DO PROBLEMA Questão 8 Resolva o sistema.
28 27 4 INTERPRETAÇÃO/COMPATIBILIZAÇÃO E RETROSPECTO DA RESOLUÇÃO DO PROBLEMA Questão 9 Interprete os sentidos das correntes que percorrem o circuito a partir dos valores calculados. Explique. 3.6 Atividade 6 Aplicação de sistema linear homogêneo, possível e determinado de 3 equações e 3 incógnitas, em um Circuito de Três Malhas. Objetivo: Resolver um problema de circuito com três malhas, com sistema linear de equações homogêneas, aplicado nos cursos de Eletrônica. Metodologia: Dado o problema de circuito de três malhas que envolve um sistema de 2 equações e 2 incógnitas, será elaborado um plano que facilitará a solução do problema, a análise dos passos efetuados e a compatibilização da solução com os dados. Recordando Sistema Linear Homogêneo e Correntes nas Malhas de Eletricidade Básica Sistema Linear Homogêneo Definição: Chama-se Sistema de Equações Lineares Homogêneo nas incógnitas x, y e z ao conjunto de equações lineares homogêneas nessas incógnitas.
29 28 Assim, o sistema: a1x b1y c1z 0 a2x b2 y c2z 0 a 3x b3 y c3z 0 é linear homogêneo nas incógnitas x, y, z, isto é, o termo independente é igual a zero. Solução de Um Sistema Linear Homogêneo: Um Sistema Linear Homogêneo nas incógnitas x, y e z admite sempre a solução de x = 0 e y = 0, z = 0, denominada solução trivial ou solução imprópria. (OLIVEIRA, Mário de. Álgebra. Belo Horizonte, vol. II, 1966). Correntes nas Malhas de Eletricidade Básica Uma malha é qualquer percurso fechado de um circuito. Não se leva em conta se o percurso contém ou não uma fonte de tensão. Ao se resolver um circuito utilizando as correntes nas malhas, precisamos escolher previamente quais os percursos que formarão as malhas. A seguir, designamos para cada malha a sua respectiva corrente de malha. Por conveniência, as correntes de malha são geralmente indicadas no sentido horário. Este sentido é arbitrário, mas o horário é o mais usado. Aplica-se então a lei de Kirchhoff para a tensão ao longo dos percursos de cada malha. As equações resultantes determinam as correntes de malhas desconhecidas. A partir dessas correntes, pode-se calcular a corrente ou tensão de qualquer resistor. Lei de Kirchhoff para a Tensão (LKT) A lei de Kirchhoff para a tensão, ou lei das malhas, afirma que a tensão aplicada a um circuito fechado é igual à soma das quedas de tensão naquele
30 29 circuito. Este fato foi usado no estudo de circuitos em série e foi expresso da seguinte forma: Tensão aplicada = soma de quedas de tensão. V A = V 1 + V 2 + V 3, sendo V A a tensão aplicada e V 1, V 2, V 3 as quedas de tensão. Uma outra forma de enunciar a LKT é: a soma algébrica das subidas ou aumentos e das quedas de tensão deve ser igual a zero. Uma fonte de tensão ou f.e.m. é considerada como um aumento de tensão, uma tensão através de um resistor consiste numa queda de tensão. Tensão aplicada soma das quedas de tensão = 0, substituindo por letras: V A - V 1 - V 2 - V 3 = 0 ou V A - (V 1 +V 2 +V 3 ) = 0, ou V = 0 (Fonte: GUSSOW, Milton MS. Eletricidade Básica. São Paulo, 1997, p.136). ENUNCIADO Dado um circuito (ver figura abaixo) com três malhas chamadas de malha 1, malha 2 e malha 3. Dados V 1 = 20V, V 2 = 20V, V 3 = 10V, V 4 = 10V, V 5 = 10V e R 1 = 1Ω, R 2 = 2Ω, R 3 = 3Ω, R 4 = 4 Ω e R 5 = 5 Ω, calcule todas as correntes do circuito. Diagrama VR1 VR3 VR5 R 1 R 3 R 5 I A VR2 R 2 VR4 R 4 I B I C V1 = 20 V V5 = 10 V V2 = 20 V V4 = 10 V V3 = 10 V
31 INTERPRETAÇÃO DO ENUNCIADO Verbalização Questão 1 - Expresse o problema com suas palavras. 2 - MODELO MATEMÁTICO Questão 2 Quais as incógnitas do problema? Questão 3 Quais os dados do problema? Questão 4 Analise o diagrama de acordo com os dados do problema. problema? Questão 5 Que Lei Física se deve aplicar para a resolução desse
32 31 Questão 6 Monte as equações do sistema do problema. Questão 7 Verifique que o sistema de equações é homogêneo; como é possível e determinado, suas soluções são nulas. Comprove utilizando um método de resolução. Escalonamento - Regra de Cramer - Substituição RESOLUÇÃO DO PROBLEMA Questão 8 Resolva o sistema 4 INTERPRETAÇÃO/ E RETROSPECTO DA RESOLUÇÃO DO PROBLEMA Questão 11 Interprete os sentidos das correntes que percorrem o circuito a partir dos valores calculados. Explique.
33 Atividade 7 Informações Técnicas Necessárias de Circuito Puramente Resistivo (LKT e LKC) Objetivo: Montar um Circuito Puramente Resistivo de duas malhas, aplicar a Lei de Kirchhoff, resolver o sistema linear e comprovar os valores encontrados. Metodologia: No laboratório de Eletrônica será dado um problema de circuito Puramente Resistivo de duas malhas, que possibilite a montagem desse circuito, a aplicação da Lei de Kirchhoff e a resolução do sistema de 2 equações a 2 incógnitas comprovando os valores encontrados. Recordando Correntes nas Malhas e Lei dos Nós em Eletricidade Básica Uma malha é qualquer percurso fechado de um circuito. Não se leva em conta se o percurso contém ou não uma fonte de tensão. Ao se resolver um circuito utilizando as correntes nas malhas, precisamos escolher previamente quais os percursos que formarão as malhas. A seguir, designamos para cada malha a sua respectiva corrente de malha. Por conveniência, as correntes de malha são geralmente indicadas no sentido horário. Este sentido é arbitrário, mas o horário é o mais usado. Aplica-se então a lei de Kirchhoff para a tensão ao longo dos percursos de cada malha. As equações resultantes determinam as correntes de malhas desconhecidas. A partir dessas correntes, pode-se calcular a corrente ou tensão de qualquer resistor.
34 33 Lei de Kirchhoff para a Tensão (LKT) A lei de Kirchhoff para a tensão, ou lei das malhas, afirma que a tensão aplicada a um circuito fechado é igual à soma das quedas de tensão naquele circuito. Este fato foi usado no estudo de circuitos em série e foi expresso da seguinte forma: Tensão aplicada = soma de quedas de tensão. V A = V 1 +V 2 +V 3, sendo V A a tensão aplicada e V 1, V 2, V 3 as quedas de tensão. Lei de Kirchhoff para a Corrente (LKC) A Lei de Kirchhoff para a corrente, ou lei de nós, afirma que a soma das correntes que entram numa junção é igual à soma das correntes que saem da junção. Suponha que tenhamos quatro correntes saindo e entrando numa junção comum ou num ponto, como, por exemplo, o ponto P (figura abaixo). Este ponto comum é também chamado de nó. Soma de todas as correntes que entram = soma de todas as correntes que saem, logo, I 1 + I 2 +I 3 + I 4 = 0. Se considerarmos as correntes que entram numa junção ou nó como positivas (+) e as que saem da mesma junção ou nó como negativas (-), então esta lei afirma também que a soma algébrica de todas as correntes que se encontram numa junção comum é zero.
35 MONTAGEM NO LABORATÓRIO E CÁLCULOS PARA AS RESOLUÇÕES DOS PROBLEMAS DE FENÔMENOS FÍSICOS Componentes necessários para essa experimentação serão: 6 Resistores: 100 Ω; 100 Ω; 150 Ω; 150 Ω; 220 Ω e 330 Ω Multímetro Fonte Variável Protoboard (ou Matriz de Contatos) Cabos/Fios 2 - PRÁTICA Questão 1 - Montagem: Utilizando o multímetro na escala de tensão, calibre a fonte de tensão para 15 V. Monte no Protoboard o circuito a seguir. R 1 = 150 ohm R 2 = 100 ohm I1 I2 V = 15 V I3 R 3 = 100 ohm I2 R 4 = 150 ohm R 6 = 220 ohm R 5 = 330 ohm Utilizando o multímetro na escala de tensão, meça as quedas de tensão ou d.d.p. (diferença de potencial) sobre cada um dos resistores e preencha a tabela a seguir : Utilizando o multímetro na escala de corrente, meça a corrente que circula através de cada um dos resistores e preencha a tabela a seguir:
36 35 IMPORTANTE: Lembre-se de que, para efetuar uma medida de corrente, é necessário que o circuito seja interrompido no local onde se deseja efetuar a medida da corrente, e o amperímetro deve ser inserido em série no circuito. TENSÃO SOBRE O RESISTOR V R ( Volt ) CORRENTE NO RESISTOR I R ( ma ) R 1 = 150Ω V R1 = I R1 = R 2 = 100Ω V R2 = I R2 = R 3 = 100Ω V R3 = I R3 = R 4 = 150Ω V R4 = I R4 = R 5 = 220Ω V R5 = I R5 = R 6 = 330Ω V R6 = I R6 = Questão 2 - Faça a leitura dos valores dos resistores, utilizando o código de cores. Utilizando o multímetro na escala de resistência, meça e anote estes valores, confirmando sua leitura. (Ω - ohm) IMPORTANTE: Não se esqueça da unidade de medida de resistência R 1 = R 2 = R 3 = R 4 = R 5 = R 6 =
37 36 3 MODELO MATEMÁTICO problema? Questão 3 - Que Lei Física se deve aplicar para a resolução desse Questão 4 - Monte as equações do sistema do problema 3 - RESOLUÇÃO DO PROBLEMA Questão 5 Selecione o tipo de sistema que se deve aplicar para a resolução desse circuito. Adição - Substituição - Comparação - Questão 6 - Resolva o sistema.
38 37 Questão 7 - Calcule os valores das tensões e das correntes que circulam através dos resistores utilizando LKT ou LKC. Obs. Já existe uma sugestão do sentido e das correntes, no desenho do circuito que foi montado. 4 INTERPRETAÇÃO/COMPATIBILIZAÇÃO E RETROSPECTO DA RESOLUÇÃO DO PROBLEMA Questão 8 - Como você compatibilizaria, isto é, compararia sua solução com os dados encontrados do problema? Questão 9 Os dados e a solução foram compatíveis? Sim - Não - Se a resposta for não, justifique. Questão 10 Quais os sentidos das correntes que percorrem o circuito a partir dos valores calculados? Explique.
Roteiro-Relatório da Experiência N o 03 ANÁLISE DE MALHAS E ANÁLISE NODAL
COMPONENTES DA EQUIPE: Roteiro-Relatório da Experiência N o 03 ANÁLISE DE MALHAS E ANÁLISE NODAL ALUNOS NOTA 1 2 3 Data: /_ /_ :_ h 1. OBJETIVOS: Verificação experimental de ciruitos mistos com três malhas
Métodos de Análise de Circuitos
1 utor: Prof Paulo icardo Telles angel Elétricos 1 Introdução Os métodos de análise de circuitos elétricos são ferramentas que envolvem os conceitos de eletricidade, como a Lei de Ohm, em conjunto com
1. dois nós: B e F. 2. três ramos: BAEF, BDF e BCGF. 3. três malhas: ABDFEA, BCGFDB e ABCGFEA A SOMA ALGÉBRICA DAS CORRENTES EM UM NÓ
Capítulo 6 Leis de Kirchhoff 6.1 Definições Em alguns casos, um circuito não pode ser resolvido através de associações em série e paralelo. Nessas situações geralmente são necessárias outras leis, além
Se no terminal b do circuito for conectado um terceiro componente, como na figura abaixo, os resistores R 1 e R 2 não estarão mais em série.
Circuitos em Série Um circuito consiste em um número qualquer de elementos unidos por seus terminais, com pelo menos um caminho fechado através do qual a carga possa fluir. Dois elementos de circuitos
Associação de Resistores
Exper. 4 Objetivo Associação de esistores dentificar em um circuito resistivo as associações serie, paralela e mista. Determinar a resistência equivalente entre dois pontos de um circuito elétrico resistivo,
Circuitos com Cargas em Série e em Paralelo
PONTFÍCA UNERSDADE CATÓLCA DE GOÁS DEPARTAMENTO DE ENGENHARA ENG04 Circuitos Elétricos Exper. 3 Circuitos com Cargas em Série e em Paralelo Objetivo dentificar, em um circuito resistivo, as associações
ANÁLISE DE REDES DC Métodos: Corrente nas malhas, tensão nodal e superposição
ANÁLISE DE REDES DC Métodos: Corrente nas malhas, tensão nodal e superposição ANÁLISE DE UMA REDE DC ATRAVÉS DA CORRENTE NAS MALHAS: No circuito a seguir utilizaremos as Leis de Kirchhoff para sua resolução
EXPERIMENTO 3: CIRCUITOS DE CORRENTE CONTÍNUA
EXPERIMENTO 3: CIRCUITOS DE CORRENTE CONTÍNUA 3.1 OBJETIVOS Verificar experimentalmente as Leis de Kirchhoff 3.2 INTRODUÇÃO Para a resolução de um circuito de corrente contínua (cc), com várias malhas,
defi departamento de física
defi departamento de física Laboratórios de Física www.defi.isep.ipp.pt Circuito Série Paralelo Instituto Superior de Engenharia do Porto- Departamento de Física Rua Dr. António Bernardino de Almeida,
Painel para análise de circuitos resistivos CC. (Revisão 00) Lei de Kirchhoff
1 Painel para análise de circuitos resistivos CC (Revisão 00) Lei de Kirchhoff 1 2 Leis de Kirchhoff As leis de Kirchhoff, chamadas em homenagem ao cientista alemão Gustav Robert Kirchhoff. As duas leis
Aula Prática: Determinação da resistência interna de uma bateria e uso de regressão linear para determinação da equação de uma reta
Aula Prática: Determinação da resistência interna de uma bateria e uso de regressão linear para determinação da equação de uma reta Introdução Observe o circuito representado na figura ao lado em que uma
Roteiro-Relatório da Experiência N o 02 LEIS DE KIRCHHOFF
COMPONENTES DA EQUPE: Roteiro-Relatório da Experiência N o 02 LES DE KRCHHOFF ALUNOS NOTA 1 2 3 Data: / / : h 1. OBJETVOS: Verificação experimental da Lei de Kirchhoff das Tensões e a Lei de Kirchhoff
Aula 5. Divisor de tensão Divisor de corrente
Aula 5 Divisor de tensão Divisor de corrente Simulador de circuitos online Site: http://everycircuit.com/ Simulador online de circuito Exemplos desta aula: http://everycircuit.com/circuit/5500995385163776
LEIS DE KIRCHHOFF LKC e LKT I = 0
LEIS DE KIRCHHOFF LKC e LKT 1. LKC Comprovação 2. LKT Comprovação 3. Análise das equações As Leis de Kirchhoff são assim denominadas em homenagem ao físico alemão Gustav Kirchhoff 1. Formuladas em 1845,
Roteiro-Relatório da Experiência N o 02 LEIS DE KIRCHHOFF
COMPONENTES DA EQUPE: Roteiro-Relatório da Experiência N o 02 LES DE KRCHHOFF ALUNOS NOTA 1 2 3 Data: / / : h 1. OBJETVOS: Verificação experimental da Lei de Kirchhoff das Tensões e a Lei de Kirchhoff
Leis de Kirchhoff. Leis de Kirchhoff. Prof. Augusto Melo MENU
MENU 1 Introdução 2 1ª Lei de Kirchhoff Lei dos nós 3 Exemplo 1 1ª Lei 4 Exemplo 2 1ª Lei 5 2ª Lei de Kirchhoff Lei das Malhas 6 A explicação para a 2ª Lei 7 Referenciais Introdução 8 Referenciais Gerador
Circuitos de Corrente Contínua e Associação de Resistores Aula 7
Circuitos de Corrente Contínua e Associação de Resistores Aula 7 Circuito elétrico é todo caminho condutor fechado onde se produz uma corrente elétrica. Corrente Elétrica Contínua é toda aquela que tem
3) Cite 2 exemplos de fontes de Alimentação em Corrente Continua e 2 exemplos em Corrente Alternada.
Lista de exercícios Disciplina: Eletricidade Aplicada Curso: Engenharia da Computação Turma: N30 1 -) Assinale a alternativa correta. Descreva o que é tensão elétrica. a - A diferença de potencial elétrico
Energia envolvida na passagem de corrente elétrica
Eletricidade Supercondutividade Baixando-se a temperatura dos metais a sua resistividade vai diminuindo Em alguns a resistividade vai diminuindo com a temperatura, mas não se anula Noutros a resistividade
Eletricidade Aula 4. Leis de Kirchhoff
Eletricidade Aula 4 Leis de Kirchhoff Fonte de Alimentação Vídeo 6 É um dispositivo capaz de fornecer energia elétrica para um circuito. A fonte de alimentação também pode ser chamada de gerador, e outras
Roteiro de Aulas Práticas: Normas gerais para uso do laboratório; roteiro básico para montagem de circuitos
Roteiro de Práticas Roteiro de Aulas Práticas: Normas gerais para uso do laboratório; roteiro básico para montagem de circuitos RP0 1. OBJETIVO Apresentar as normas gerais para uso do laboratório com segurança
Aula Prática: Determinação da resistência interna de uma bateria e uso de regressão linear para determinação da equação de uma reta
Aula Prática: Determinação da resistência interna de uma bateria e uso de regressão linear para determinação da equação de uma reta Introdução Observe o circuito representado na figura ao lado em que uma
Circuitos Elétricos: Circuitos em Paralelo
Circuitos Elétricos: Circuitos em Paralelo Maurício Romani, Prof. Universidade Federal do Paraná [email protected] - mromani.weebly.com 07 de abril de 2016 Maurício Romani, Prof. (UFPR) Circuitos Elétricos
Roteiro de Aulas Práticas: Lei de Ohm (medições de tensão, corrente e resistência); validação das Leis de Kirchhoff
Roteiro de Práticas Roteiro de Aulas Práticas: Lei de Ohm (medições de tensão, corrente e resistência); validação das Leis de Kirchhoff RP1 1. OBJETIVO Aprender a utilizar o voltímetro e o amperímetro
Ánalise de Circuitos. 1. Método Intuitivo
Ánalise de Circuitos 1. Método Intuitivo Ramo de um circuito: é um componente isolado tal como um resistor ou uma fonte. Este termo também é usado para um grupo de componentes sujeito a mesma corrente.
Circuitos de Corrente Contínua
UNVESDDE nstituto de Física de São Carlos Nesta prática estudaremos as leis de Kirchoff para análise de circuitos de corrente contínua. Nos experimentos, investigaremos alguns circuitos simples formados
LISTA DE EXECÍCIOS AULA 3 FÍSICA ELETRICIDADE
LISTA DE EXECÍCIOS AULA 3 FÍSICA ELETRICIDADE DENSIDADE DE CORRENTE E VELOCIDADE DE ARRASTE 1) A American Wire Gauge (AWG) é uma escala americana normalizada usada para padronização de fios e cabos elétricos.
Noções básicas de circuitos elétricos: Lei de Ohm e Leis de Kirchhoff
Noções básicas de circuitos elétricos: Lei de Ohm e Leis de Kirchhoff Material 2 Resistores de 3.3kΩ; 2 Resistores de 10kΩ; Fonte de alimentação; Multímetro digital; Amperímetro; Introdução Existem duas
Aula 01. Análise de Circuitos Elétricos. Prof. Alexandre Akira Kida, Msc., Eng. IFBA
Aula 01 Análise de Circuitos Elétricos Prof. Alexandre Akira Kida, Msc., Eng. IFBA 1 Plano de aula 1. Associação de fontes de tensão 2. Leis de Kirchhoff 3. Método de Maxwell 4. Transformação Y - 2 Introdução
Associação de resistores em série e em paralelo
Aula Prática: Associação de resistores em série e em paralelo Introdução Suponha que você possua duas lâmpadas, cujas resistências elétricas sejam R 1 e R 2, e uma bateria cuja FEM (Força Eletro Motriz,
Aula 04 -Potência Elétrica e Leis de Kirchhoff
Introdução Aula 04 -Potência Elétrica e Leis de Kirchhoff Eletrotécnica Quando ligamos um aparelho em uma máquina elétrica a uma fonte de eletricidade, produz-se certa quantidade de trabalho, às custas
Aula 2. Revisão Circuitos Resistivos
Aula 2 Revisão Circuitos Resistivos Conceitos básicos Corrente (A) Tensão (V) Potência (W) i = dq dt v = dw dq p = dw dt Energia (J) w = න Pdt Corrente: Fluxo de cargas; Tensão: Diferença de potencial
ASSOCIAÇÃO DE RESISTORES E LEIS DE KIRCHHOFF
ASSOCIAÇÃO DE RESISTORES E LEIS DE KIRCHHOFF Introdução Associação de Resistores Em muitas aplicações na engenharia elétrica e eletrônica é muito comum fazer associações de resistores com o objetivo de
ASSOCIAÇÃO DE RESISTORES E LEIS DE KIRCHHOFF
ASSOCIAÇÃO DE RESISTORES E LEIS DE KIRCHHOFF Introdução Associação de Resistores Em muitas aplicações na engenharia elétrica e eletrônica é muito comum fazer associações de resistores com o objetivo de
Painel para análise de circuitos resistivos DC. (Revisão 00) Lei de Kirchhoff
1 Painel para análise de circuitos resistivos DC (Revisão 00) Lei de Kirchhoff 2 O trabalho Guia de aplicação: Leis de Kirchhoff, de SILVA, Juarez B.; xxxxxx está licenciado com uma Licença Creative Commons
ROTEIRO DA PRÁTICA I Resistência e Lei de Ohm
UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO INSTITUTO DE QUÍMICA LABORATÓRIO DE FÍSICA III CURSO DE ENGENHARIA QUÍMICA Prof. Paulo Vitor de Morais ROTEIRO DA PRÁTICA I Resistência e Lei de Ohm
Lista de exercícios - Regra de Kirchhoff
Lista de exercícios - Regra de Kirchhoff Circuitos Complexos Regra de Kirchhoff Existem alguns circuitos em que não é possível fazer a separação de partes em série e/ou em paralelo e além disto podem ter
Eletricidade básica. Aula 06: Circuitos em série
Eletricidade básica Aula 06: Circuitos em série Fonte elétrica As fontes elétricas são fundamentais na compreensão da eletrodinâmica, pois elas que mantém a diferença de potencial (ddp) necessária para
EXPERIÊNCIA 2: LEI DE OHM
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE RORAIMA CAMPUS BOA VISTA CURSO TÉCNICO EM ELETROTÉCNICA DISCIPLINA: ELETRICIDADE BÁSICA EQUIPE: TURMA: 14311 EXPERIÊNCIA 2: LEI DE OHM 1. OBJETIVOS:
ASSOCIAÇÃO DE RESISTORES E LEIS DE KIRCHHOFF
ASSOCIAÇÃO DE RESISTORES E LEIS DE KIRCHHOFF Introdução Associação de Resistores Em muitas aplicações na engenharia elétrica e eletrônica é muito comum fazer associações de resistores com o objetivo de
UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CAMPUS AVANÇADO DE NATAL CURSO DE CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR
UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CAMPUS AVANÇADO DE NATAL CURSO DE CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR PROFESSOR: MARCELO SILVA 1. Introdução No ensino fundamental você estudou
Técnicas de Análise de Circuitos Elétricos
Unidade 2 Técnicas de Análise de Circuitos Elétricos Nesta segunda unidade, você estudará como associar resistores. Aprenderá as leis e técnicas utilizadas em análise de circuitos que estabelecem a relação
Eletricidade (EL63A) LEIS BÁSICAS
Eletricidade (EL63A) LEIS BÁSICAS Prof. Luis C. Vieira [email protected] http://paginapessoal.utfpr.edu.br/vieira/el63a-eletricidade INTRODUÇÃO Como determinar os valores de tensão, corrente e potência
Circuitos elétricos. Prof. Fábio de Oliveira Borges
Circuitos elétricos Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil https://cursos.if.uff.br/!fisica2-0117/doku.php
Método das Malhas. Abordagem Geral
Método das Malhas Abordagem Geral Método das Malhas 1. Associe uma corrente no sentido horário a cada malha fechada e independente do circuito. Não é necessário escolher o sentido horário para todas as
12/04/2012 a 11/08/2012
ELETRICIDADE PARTE 1 1º SEMESTRE 2012 12/04/2012 a 11/08/2012 Professor: Júlio César Madureira Silva < [email protected] > 1 EMENTA: 1. Revisão sobre unidades de medida no SI. múltiplos m e submúltiplos
Capítulo 4. Métodos de Análise
Capítulo 4 Métodos de Análise 4. Análise Nodal Análise de circuitos mais gerais acarreta na solução de um conjunto de equações. Análise nodal: Tensões são as incógnitas a serem determinadas. Dee-se escolher
PROJETO DE RECUPERAÇÃO PARALELA 1º Trimestre
PROJETO DE RECUPERAÇÃO PARALELA 1º Trimestre - 2018 Disciplina: Física Série: 3ª série do E. Médio Professor: Wagner Fonzi Objetivo: Favorecer ao aluno nova oportunidade para superar as dificuldades apresentadas
O USO DO SIMULADOR PhET PARA O ENSINO DE ASSOCIAÇÃO DE RESISTORES. Leonardo Dantas Vieira
Universidade Federal de Goiás - Regional Catalão Instituto de Física e Química Programa de Pós-Graduação em Ensino de Física Mestrado Nacional Profissional em Ensino de Física O USO DO SIMULADOR PhET PARA
EXERCÍCIOS DE APLICAÇÃO CIRCUITOS 1
1. (Unesp 94) Por uma bateria de f.e.m. (E) e resistência interna desprezível, quando ligada a um pedaço de fio de comprimento Ø e resistência R, passa a corrente i (figura 1). Quando o pedaço de fio é
/augustofisicamelo. Menu
Menu 1 Conceitos iniciais 2 Elementos de um circuito (1) 3 Elementos de um circuito (2) 4 Lei de Pouillet 5 Introdução às Leis de Kirchhoff 6 1ª Lei de Kirchhoff 7 2ª Lei de Kirchhoff 8 Convenções para
RELATÓRIO DE AULA PRÁTICA
SENAI sc Serviço Nacional de Aprendizagem Industrial Universidade do sul de Santa Catarina - UNISUL Curso de Graduação Eletrotécnica Geral 3ª Fase RELATÓRIO DE AULA PRÁTICA PRÁTICA 1: Medições e comparações
Aula 4 Análise Circuitos Elétricos Prof. Marcio Kimpara
ELETICIDADE Aula 4 Análise Circuitos Elétricos Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul 2 Circuito Elétrico Chamamos de circuito elétrico a um caminho fechado, constituído de condutores,
ELETROTÉCNICA ELM ROTEIRO DA AULA PRÁTICA 01 A LEI DE OHM e AS LEIS DE KIRCHHOFF
ELETROTÉCNICA ELM ROTEIRO DA AULA PRÁTICA 01 A LEI DE OHM e AS LEIS DE KIRCHHOFF NOME: TURMA: DATA: / / OBJETIVOS: Ler o valor nominal de cada resistor através do código de cores. Conhecer os tipos de
6.1 Relatório 1 74 CAPÍTULO 6. PRÉ-RELATÓRIOS E RELATÓRIOS. Nome 1: Assinatura 1: Nome 2: Assinatura 2: Nome 3: Assinatura 3: Turma:
74 CAPÍTULO 6. PRÉ-RELATÓRIOS E RELATÓRIOS 6.1 Relatório 1 Nome 1: Assinatura 1: Nome 2: Assinatura 2: Nome 3: Assinatura 3: Turma: Procedimento I: Lei de Ohm Q1 (0,5 ponto) Monte o circuito indicado na
Unidades. Coulomb segundo I = = Ampere. I = q /t. Volt Ampere R = = Ohm. Ohm m 2 m. r = [ r ] = ohm.m
Eletricidade Unidades I = Coulomb segundo = Ampere I = q /t R = Volt Ampere = Ohm r = Ohm m 2 m [ r ] = ohm.m Grandeza Corrente Resistência Resistividade Condutividade SI (kg, m, s) Ampere Ohm Ohm.metro
Roteiro para experiências de laboratório. AULA 4: Resistência equivalente
Roteiro para experiências de laboratório AULA 4: Resistência equivalente Alunos: 1-2- 3-4- 5- Turma: Data: / / Objetivos: - Conhecer os diversos tipos de resistores. - Entender e praticar código de cores
Respostas Finais Lista 6. Corrente Elétrica e Circuitos de Corrente Contínua ( DC )
Respostas Finais Lista 6 Corrente Elétrica e Circuitos de Corrente Contínua ( DC ) Q 26.3) Essa diferença esta mais associada à energia entregue à corrente de um circuito por algum tipo de bateria e à
Circuitos Elétricos Simples
Circuitos Elétricos Simples Circuitos elétricos que contém apenas resistores e fontes. A corrente elétrica se move sempre no mesmo sentido, ou seja, são circuitos de corrente contínua. Circuitos com mais
Eletricidade (EL63A) ANÁLISE NODAL
Eletricidade (EL63A) ANÁLISE NODAL Prof. Luis C. Vieira [email protected] http://paginapessoal.utfpr.edu.br/vieira/el63a-eletricidade INTRODUÇÃO A partir das leis fundamentais da teoria de circuitos
x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-47 Álgebra Linear para Engenharia I Primeira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS. Resolva os seguintes sistemas:
6. CIRCUITOS DE CORRENTE CONTÍNUA
6. CCUTOS DE COENTE CONTÍNUA 6.. Força Electromotriz 6.2. esistências em Série e em Paralelo. 6.3. As egras de Kirchhoff 6.4. Circuitos C 6.5. nstrumentos Eléctricos Análise de circuitos simples que incluem
Relatório: Experimento 1
Relatório: Experimento 1 Nome 1: Assinatura 1: Nome 2: Assinatura 2: Nome 3: Assinatura 3: Nome 4: Assinatura 4: Turma: Procedimento I: Lei de Ohm Q1 (0,5 ponto) Monte o circuito indicado na Figura 1.11
AULA 08 CIRCUITOS E LEIS DE KIRCHHOFF. Eletromagnetismo - Instituto de Pesquisas Científicas
ELETROMAGNETISMO AULA 08 CIRCUITOS E LEIS DE KIRCHHOFF OS ELEMENTOS DO CIRCUITO Sabemos que o circuito é o caminho percorrido pela corrente elétrica. Nessa aula iremos analisar esses circuitos. Mas antes
Aula 4. Leis de Kirchhoff
Aula 4 Leis de Kirchhoff Revisão Corrente (A) i = dq dt Potência (W) p = dω dt Tensão (V) v = dω dq Energia (J) ω = p dt Para a corrente indicamos a direção do fluxo da corrente Para a tensão indicamos
Circuitos Série e a Associação Série de Resistores
1 Painel para análise de circuitos resistivos CC (Revisão 00) Circuitos Série e a Associação Série de Resistores 1 2 Circuitos Série e a Associação Série de Resistores Utilizando as chaves disponíveis
26/05/2014. ANÁLISE NODAL e de MALHA por INSPEÇÃO. Professor: Paulo Cícero Fritzen
ANÁLISE NODAL e de MALHA por INSPEÇÃO Professor: Paulo Cícero Fritzen E-mail: [email protected] ANÁLISE NODAL por INSPEÇÃO Esta é uma abordagem rápida, fundamentada na simples inspeção do circuito.
Na segunda parte desta experiência será realizada a medição da resistência interna de um voltímetro digital, na escala de 20V.
Introdução Na primeira parte desta experiência vamos rever as Leis de Kirchhoff e de Ohm e suas aplicações na previsão do funcionamento de circuitos resistivos lineares. O objetivo consiste em determinar
Roteiro para experiências de laboratório. AULA 4: Resistência equivalente. Alunos: 2-3-
Campus SERRA COORDENADORIA DE AUTOMAÇÃO INDUSTRIAL Disciplina: Circuito em Corrente Contínua Turma: AN1 Professor: Vinícius Secchin de Melo Roteiro para experiências de laboratório AULA 4: Resistência
Eletricidade (EL63A) ANÁLISE DE MALHA
Eletricidade (EL63A) ANÁLISE DE MALHA Prof. Luis C. Vieira [email protected] http://paginapessoal.utfpr.edu.br/vieira/el63a-eletricidade INTRODUÇÃO A partir das leis fundamentais da teoria de circuitos
EXPERIMENTO 2: ASSOCIAÇÃO DE RESISTORES E A LEI DE OHM
EXPERIMENTO 2: ASSOCIAÇÃO DE RESISTORES E A LEI DE OHM 2.1 OBJETIVOS Ler o valor nominal de cada resistor através do código de cores. Medir as resistências equivalentes das associações Verificar o comportamento
Uma abordagem de Circuitos Elétricos utilizando Sistemas Lineares
Uma abordagem de Circuitos Elétricos utilizando Sistemas Lineares Giovane Rodrigues de Oliveira Instituto Federal de Santa Catarina IFSC - Campus Rau Jaraguá do Sul, Brasil [email protected] Sander
ELETRICIDADE E ELETROMAGNETISMO
PETROBRAS TECNICO(A) DE OPERAÇÃO JÚNIOR ELETRICIDADE E ELETROMAGNETISMO QUESTÕES RESOLVIDAS PASSO A PASSO PRODUZIDO POR EXATAS CONCURSOS www.exatas.com.br v3 RESUMÃO GRANDEZAS E UNIDADES (S.I.) t: Tempo
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO
22 4.2 Experimento 2: Resistência e Resistores, Voltagem, Corrente e Lei de Ohm 4.2.1 Objetivos Fundamentar os conceitos de resistência e resistor. Conhecer o código de cores, utilizado para especificar
CIRCUITOS CONCENTRADOS E LEIS DE KIRCCHOFF
UNIDADE 1 1. Circuitos Concentrados CIRCUITOS CONCENTRADOS E LEIS DE KIRCCHOFF É qualquer ligação de elemento concentrado, de tal forma que as dimensões sejam pequenas comparadas com o comprimento de onda
Aula 14 Leis de Kirchhoff
Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Física III Prof. Dr. Ricardo Luiz Viana Referências bibliográficas: H. 9-, 9-4, 9-5, 9-6 S. 7- T. - Aula 4 Leis de Kirchhoff
Medição de Tensões e Correntes Eléctricas. Leis de Ohm e de Kirchhoff
Ano lectivo: 2010 2011 Medição de Tensões e Correntes Eléctricas. Leis de Ohm e de Kirchhoff 1. OBJECTIVO Aprender a utilizar um osciloscópio e um multímetro digital. Medição de grandezas AC e DC. Conceito
ELETROTÉCNICA (ENE078)
UNIVERSIDADE FEDERAL DE JUIZ DE FORA Graduação em Engenharia Civil ELETROTÉCNICA (ENE078) PROF. RICARDO MOTA HENRIQUES E-mail: [email protected] Aula Número: 06 Revisão Aula Anterior... Revisão
EELi04 Eletricidade Aplicada I Aula 4
UNIFEI - campus ITABIRA EELi04 Eletricidade Aplicada I Aula 4 Professor: Valmor Ricardi Junior Transparências: Prof. Clodualdo Sousa Prof. Tiago Ferreira Prof. Valmor Junior Sumário Circuito CC série (revisão):
6. CIRCUITOS DE CORRENTE CONTÍNUA
6. CCUTOS DE COENTE CONTÍNUA 6. Força Electromotriz 6.2 esistências em Série e em Paralelo. 6.3 As egras de Kirchhoff 6.4 Circuitos C 6.5 nstrumentos Eléctricos Análise de circuitos simples que incluem
Experimento Prático N o 4
UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Engenharia Área de Eletricidade Experimento Prático N o Eletricidade para Engenharia Lei de Ohm e Potência Elétrica L A B O R A T Ó R I O D E E L E T R I
O símbolo usado em diagramas de circuito para fontes de tensão é:
Circuitos Elétricos Para fazer passar cargas elétricas por um resistor, precisamos estabelecer uma diferença de potencial entre as extremidades do dispositivo. Para produzir uma corrente estável é preciso
Corrente e resistência
Cap. 27 Corrente e resistência Prof. Oscar Rodrigues dos Santos [email protected] Circuito 1 Força eletromotriz Quando as cargas de movem em através de um material condutor, há diminuição da sua
Circuitos de Corrente Contínua. Unidade 03 Circuitos de Corrente Contínua
Circuitos de Corrente Contínua Prof. Edwar Saliba Júnior Julho de 2012 1 Eletricidade Fenômeno físico atribuído a cargas elétricas estáticas ou em movimento; Quando o assunto é eletricidade, precisamos
Roteiro-Relatório da Experiência N o 03 LINEARIDADE E SUPERPOSIÇÃO
Roteiro-Relatório da Experiência N o 03 LINEARIDADE E SUPERPOSIÇÃO. COMPONENTES DA EQUIPE: ALUNOS NOTA 3 Data: / / : hs. OBJETIVOS:.. Verificação experimental dos princípios da linearidade e superposição
UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório
UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório AULA 02 VOLTÍMETRO E AMPERÍMETRO DE CORRENTE CONTÍNUA 1 INTRODUÇÃO Na primeira aula
MODELAGEM MATEMÁTICA E ANÁLISE DO COMPORTAMENTO DE GRANDEZAS ELÉTRICAS NO CIRCUITO RLC SÉRIE
MODELAGEM MATEMÁTICA E ANÁLISE DO COMPORTAMENTO DE GRANDEZAS ELÉTRICAS NO CIRCUITO RLC SÉRIE Cleber Mateus Duarte Porciuncula 1 Andre Luiz Bedendo 2 1 Graduando de licenciatura em Matemática UNIJUÍ [email protected]
Circuitos. ε= dw dq ( volt= J C ) Definição de fem:
Aula-7 Circuitos Circuitos Resolver um circuito de corrente contínua (DC) é calcular o valor e o sentido da corrente. Como vimos, para que se estabeleça uma corrente duradoura num condutor, é necessário
Grupo:... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Data : / / Experiência 1 CIRCUITOS ELÉTRICOS SIMPLES
INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO Laboratório de Eletromagnetismo (4300373) 2º SEMESTRE DE 2012 Grupo:......... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Data : / / Experiência
NOME: N CADERNO DE RECUPERAÇÃO DE FÍSICA I 3º ANO EM TURMA 232 PROFº FABIANO 1º BIMESTRE
1925 *** COLÉGIO MALLET SOARES *** 2016 91 ANOS DE TRADIÇÃO, RENOVAÇÃO E QUALIDADE DEPARTAMENTO DE ENSINO DATA: / / NOTA: NOME: N CADERNO DE RECUPERAÇÃO DE FÍSICA I 3º ANO EM TURMA 232 PROFº FABIANO 1º
FÍSICA EXPERIMENTAL 3001
FÍSICA EXPERIMENTAL 300 EXPERIÊNCIA 6 TRANSFERÊNCIA DE POTÊNCIA. OBJETIVOS.. Objetivo Geral Familiarizar os acadêmicos com fontes de tensão (baterias) na condição de máxima transferência de potência para
