ROBOTICA INDUSTRIAL BAÇO ROBÓTICO CAPITULO 3
|
|
|
- Isaac Malheiro Laranjeira
- 9 Há anos
- Visualizações:
Transcrição
1 ROBOTICA INDUSTRIAL BAÇO ROBÓTICO CAPITULO 3 Na indústria moderna e também em laboratórios de ensino e pesquisa, cada vez mais estão sendo utilizados diversos tipos de robôs nos processos de manufatura ou de controle da qualidade. Mas, o quê se entende exatamente por um ROBÔ? Existem muitas definições diferentes, dependendo do ponto de vista e, em geral, da área na qual se trabalha com os robôs. Uma acepção supostamente "oficial" do termo robô foi estabelecida pelo Instituto Americano de (RIA): "Um robô industrial é um manipulador reprogramável, multifuncional, projetado para mover materiais, peças,ferramentas ou dispositivos específicos em movimentos variáveis programados para a realização de uma variedade de tarefas". Essa definição, do ponto de vista mais amplo do termo robô, corresponde apenas a uma classe específica, precisamente a dos ROBÔS MANIPULADORES. São exemplos de robôs manipuladores os braços mecânicos, ou qualquer sistema que, em geral, tenha por objetivo deslocar material de um ponto para outro do espaço ou acompanhando uma trajetória dentro de um volume de trabalho. Da definição dada podem ser extraídas diversas conclusões sobre as características dos robôs manipuladores. Uma delas é que, como qualquer robô, a tarefa a realizar deve estar previamente programada e seu acionamento dependerá desse programa de controle. Essa característica é invariável para todo robô, portanto também para os manipuladores. Uma outra conclusão é que os manipuladores têm como principal objetivo deslocar materiais, que podem ser peças diversas, ferramentas que irão trabalhar sobre uma peça, ou sistemas de visão que deverão monitorar o andamento de um determinado processo, entre outras possibilidades.
2 O tipo mais conhecido de robô manipulador é o braço mecânico. Ele consiste numa série de corpos rígidos interligados por juntas que permitem um movimento relativo entre esses corpos, assemelhando-se assim sua forma geral à de um braço humano, às vezes quase com as mesmas possibilidades de movimento. ESTRUTURA Os robôs industriais são projetados com o intuito de realizar um trabalho produtivo. O trabalho é executado quando o robô movimenta sua estrutura a fim de deslocar o objeto a ser manipulado. A estrutura de um robô manipulador consiste basicamente numa série de corpos rígidos, idealmente sem deformação pela ação de forças aplicadas sobre eles e que, em geral, são feitos de um material resistente como aço, que se denominam ELOS (links). Esses elos podem ter diversos tamanhos e formas dependendo da aplicação, estando unidos por JUNTAS (articulações) que lhes permitem ter um movimento relativo entre eles. Assim, em alguma localização do elo, existirá uma junta que o une com o elo seguinte, permitindo-lhe um movimento. Conforma-se assim uma cadeia cinemática aberta de elos interligados por juntas. Em geral, os manipuladores estão montados sobre uma BASE fixa, à qual está unido o primeiro elo através da primeira junta. Esta base
3 pode estar montada sobre uma superfície também fixa, ou num veículo (automatizado ou não), que lhe permita um deslocamento pelo local de trabalho. O ponto extremo do último elo é conhecido com o nome de PUNHO, e é onde costuma estar fixado o EFETUADOR; no caso particular dos braços mecânicos ele se assemelha à mão no extremo do antebraço.
4 EFETUADORES O efetuador é o componente capaz de promover a interação entre a extremidade terminal do manipulador mecânico e o objeto a ser trabalhado. Este componente é. Os efetuadores podem ser divididos em dois grandes tipos: As ferramentas especiais e as garras mecânicas. As ferramentas têm como função realizar uma ação ou trabalho sobre uma peça, sendo relacionadas principalmente a operações de processamento e controle de qualidade. Efetuadores usados em robótica são padronizados,de tal forma a permitir uma vinculação fácil à extremidade terminal do robô industrial e geralmente podem ser controlados pela mesma unidade de controle do robô, através de interfaces apropriadas. O uso de ferramentas está associado diretamente às tarefas a serem realizadas. Dentre as ferramentas mais tradicionais utilizadas em operações de processamento estão: O porta eletrodo, a pistola de aspersão (para pó, jateamento de superfícies e etc.), a pistola de pintura, as tochas para soldagem TIG e MIG/MAG, o dispositivo para soldagem/corte à plasma, o conjunto de pinças para soldagem por pontos, o dispositivo para soldagem/corte à laser, o porta esmeriladora, o maçarico para corte oxiacetilênico, a pistola para limpeza por jato d'água, a pistola para corte por jato d'água e etc. APLICAÇÕES DE ROBÔS INDUSTRIAIS A maioria das atividades relacionadas a robôs industriais em processos de produção envolvem operações de movimentação, processamento e controle de qualidade. A seguir são apresentadas algumas destas atividades: Movimentação: movimentação de peças entre posições definidas; Transporte de peças entre esteira transportadora e máquinas operatrizes;
5 Carregamento e descarregamento de peças em máquinas operatrizes; Carregamento e descarregamento de peças em magazines; Soldagem por resistência elétrica (pontos) ou a arco (contínua); Fixação de circuitos integrados em placas; Pintura e envernizamento de superfícies; Montagem de peças; Acabamento superficial; Limpeza através de jato d'água e abrasivos; Corte através de processos por plasma, laser, oxicorte ou jato d'água; Fixação de partes com parafusos, deposição de cola, rebites; Empacotamento,Controledequalidade,Inspeção por visão, verificação dimensional de peças através de sensores. TIPOS DE JUNTAS. A maioria dos braços dos robôs são formadas pelas juntas deslizantes e de revolução, embora alguns incluam o de bola e encaixe. A seguir será descrito cada um destes tipos de juntas. Juntas Deslizantes. Este tipo de junta permite o movimento linear entre dois vínculos. É composto de dois vínculos alinhados um dentro do outro, onde um vínculo interno escorrega pelo externo, dando origem ao movimento linear. Este tipo de junta é mostrada, como segue.
6 Junta deslizante Juntas de Rotação. Esta conexão permite movimentos de rotação entre dois vínculos. Os dois vínculos são unidos por uma dobradiça comum, com uma parte podendo se mover num movimento cadenciado em relação à outra parte, como mostrado na figura 3. As juntas de rotação são utilizadas em muitas ferramentas e dispositivos, tal como tesouras, limpadores de pára-brisa e quebra-nozes. Junta de rotação Juntas de Bola e Encaixe. Esta conexão se comporta como uma combinação de três juntas de rotação, permitindo movimentos de rotação em torno dos três eixos, como mostrado.
7 Junta de bola e encaixe Estas juntas são usadas em um pequeno número de robôs, devido à dificuldade de ativação. De qualquer maneira, para se ter a performance de uma junta bola e encaixe, muitos robôs incluem três juntas rotacionais separadas, cujos eixos de movimentação se cruzam em um ponto. Três juntas rotacionais substituindo a junta de bola e encaixe
8 GRAUS DE LIBERDADE. O número de articulações em um braço do robô é também referenciada como grau de liberdade. Quando o movimento relativo ocorre em um único eixo, a articulação têm um grau de liberdade. Quando o movimento é por mais de um eixo, a articulação têm dois graus de liberdade. A maioria dos robôs têm entre 4 a 6 graus de liberdade. Já o homem, do ombro até o pulso, têm 7 graus de liberdade. CLASSIFICAÇÃO DOS ROBÔS PELO TIPO DE ARTICULAÇÃO. É usual classificar os robôs de acordo com o tipo de junta, ou mais exatamente, pelas 3 juntas mais próximas da base do robô. Esta divisão em classes fornece informações sobre características dos robôs em várias categorias importantes: 1. Espaço de trabalho. 2. Grau de rigidez. 3. Extensão de controle sobre o curso do movimento. 4. Aplicações adequadas ou inadequadas para cada tipo de robô. Robôs podem ser classificados pelo tipo de juntas em cinco grupos: O código usado para estas classificações consiste em três letras, referindo-se ao tipo de junta ( R = revolução, P = deslizante - do inglês prismatic ) na ordem em que ocorrem, começando de junta mais próxima à base. Robôs Cartesianos. O braço destes robôs têm três articulações deslizantes sendo codificado como PPP. Robô Cartesiano
9 Os robôs cartesianos caracterizam pela pequena área de trabalho, mas com um elevado grau de rigidez mecânica e são capazes de grande exatidão na localização do atuador. Seu controle é simples devido ao movimento linear dos vínculos e devido ao momento de inércia da carga ser fixo por toda a área de atuação. Robôs Cilíndricos. Os braços destes robôs consistem de uma junta de revolução e duas juntas deslizantes, sendo codificada como RPP. Robô Cilíndrico A área de trabalho destes robôs são maiores que os robôs cartesianos, mas a rigidez mecânica é ligeiramente inferior. O controle é um pouco mais complicado que o modelo cartesiano, devido a vários momentos de inércia para diferentes pontos na área de trabalho e pela rotação da junta da base.
10 Robôs Esféricos. Estes robôs possui duas juntas de revolução e uma deslizante, sendo codificado como RRP. Robô Esférico Estes robôs tem uma área de trabalho maior que os modelos cilíndricos, mas perde na rigidez mecânica. Seu controle é ainda mais complicado devido os movimentos de rotação.
11 Robôs com Articulação Horizontal. Caracterizam-se por possuir duas juntas de revolução e uma deslizante, sendo codificados RRP. Robô com Articulação Horizontal A área de atuação deste tipo de robô é menor que no modelo esférico, sendo apropriados para operações de montagem, devido ao movimento linear vertical do terceiro eixo. Robôs com Articulação Vertical. Estes robôs caracterizam-se por possuir três juntas de revolução, sendo codificados por RRR. Robô com Articulação Vertical
12 Sua área de atuação é maior que qualquer tipo de robô, tendo uma baixa rigidez mecânica. Seu controle é complicado e difícil, devido as três juntas de revolução e devido à variações no momento de carga e momento de inércia. ROBÔS SCARA O exemplo mais comum de uma configuração não clássica é representado pelo robô tipo SCARA Selective Compliance Assembly Robot Arm (Braço Robótico para Montagem com Flexibilidade Seletiva). Esta configuração possui duas articulações rotacionais e uma prismática (RRP). Os eixos são paralelos entre si, sendo o prismático com deslocamento vertical. Assim o movimento linear está localizado no eixo Z e os movimentos de rotação são de roll (em torno de Z). Esta configuração foi desenhada para poder executar trabalhos que requerem movimentos simples de manipulação de peças sobre uma superfície plana, ESPAÇO DE TRABALHO É definido como o volume total formado pelo percurso do punho, quando o manipulador efetua todas as trajetórias possíveis. O volume dependerá da anatomia do robô, do tamanho dos elos, assim como dos limites dos movimentos das juntas.
13 A posição do punho pode ser representada no espaço de trabalho ou no ESPAÇO DAS JUNTAS. A "posição no espaço de trabalho" é determinada pela posição do punho segundo um sistema de três eixos cartesianos ortogonais, cuja origem é à base do robô. A "posição no espaço das juntas" é representada pelo vetor de coordenadas generalizadas, relativas a uma posição inicial arbitrária. COMPARAÇÃO DA ÁREA DE TRABALHO DOS ROBÔS. Nesta seção será feita uma análise matemática elementar para o calculo da capacidade dos robôs. As comparações são ilustradas na figura 11 e o calculo da área de trabalho segue-se após a mesma. Robôs Cartesianos - Alcançam qualquer ponto de um cubo de lado L. V = L * L * L Robôs Cilíndricos - alcançam qualquer ponto em um cilindro de altura L e raio 2L, exceto os pontos do cilindro interno de raio L e altura L. V = 9,42 * L * L * L Robôs Esféricos - alcançam qualquer ponto de uma esfera de raio 2L, exceto a esfera interna de raio L. V = 29,32 * L * L * L Robôs de Articulação Horizontal - alcançam qualquer ponto de um cilindro de raio 2L e altura L. V = 12,56 * L * L * L Robôs de Articulação Vertical - Alcançam qualquer ponto de uma esfera de raio 2L. V = 33,51 * L * L * L Dessa forma, os robôs possuem um progressivo aumento na sua área de atuação, indo do cartesiano até o de articulação vertical. Então, a razão entre a área relativa aos casos extremos é: Vav/Vc = 33,51 Isto significa que a área de trabalho de um robô com articulação vertical com 2 vínculos de tamanho L é 33,51 vezes maior que a área de trabalho do robô cartesiano com 3 vínculos de tamanho L.
14 CONVENIÊNCIA PARA TAREFAS PARTICULARES. A avaliação dos tipos de articulações e seu arranjo, permite ao projetista estimar a área de atuação do robô, rigidez mecânica e facilidade de controle do braço, possibilitando qual tarefa será mais apropriada para cada tipo de robô. O movimento das articulações capacitam o robô a mover seu atuador para qualquer ponto na sua área de atuação, mas não habilitando o controle da orientação do atuador no espaço; cuja importância não se restringe somente ao alcance da peça, mas também em conduzir o atuador a uma certa altitude em relação a peça. Essa tarefa pode ser realizada adicionando-se articulações para o pulso do braço, dando um maior grau de liberdade. A partir disso, o robô fica habilitado a realizar os seguintes movimentos: Pitch - movimento para cima e para baixo. Roll - movimento de rotação no sentido horário e anti-horário. Yaw - movimento para a esquerda e para a direita. CONSTRUÇÃO DOS VÍNCULOS. Um importante fator na construção dos vínculos é a carga que o mesmo suporta, o peso do próprio braço e o grau de rigidez do mesmo. Um braço pesado necessita de um motor maior, tornando o custo do robô mais elevado. Um braço de baixa rigidez reduz a precisão do robô devido às vibrações e resposta à tensão. Para aumentar a rigidez mecânica do braço sem aumentar seu peso, freqüentemente usa-se uma estrutura oca. A utilização deste tipo de estrutura tem uma melhor dureza quando comparada com uma construção maciça utilizando a mesma massa de material. Estruturas para a construção de vínculos DRIVER'S DE ACIONAMENTO DO BRAÇO DO ROBÔ. Existem vários tipos de Driver's que são classificados genericamente como: pela forma de movimento - Drivers de Rotação e de Deslizamento. pela forma de acionamento - Drivers Elétrico, Hidráulico, Pneumático
15 pela forma de conexão - Drivers Direto e Indireto Classificação pela forma movimento: Drivers de rotação e de deslizamento Driver de rotação - consiste em um motor, que quando conectado à sua fonte de energia, o eixo do motor responde em um movimento de rotação. Driver deslizante - consiste em um cilindro hidráulico ou pneumático. O movimento linear também pode ser produzido por um movimento rotativo usando correias ou hastes empurradas pelo motor, fazendo uma conversão de movimento rotativo em linear. Classificação pela forma acionamento: Drivers elétrico, hidráulico e pneumático Driver Elétrico Este tipo de driver utiliza motores elétricos que podem ser: motor de corrente contínua, motor de passo e motor de corrente alternada. Muitos robôs novos tem drivers de motor corrente contínua devido ao alto grau de precisão e simplicidade de controle do motor elétrico. As vantagens do driver elétrico: 1. Eficiência calculada, controle preciso. 2. Envolve uma estrutura simples e fácil manutenção. 3. Não requer uma fonte de energia cara. 4. Custo relativamente pequeno. As desvantagens: 1. Não pode manter um momento constante nas mudanças de velocidade de rotação. 2. Sujeitos a danos para cargas pesadas suficientes para parar o motor. 3. Baixa razão de potência de saída do motor e seu peso, necessitando um motor grande no braço. Driver hidráulico Esta unidade é composta de: motor de movimento rotativo e cilindro para movimento deslizante. A unidade de acionamento hidráulico provoca movimento em pistões que comprimem o óleo, como mostrado.
16 Unidade de acionamento hidráulico O controle é feito através de válvulas que regulam a pressão do óleo nas duas partes do cilindro e que impulsionam o pistão. As vantagens do driver hidráulico: 1. Momento alto e constante sob uma grande faixa de variação de velocidade. 2. Precisão de operação (menor que o elétrico e maior que o pneumático). O óleo não é compressível e não há variação de seu volume quando se varia a pressão. 3. Pode manter um alto momento para um longo período de tempo, quando parado. As desvantagens são: 1. Requer uma fonte de energia cara. 2. Requer uma manutenção cara e intensa. 3. Requer válvulas de precisão caras. 4. Está sujeito a vazamento de óleo. Driver pneumático Esta unidade é similar à hidráulica e é composto de: motores pneumáticos de movimento rotativo e cilindros pneumáticos de movimento deslizante. Na figura 13 pode-se considerar a mesma para acionamento pneumático, utilizando ar ao invés de óleo. Possui um alto grau de precisão nas paradas. São utilizados em
17 sistemas automáticos simples, mas pouco utilizado em robôs devido à alta compressibilidade, o que reduz a habilidade de realizar controle preciso. É muito utilizado em movimentos de agarramento, tanto para abrir como para fechar as garras. As vantagens do driver pneumático: 1. Podem operar em velocidades extremamente altas. 2. Custo relativamente pequeno. 3. Fácil manutenção. 4. Podem manter um momento constante em uma grande faixa de velocidade. 5. Pode manter alto o momento por longos períodos de tempo sem danos, quando parado. As desvantagens são: 1. Não possui alta precisão. 2. Esta sujeito a vibrações quando o motor ou cilindro pneumático é parado. O driver elétrico é melhor em aplicações envolvendo: Alta precisão de posição; Transferência de carga de tamanho pequeno e médio; Pequenas ambientes para sistemas de compressores de óleo e ar; O driver hidráulico trabalha melhor em situações envolvendo: Transferência de cargas pesadas ( de pounds ou mais); De média para alta precisão na localização e velocidade; O driver pneumático é preferível em aplicações envolvendo: Baixa precisão; Necessidade de baixo custo; Altas velocidades; Transferências de pequenas e médias cargas. Classificação pela forma de conexão: Drivers Direto e Indireto. No caso do driver direto, o motor é montado diretamente na junta que ele irá mover. Se o motor é montado longe da junta, próximo da base, o driver é indireto; neste caso há elementos de transmissão como correntes, correias, diferenciais e engrenagens. As vantagens do driver indireto sobre o direto: 1. Redução do peso do braço mecânico; 2. Permite mudanças na velocidade de rotação das juntas. As desvantagens do driver indireto sobre o direto:
18 1. Falta de precisão da operação da junta devido a liberdade mecânica dos pontos de conexão entre os dispositivos de transferência; 2. Perdas consideráveis de potência. Driver s Lógico Firmeware É um dispositivo que simplifica a programação agindo como um tradutor que traduz os comandos do Sistema para o hardware, fazendo com que eles falem a mesma linguagem e consigam agir em conjunto. Em termos técnicos, ele traduz mensagens de programação de alto nível para comandos de baixo-nível, que é utilizado pela maioria dos dispositivos de hardware. O DriverScanner é uma aplicação simples de utilizar, mas de elevada capacidade, que permite a actualização de controladores de forma rápida e eficiente. Para comunicar com o hardware do computador, o Windows recorre a uma série de unidades de software de controlador produzidas pelos fabricantes dos dispositivos. O DriverScanner analisa o seu sistema à procura de controladores desactualizados e disponibiliza as versões mais recentes para instalação através de um único clique. Com conjuntos de controladores actualizados, o seu hardware pode funcionar com eficiência máxima, menos erros e melhor desempenho. ATUADORES O atuador (end effector) é todo um sistema montado na extremidade do vínculo mais distante da base do robô, cuja tarefa é agarrar objetos, ferramentas e\ou transferí-las de um lugar para outro. São exemplos de atuadores a pistola de solda, garras e pulverizadores de tintas. A operação do atuador é o objetivo final na operação de um robô, assim todos os demais sistemas (unidades drives, controles, etc.) são projetados para habilitar sua operação. O atuador é de extrema importância na execução de uma tarefa, portanto é necessário que o mesmo seje adequadamente projetado e adaptado as condições do seu meio e área de trabalho. Existem dois tipos de atuadores: Garras e Ferramentas. ATUADORES TIPO GARRA A garra é comparável a mão humana. No entanto, ela não é capaz de simular seus movimentos, resultando na limitação dos movimentos a uma faixa de operações. A grande demanda tem levado ao desenvolvimento de garras que
19 podem manusear objetos de diferentes tamanhos, formas e materiais. Estas garras são divididas em vários tipos de classe: Garra de dois dedos: É o tipo mais comum e com grande variedade. São diferenciados um do outro pelo tamanho e/ou movimento dos dedos, como o movimento paralelo ou o movimento de rotação. A principal desvantagem desta garra é a limitação da abertura dos seus dedos, restringindo, assim a sua operação em objetos cujo tamanho não exceda esta abertura máxima. Garra de movimento paralelo Garra com movimento de rotação
20 Garra de três dedos: São similares aos de dois dedos, porém permitem uma segurar objetos de forma circular, triangular e irregular com maior firmeza. Os dedos são articulados e formado por diversos vínculos. Garra para objetos cilíndricos: Garra de três dedos Consiste de dois dedos com vários semicírculos chanfrados, que permitem a garra segurar objetos cilíndricos de vários diâmetros diferentes. As principais desvantagens são: O seu peso que deve ser sustentado pelo robô durante a operação; A limitação de movimentos causada pelo comprimento da garra.
21 Garra para objetos frágeis: Garra para objetos cilíndricos São garras próprias para exercer um certo grau de força durante a operação de segurar algum corpo, sem causar algum tipo de dano ao mesmo. Ele é formado por dois dedos flexíveis, que se curvam para dentro, de forma a agarrar um objeto frágil; seu controle é feito por um compressor de ar. Garra para objetos frágeis
22 Garra articulada: São projetados para agarrar objetos de diferentes tamanhos e formas. Os vínculos são movimentados por pares de cabos, onde um cabo flexiona a articulação e o outro a estende. Sua destreza em segurar objetos de formas irregulares e tamanhos diferentes se deve ao grande número de vínculo. Garra articulada Garras a vácuo e eletromagnéticas: Garras a vácuo são projetados para prender uma superfície lisa durante a ação do vácuo. Estas garras possuem ventosas de sucção conectadas a bomba de ar comprimido, que predem superfícies como chapas metálicas e caixas de papelão. Para reduzir o risco de mal funcionamento devido a perda de vácuo, é comum usar mais do que uma ventosa de sucção. Garras eletromagnéticas são utilizados para segurar objetos que podem ser magnetizados (aço e níquel) através de um campo magnético. Estes objetos devem possuir um lugar específico na qual a garra passa atuar. Ambos os tipos de garras descritos acima são muito eficientes, uma vez que eles podem segurar objetos de vários tamanhos e não necessitam de grande precisão no posicionamento da garra.
23 Adaptador automático de garra: Garras a vácuo Surgiu da necessidade de se ter uma garra capaz de segurar todos os tipos de objetos. Então foi criado uma unidade chamada de automatic gripper changer, que é um adaptador que permite que uma garra seja rapidamente ligada ou removida do braço do robô. Restrições: Os adaptadores devem ser ligados ao braço do robô de um mesmo modo e deve conectar de maneira idêntica suas unidades de drive, se elétrica, mecânica ou pneumática. Desvantagens: 1. O peso adicional na extremidade do braço do robô; 2. Complicações tecnológicas são uma fonte potencial de mal
24 Funcionamento: 3. Acréscimo no custo do robô; 4. Tempo gasto na troca das garras. Diante destes fatos verifica-se que o desenvolvimento e produção de garras é um estágio importante no projeto de robôs para tarefas particulares. Normalmente, os fabricantes vendem robôs sem o atuador, as garras e as ferramentas são escolhidas e adaptadas pela equipe de engenharia que instala o robô no local de trabalho. Este é um estágio crítico da instalação, requerendo um alto nível de conhecimento e prática.
CONTEÚDO Efetuadores Projeto 01 Motor de Passo
EFETUADORES Introdução; Definição e Objetivo; Acionamento; Medição; Classificação. CONTEÚDO Efetuadores Projeto 01 Motor de Passo INTRODUÇÃO O objetivo dos robôs manipuladores é interagir com seu meio
CAPÍTULO Robôs industriais. 2. Classificação dos robôs. industriais. 3. Sensores. 4. Acionamento e controle de robôs
CAPÍTULO 8 1. Robôs industriais 2. Classificação dos robôs industriais 3. Sensores 4. Acionamento e controle de robôs 5. Precisão e capacidade de repetição 6. Garras e ferramentas 1. Robôs industriais
Paulo Roberto Chiarolanza Vilela 1
Paulo Roberto Chiarolanza Vilela 1 AULA 03 Classificação de Robôs 2 Juntas Robóticas Tipos de Juntas Graus de Liberdade Classificação Exercício para entregar 3 Os eixos da base do corpo permitem mover
Modelos Matemáticose Classificaçãode Robôs
Modelos Matemáticose Classificaçãode Robôs Curso Engenharia de Controle e Automação Alex Vidigal Bastos www.decom.ufop.br/alex/unipac.html [email protected] 1 Agenda Introdução Modelos Matemáticos de Robôs
Disciplina: Robótica Aula 02: Conceitos Básicos
Disciplina: Robótica Aula 02: Conceitos Básicos Bibliografia Básica 1) Livro: Princípios de Mecatrônica João Maurício Rosário, Prentice Hall Disponível na: Biblioteca UMC Biblioteca Virtual Agenda 1) Conceitos
Até 0.003 mm (0.1mm usualmente) Aceleração Até 25 m/s 2. A partir de 2 a 3 kg até limites ~ 350kg. Relação Peso/Carga Em torno de 30 a 40
Introdução à Robótica Industrial Prof. Dr. Carlo Pece Transparências adaptadas de material fornecido pelo prof. Winderson E. dos Santos Histórico Revolução Industrial Automação Karel Capek (1921) robota
APLICAÇÕES DE ROBÔS INDUSTRIAIS COM GARRAS MECÂNICAS RESUMO. Palavras-Chaves: Robótica, Indústria Automotiva, Mão-de-obra, Garras Mecânicas.
APLICAÇÕES DE ROBÔS INDUSTRIAIS COM GARRAS MECÂNICAS Tamara do Vale Ormindo ¹ Rafael Carlos Nogueira Alves ² Paulo Eduardo Fragoso ³ Leonardo Carvalho Vidal RESUMO Este artigo foca em especial na Robótica
ATUADORES PNEUMÁTICOS
ATUADORES PNEUMÁTICOS 1 - INTRODUÇÃO Os atuadores pneumáticos são componentes que transformam a energia do ar comprimido em energia mecânica, isto é, são elementos que realizam trabalho. Eles podem ser
Efetuadores e Atuadores
[email protected] 1 PMR2560 Robótica Efetuadores e Atuadores Eduardo L. L. Cabral [email protected] [email protected] 2 Objetivos Efetuadores: Tipos principais; Exemplos. Atuadores: Requisitos; Tipos principais:
Robótica Industrial. Professor: José Alberto Naves Cocota Júnior. UNIP Campus Brasília Curso: Engenharia Elétrica (Eletrônica) Turmas: EE8P30 e EE9P30
Robótica Industrial Professor: José Alberto Naves Cocota Júnior UNIP Campus Brasília Curso: Engenharia Elétrica (Eletrônica) Turmas: EE8P30 e EE9P30 Definição de Robô A origem da palavra: robota(checo)
Aula 2 Projetos Mecatrônicos Visão Geral. Prof a. Michelle Mendes Santos
Aula 2 Projetos Mecatrônicos Visão Geral Prof a. Michelle Mendes Santos A mecatrônica é uma filosofia de projeto integrada; É o ambiente ideal para a sinergia entre diferentes disciplinas; Torna o produto
Grande precisão (posicionamento do atuador final); Carga inercial (momento) fixa, ao longo da área de trabalho;
Tipos de robôs As diversas partes que compõem um manipulador industrial (robô) e que forma estudas até aqui - partes mecânicas, atuadores, sensores - podem ser montadas de diversas formas produzindo diferentes
Robótica Industrial: Fundamentos, Tecnologias, Programação e Simulação
Robótica Industrial: Fundamentos, Tecnologias, Programação e Simulação Winderson Eugenio dos Santos José Hamilton Chaves Gorgulho Jr Editora Erica Saraiva Conceitos e Tecnologias da Robótica Industrial
www.allpresse.com.br UNIDADE DE FECHAMENTO
UNIDADE DE FECHAMENTO Este sistema foi projetado através da tecnologia de CAD / CAE por análise estrutural de elementos finitos, resultando em componentes com uma relação peso / robustez mais adequada,
Plantas de Classificação de Áreas 25/03/2012 140
Plantas de Classificação de Áreas 25/03/2012 140 Normas para elaboração de plantas de classificação de áreas 25/03/2012 141 Legenda para plantas de classificação de áreas 25/03/2012 142 Etapas para elaboração
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA.
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA. Classificação de Robôs Pode-se classificar os robôs com base na aplicação pretendida: Industrial, Pesquisa, Militar, Segurança, Hobby ou Entretenimento,
Automação da Produção
Robótica Industrial Automação Automação da Produção É uma tecnologia que faz uso de sistemas mecânicos, elétricos, eletrônicos e de computação (emprego de robôs) para efetuar o controle de processos produtivos.
Automação da Produção
Robótica Industrial Automação da Produção Automação É uma tecnologia que faz uso de sistemas mecânicos, elétricos, eletrônicos e de computação (emprego de robôs) para efetuar o controle de processos produtivos.
Capítulo 4 - Medição de rotação, torque e potência
Capítulo 5 - Medição de rotação, torque e potência 5.1 - Medição de rotação Os instrumentos usados para medir a velocidade angular de eixos rotativos são chamados tacômetros. Existem basicamente três tipos
Equilíbrio de um corpo rígido
Equilíbrio de um corpo rígido Objetivos da aula: Desenvolver as equações de equilíbrio para um corpo rígido. Introduzir o conceito do diagrama de corpo livre para um corpo rígido. Mostrar como resolver
Motores. Motores Como funcionam. Motores Como funcionam. Motores Como funcionam. Motores Tipos 03/23/2016
Introdução à Robótica e Prof. Douglas G. Macharet [email protected] Energia Elétrica Energia Mecânica Direct Current (DC) Corrente contínua Amplamente utilizado em robótica Pequeno, barato,
MANUAL DE INSTALAÇÃO DA CORTINA DE AR INTERNATIONAL
MANUAL DE INSTALAÇÃO DA CORTINA DE AR INTERNATIONAL APRESENTAÇÃO Agradecemos pela preferência na escolha de produtos International Refrigeração. Este documento foi elaborado cuidadosamente para orientar
INTRODUÇÃO À ROBÓTICA. Professor HENRIQUE
INTRODUÇÃO À ROBÓTICA Professor HENRIQUE CONTEÚDO Introdução à Robótica Industrial Classificação Modelos e Tipos Aplicação Atividade de Pesquisa: Transmissão de Força Definição; Elementos Constituintes;
SAFETY Tecnologia de Safety Passivo
SAFETY Tecnologia de Safety Passivo Fiação SAFETY MVK Metálico Cube67 MASI67 / MASI68 02 O MÓDULO SAFETY Combinados de forma inteligente, módulos de rede de campo e saídas seguras de acordo com as exigências
MATÉRIA TÉCNICA APTTA BRASIL
MATÉRIA TÉCNICA APTTA BRASIL TRANSMISSÕES FORD 6F50 e GM 6T70 - PARECIDAS PORÉM DIFERENTES As transmissões 6F50 e 6T70 foram desenvolvidas por um esforço conjunto entre FORD e General Motors. Devido ao
Eficiência energética Guia prático para avaliação em sistemas motrizes
Eficiência energética Guia prático para avaliação em sistemas motrizes Soluções de eficiência energética para indústria A ABB identifica maneiras de economizar energia e implementa programas de desenvolvimento
Operação de rebitagem e montagem
Operação de rebitagem e montagem O que são rebites? Tipos de rebites Prof. Fernando 1 E agora? Um mecânico tem duas tarefas: consertar uma panela cujo cabo caiu e unir duas barras chatas para fechar uma
5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 14
Ondas 5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Introdução: elementos básicos sobre ondas De maneira geral, uma onda é qualquer sinal que se transmite de um ponto a outro
Mecânica Geral. Aula 04 Carregamento, Vínculo e Momento de uma força
Aula 04 Carregamento, Vínculo e Momento de uma força 1 - INTRODUÇÃO A Mecânica é uma ciência física aplicada que trata dos estudos das forças e dos movimentos. A Mecânica descreve e prediz as condições
MANUAL DE OPERAÇÃO MANUTENÇÃO DOSADOR MICRO-ESFERA E MOTOR DE PASSO
MANUAL DE OPERAÇÃO E MANUTENÇÃO DOSADOR MICRO-ESFERA E MOTOR DE PASSO MODELO: N O DE SÉRIE: FABRICAÇÃO: / / 1 INTRODUÇÃO É com grande satisfação que a INEAL ALIMENTADORES LTDA coloca mais um equipamento
Informação do Produto Máquina de ensaios eletrodinâmicos LTM 5/10
Linha de aplicação A LTM é uma máquina de ensaio eletrodinâmico com acionamento baseado na tecnologia de motor linear. O novo e patenteado conceito Zwick de acionamento possibilita a utilização da LTM
Guia Linear. Tamanho. Curso 07 20. Patins. Características Técnicas Material das guias DIN 58 CrMoV4 Material dos patins DIN 16 MnCr5
Guias Lineares - Série GH G H Guia Linear - Guia Linear Tamanho Curso 07 20 Máx. 4000mm 09 25 12 35 Exemplo: GH20-200 15 45 GH35-100 Patins G H P - Guia Linear Tamanho 07 20 09 25 12 35 15 45 Patins ---
Injetora de plásticos BORCHÊ BU ULTRA-MAX (máquina 2 placas)
Injetora de plásticos BORCHÊ BU ULTRA-MAX (máquina 2 placas) Borch Machinery CO.,LTD. www.borch-machinery.com Out line: História da máquina BU e seus modelos Características da máquina BU e suas vantagens
alocação de custo têm que ser feita de maneira estimada e muitas vezes arbitrária (como o aluguel, a supervisão, as chefias, etc.
Professor José Alves Aula pocii Aula 3,4 Custeio por Absorção Custeio significa apropriação de custos. Métodos de Custeio é a forma como são apropriados os custos aos produtos. Assim, existe Custeio por
SOLUÇÃO DE MOVIMENTO PARA VÁLVULAS ELÉTRICAS DE EXPANSÃO. Motores de passo oferecem melhor desempenho para válvulas elétricas de expansão
SOLUÇÃO DE MOVIMENTO PARA VÁLVULAS ELÉTRICAS DE EXPANSÃO Motores de passo oferecem melhor desempenho para válvulas elétricas de expansão Válvulas de expansão são dispositivos de restrição de fluxo presentes
v = velocidade média, m/s; a = aceleração média do corpo, m/s 2 ;
1. Cinemática Universidade Estadual do Norte Fluminense Darcy Ribeiro Centro de Ciências e Tecnologias Agropecuárias - Laboratório de Engenharia Agrícola EAG 0304 Mecânica Aplicada Prof. Ricardo Ferreira
Estrutura e características gerais dos robôs. - Configuração básica de um robô - Articulações - Movimento e precisão
Estrutura e características gerais dos robôs - Configuração básica de um robô - Articulações - Movimento e precisão Braço robótico industrial Anatomia dos braços mecânicos industriais O braço robótico
ASPECTOS CONSTRUTIVOS DE ROBÔS
ASPECTOS CONSTRUTIVOS DE ROBÔS Tipos de robôs Classificação de robôs Definições importantes: O arranjo das hastes e juntas em um braço manipulador tem um importante efeito nos graus de liberdade da ferramenta
DESENHO TÉCNICO ( AULA 03)
Sólidos Geométricos DESENHO TÉCNICO ( AULA 03) Você já sabe que todos os pontos de uma figura plana localizam-se no mesmo plano. Quando uma figura geométrica tem pontos situados em diferentes planos, temos
1- INTRODUÇÃO AOS ROBÔS INDUSTRIAIS
1- INTRODUÇÃO AOS ROBÔS INDUSTRIAIS 1.1 Introdução Um robô industrial é uma máquina com características significativas de versatilidade e flexibilidade. De acordo com uma definição do Instituto de Robôs
Conjuntos mecânicos II
A UU L AL A Conjuntos mecânicos II Nesta aula trataremos de outro assunto também relacionado a conjuntos mecânicos: o desenho de conjunto. Introdução Desenho de conjunto Desenho de conjunto é o desenho
CONHECIMENTOS ESPECÍFICOS TÉCNICO DE LABORATÓRIO MECÂNICA
CONHECIMENTOS ESPECÍFICOS TÉCNICO DE LABORATÓRIO MECÂNICA 26. Considere o desenho abaixo: Dentre as vista apresentadas a seguir, qual representa corretamente a elevação (vista frontal)? a) b) c) d) e)
Experiência 01: ACIONAMENTO DE MOTORES COM O INVERSOR DE FREQUÊNCIA. Objetivo Geral: - Acionar um motor elétrico através de um inversor de frequência.
( ) Prova ( ) Prova Semestral ( ) Exercícios ( ) Prova Modular ( ) Segunda Chamada ( ) Exame Final ( ) Prática de Laboratório ( ) Aproveitamento Extraordinário de Estudos Nota: Disciplina: Turma: Aluno
OXICORTE SENAI CETEMP OUTROS PROCESSOS TOBIAS ROBERTO MUGGE
OXICORTE SENAI CETEMP OUTROS PROCESSOS TOBIAS ROBERTO MUGGE TIPOS DE CORTE MECÂNICO: Cisalhamento ou remoção de cavacos (guilhotinas e tesouras, serra) FUSÃO: Fusão do material pela transferência de calor
TECNOLOGIA DOS MATERIAIS
TECNOLOGIA DOS MATERIAIS Aula 6: Propriedades Mecânicas Ensaios Propriedades de Tração Dureza CEPEP - Escola Técnica Prof.: Propriedades Mecânicas dos Materiais Muitos materiais, quando em serviço, são
Verdadeiramente Perfeito é apenas o Nada
A Perfeição solda PERFEKTION A PERFEIÇÃO SCHWEISST SOLDA. ZUSAMMEN. Verdadeiramente Perfeito é apenas o Nada E como os Srs. vêem, não se vê nada. Porque com os equipamentos da Schnelldorfer Maschinenbau
O corte de metais é uma operação mecânica que consiste em se obter seções com dimensões determinadas.
1 PRÁTICA DE OFICINA AULA 02 2015-1 - SERRA MECÂNICA - Introdução O corte de metais é uma operação mecânica que consiste em se obter seções com dimensões determinadas. A serra alternativa horizontal ou
Rolamentos. Diógenes Bitencourt. Clique para editar o estilo do subtítulo mestre. Page 1
Rolamentos Clique para editar o estilo do subtítulo mestre Diógenes Bitencourt Page 1 Rolamentos Para que utilizamos os rolamentos? Quando é necessário reduzir o atrito de escorregamento entre a superfície
Introdução aos sistemas pneumáticos
PNEUMÁTICA O termo pneumática refere-se ao estudo e aplicação do ar comprimido. Produção Os principais tipos de compressores pneumáticos são o compressor volumétrico e o compressor dinâmico. Símbolo do
Laboratório de Robótica XT95
Laboratório de Robótica XT95 O XT 95 é o kit mais avançado da linha XT, contendo todos os componentes das linhas anteriores. Se com as linhas anteriores você já pudia criar muitos projetos, com essa linha
LISTA DE EXERCÍCIOS 01
LISTA DE EXERCÍCIOS 01 Anatomia dos Braços Mecânicos Industriais Configuraçãodos robôs Um braço mecânico é formado pelabase,braço epunho. Obraço e ligado abase e esta e fixada ao chão (parede). Obraço
Rolamentos I. Os rolamentos podem ser de diversos tipos: Tipos e finalidades. Rolamento fixo de uma carreira de esferas
A UU L AL A Rolamentos I Os rolamentos podem ser de diversos tipos: fixo de uma carreira de esferas, de contato angular de uma carreira de esferas, autocompensador de esferas, de rolo cilíndrico, autocompensador
ESTRADAS E AEROPORTOS. Prof. Vinícius C. Patrizzi
ESTRADAS E AEROPORTOS Prof. Vinícius C. Patrizzi 1. SISTEMA DE PISTA: O sistema de pistas de pouso e decolagem de um aeroporto consiste do pavimento estrutural (a pista propriamente dita), os acostamentos,
MOTORES DE INDUÇÃO MONOFÁSICOS
MOTORES DE INDUÇÃO MONOFÁSICOS Prof. Epaminondas de Souza Lage Introdução Os motores de indução monofásicos possuem uma grande aplicabilidade e funcionalidade, que se estendem desde as nossas residências
1- INTRODUÇÃO AOS ROBÔS INDUSTRIAIS MODELAGEM GEOMÉTRICA
1- INTRODUÇÃO AOS ROBÔS INDUSTRIAIS MODELAGEM GEOMÉTRICA 1.1 Introdução Um robô industrial é uma máquina com características significativas de versatilidade e flexibilidade. De acordo com uma definição
Turbina eólica: conceitos
Turbina eólica: conceitos Introdução A turbina eólica, ou aerogerador, é uma máquina eólica que absorve parte da potência cinética do vento através de um rotor aerodinâmico, convertendo em potência mecânica
Circuito Elétrico - I
1 1. Um resistor de 32 ohms é ligado em paralelo a outro resistor de 20 ohms e o conjunto é ligado a uma fonte de tensão de 12VDC. a) Qual é a resistência da ligação em paralelo? b) Qual é a corrente total
MECATRÔNICA MANIPULADORES ROBÓTICOS
MANIPULADORES ROBÓTICOS O grande escritor americano de ficção científica Isaac Asimov estabeleceu quatro leis muito simples para a robótica: A robótica abrange tecnologia de mecânica, eletrônica e computação.
Acesse: http://fuvestibular.com.br/
Vai uma raspadinha aí? Na aula anterior você aprendeu que existem operações de usinagem na indústria mecânica que, pela quantidade de material a ser retirado, têm que ser necessariamente feitas com o auxílio
INSTRUÇÕES PARA INSTALAÇÃO E MANUTENÇÃO MODELO SPIRATRON / ROTO-FINISH
INSTRUÇÕES PARA INSTALAÇÃO E MANUTENÇÃO MODELO SPIRATRON / ROTO-FINISH COLOCAR O SPIRATRON EM CHÃO NIVELADO E RETIRAR OS CALÇOS QUE FIXAM A CAÇAMBA À BASE, DURANTE O TRANSPORTE. NÃO É NECESSÁRIO CHUMBAR
Disciplina: Máquinas e Automação Elétrica. Prof.: Hélio Henrique DIRETORIA DE EDUCAÇÃO E TECNOLOGIA COORDENAÇÃO DO CURSO DE ELETROTÉCNICA
DIRETORIA DE EDUCAÇÃO E TECNOLOGIA COORDENAÇÃO DO CURSO DE ELETROTÉCNICA Disciplina: Máquinas e Automação Elétrica Prof.: Hélio Henrique 1 INTRODUÇÃO 2 3 Introdução O gerador de CA é o meio mais importante
Reguladores de Velocidade
Reguladores de Velocidade Introdução O regulador de velocidade controla a velocidade da turbina e portanto a frequência da tensão do gerador síncrono; Para que a velocidade seja mantida no valor desejado,
3 CLASSIFICAÇÃO DOS SISTEMAS. 3.1 Sistema Direto
3 CLASSIFICAÇÃO DOS SISTEMAS 3.1 Sistema Direto No sistema direto, as peças de utilização do edifício estão ligadas diretamente aos elementos que constituem o abastecimento, ou seja, a instalação é a própria
Lubrificação II. O supervisor de uma área da indústria constatou. Conceito de sistema de perda total. Almotolia
A U A UL LA Lubrificação II Introdução O supervisor de uma área da indústria constatou que algumas máquinas apresentavam ruídos e superaquecimento. O mecânico de manutenção desmontou as máquinas e constatou
Mecânica Geral. Aula 05 - Equilíbrio e Reação de Apoio
Aula 05 - Equilíbrio e Reação de Apoio 1 - Equilíbrio de um Ponto Material (Revisão) Condição de equilíbrio de um Ponto Material Y F 0 F X 0 e F 0 Exemplo 01 - Determine a tensão nos cabos AB e AD para
14/01/2010 CONSERVAÇÃO DE ENERGIA ELÉTRICA CAP. 3 ESTUDOS DE CASOS CAP.3 ESTUDO DE CASOS CAP.3 ESTUDO DE CASOS. Mário C.G. Ramos
CONSERVAÇÃO DE ENERGIA ELÉTRICA CAP. 3 ESTUDOS DE CASOS Mário C.G. Ramos 1 CAP.3 ESTUDO DE CASOS Caso nº 1: Seleção de um motor elétrico adequado à potência mecânica exigida por um equipamento. A curva
TECNOLOGIA HIDRÁULICA. Fagner Ferraz
TECNOLOGIA HIDRÁULICA Fagner Ferraz Potência x Eficiência 2 Cavitação 3 Causas da cavitação Tecnologia Hidráulica Filtro da linha de sucção saturado Linha de sucção muito longa Muitas curvas na linha de
Concurso Público para Cargos Técnico-Administrativos em Educação UNIFEI 13/06/2010
Questão 21 Conhecimentos Específicos - Técnico em Instrumentação São elementos primários utilizados na medida indireta de vazão, exceto: A. Placa de orifício e tubo de Venturi. B. Placa de orifício e tubo
Plano de Trabalho Docente 2015. Ensino Técnico
Plano de Trabalho Docente 2015 Ensino Técnico ETEC Monsenhor Antônio Magliano Código: 088 Município: Garça Área Profissional: Indústria Habilitação Profissional: Técnica de Nível Médio de Técnico em Mecatrônica
Resistência dos Materiais
Aula 4 Deformações e Propriedades Mecânicas dos Materiais Tópicos Abordados Nesta Aula Estudo de Deformações, Normal e por Cisalhamento. Propriedades Mecânicas dos Materiais. Coeficiente de Poisson. Deformação
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Engenharia Mecânica. Elementos de Máquinas I Elementos de União
Elementos de Máquinas I Elementos de União 1. INTRODUÇÃO Elementos de Máquinas I 1.1.DEFINIÇÕES USUAIS "Processo de união de metais por fusão". (não só metais e não apenas por fusão) "União de duas ou
Sistemas Digitais II. Interface com o mundo analógico. Prof. Marlon Henrique Teixeira Abril/2014
Sistemas Digitais II Interface com o mundo analógico Prof. Marlon Henrique Teixeira Abril/2014 Objetivos Compreender a teoria de funcionamento e as limitações dos circuitos de diversos tipos de conversores
r o d e s e m p r e. r o d e c o m a v o l v o.
r o d e s e m p r e. r o d e c o m a v o l v o. EDIÇÃO 2004 REVISADA 14 O DIFERENCIAL É O QUE FAZ A DIFERENÇA! olá! nesta edição, vamos conhecer um pouco mais sobre o diferencial do seu volvo! manutenção
Manual de instruções. Rampa de moto 250
Manual de instruções Rampa de moto 250 Apresentação Somos uma empresa voltada no ramo de equipamentos para auto centers e borracharias em geral, contamos com uma linha de funcionários altamente qualificada
MANIPULAÇÃO E EQUIPAMENTOS
MANIPULAÇÃO E EQUIPAMENTOS 16 Garras angulares MCHA Tipo... Fluido... Pressão de trabalho... Curso (± 1 )... Temperatura... Modelos... Peso (gr.)... Freqüência máxima... Sensores... Garra pneumática de
Sistemas para Automação e Robótica (parte 02)
Sistemas para Automação e Robótica (parte 02) Anatomia dos Braços Mecânicos Industriais Configuração dos robôs Um braço mecânico é formado pela base, braço e punho. O braço (elo) e ligado a base e esta
SISTEMA ST. Escamoteável de 13 cm, serviço superior, arco ajustável, êmbolo de aço inoxidável, roscas de entrada BSP e 6 bocais
SISTEMA ST Aplicação: Campos esportivos de grama sintética Raio: 31,4 a 50,3 m Vazão: 16,9 a 74,2 m 3 /hr; 282,0 a 1.237 l/min 1½" BSP, 1½" ACME & 2" BSP CARACTERÍSTICAS Modelos - ST-90: Tampa roscável
GESTÃO DA MANUTENÇÃO
Classificação Nível de Criticidade para Equipamentos S Q W Itens para avaliação Segurança cliente interno cliente externo meio-ambiente Qualidade Condição de trabalho Status Equipamento A B D P M Perdas
8ª Aula Válvulas Auxiliares. Conforme comentado, as válvulas pertencem a um dos seguintes grupos:
8ª Aula Válvulas Auxiliares Conforme comentado, as válvulas pertencem a um dos seguintes grupos: Direcionais; Bloqueio; Pressão; Vazão; Fechamento. O objeto de estudo nesta aula são as válvulas chamadas
Redutores de Velocidade Aplicando Corretamente
Redutores de Velocidade Aplicando Corretamente Amauri Dellallibera Cestari S/A 2005 Redutores, por quê precisamos deles? Existem aplicações nas mais diversas áreas de nossa vida cotidiana Principais grupos
ELABORAÇÃO DE FURADEIRA ELÉTRIA
FACULDADE DE TECNOLOGIA DE SÃO PAULO ELABORAÇÃO DE FURADEIRA ELÉTRIA RELATÓRIO TÉCNICO MARCUS VINICIUS RODRIGUES CATAN FATEC-SP 2013 1- Introdução 1.1- Origem As Furadeiras mais antigas surgiram trinta
ESPECIFICAÇÕES TÉCNICAS SISTEMA DE DETECÇÃO VEICULAR OVERHEAD
ESPECIFICAÇÕES TÉCNICAS SISTEMA DE DETECÇÃO VEICULAR OVERHEAD SUMÁRIO 1. SISTEMA DE DETECÇÃO OVERHEAD... 2 2. PROCEDIMENTO DE TESTE DE SISTEMA DE DETECÇÃO OVERHEAD PARA O SISTEMA SCOOT... 3 3. DOCUMENTAÇÃO...
Manipulação Robótica. Aula 2
Manipulação Robótica Aula 2 Programa 1) Introdução 1.1. Tipos de Robôs 1.2. Aplicações 2) Robôs Manipuladores 2.1. Estrutura de Robôs Manipuladores 2.2. Classificação de Robôs Manipuladores 2.3. Sistema
Reabilitação e Reforço de Estruturas
Mestrado em Engenharia Civil 2011 / 2012 Reabilitação e Reforço de Estruturas Aula 06: Métodos de inspecção e diagnóstico. 6.1. Ensaios in situ. Eduardo S. Júlio 2011/2012 1/31 1/9 AVALIAÇÃO IN SITU DA
Parker, Tornando possível o desenvolvimento intelectual e tecnológico.
Parker, Tornando possível o desenvolvimento intelectual e tecnológico. www.parker.com Parker Training 30 anos projetando o futuro Mercados Há mais de 30 anos treinando profissionais em empresas, escolas
Como escolher a esteira de acúmulo correta
INFORMATIVO Como escolher a esteira de acúmulo correta Entender as opções disponíveis em termos de tecnologia de acúmulo ajuda a selecionar as melhores soluções para as operações 1 automação que traz resultados
Um mecânico recém-formado foi admitido
A U A UL LA Junções III Introdução Um mecânico recém-formado foi admitido para trabalhar numa indústria de máquinas agrícolas. O supervisor o encaminhou à área de montagem de comandos e sistemas hidráulicos.
Introdução à Robótica Industrial. Aula 2
Introdução à Robótica Industrial Aula 2 Programa 1) Introdução 1.1. Tipos de Robôs 1.2. Aplicações 2) O Robô Manipulador 2.1. Estrutura de Robôs Manipuladores 2.2. Sensores 2.3. Atuadores 2.4. Efetuadores
ELETRICIDADE INDUSTRIAL. Professor: Robson Vilela E-mail: [email protected]
ELETRICIDADE INDUSTRIAL Professor: Robson Vilela E-mail: [email protected] O motor elétrico é uma máquina destinada a transformar energia elétrica em mecânica. É o mais usado de todos os tipos de motores,
PREPARO DE GRÃOS DE SOJA PARA EXTRAÇÃO
PREPARO DE GRÃOS DE SOJA PARA EXTRAÇÃO Eng. Luiz Carlos Masiero L.C.Masiero Engenharia Industrial Jaú, SP Resumo: Se apresentam neste trabalho as considerações básicas do processo de preparação de grãos
- Campus Salto. Disciplina: Sistemas de Arquivos Docente: Fernando Santorsula E-mail: [email protected]
Disciplina: Sistemas de Arquivos Docente: Fernando Santorsula E-mail: [email protected] Sistemas de Arquivos- Parte 2 Pontos importantes de um sistema de arquivos Vários problemas importantes devem
Levantamento Topográfico: é o conjunto de métodos e processos que, através de medições de ângulos horizontais e verticais, de distâncias horizontais,
DIVISÃO DA TOPOGRAFIA Levantamento Topográfico: é o conjunto de métodos e processos que, através de medições de ângulos horizontais e verticais, de distâncias horizontais, verticais e inclinadas, com instrumental
Figura 1 Figura 2 Figura 3
Para uso em salas de aula comuns, a Activboard possibilita a melhor utilização da sala de aula. As seguintes características são próprias de lousas Activboard 78 : 1. Uma marca proactiv em seu canto superior
Revisado em 18/11/2008
PROCEDIMENTOS PARA VERIFICAÇÃO INICIAL E SUBSEQUENTE DE TANQUES DE ARMAZENAMENTO E RESFRIAMENTO DE LEITE A GRANEL NORMA N o NIE-DIMEL- APROVADA EM N o Revisado em 18/11/2008 SUMÁRIO 1 Objetivo 2 Campo
New Holland TT TT4030
New Holland TT TT4030 VERSATILIDADE PARA TRABALHAR EM TODOS OS CAMPOS. Ágil, potente e robusto. O TT4030 chegou para atuar em diversas frentes na sua lavoura. Ideal para as atividades que requerem força,
Funções para limitação de velocidade do veículo
Informações gerais sobre as funções Informações gerais sobre as funções A Scania oferece três funções para a limitação de velocidade. As funções são usadas para atender a requisitos de clientes e estatutários,
Fundição sob Pressão
Dr. Eng. Metalúrgica Aula 13 : Processos de Fundição Sob Pressão 01: Introdução Princípio, classificação e potencialidades do processo. 02. Fundição sob pressão em cãmara quente 03. Fundição sob pressão
CONCEPÇÃO CINEMÁTICA DE UM MANIPULADOR PARA VOLUMES DE TRABALHO RESTRITOS
CONCEPÇÃO CINEMÁTICA DE UM MANIPULADOR PARA VOLUMES DE TRABALHO RESTRITOS Raul Guenther Henrique Simas Edson Roberto de Pieri Universidade Federal de Santa Catarina, Departamento de Engenharia Mecânica,
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA UNIDADE ACADEMICA DE ENGENHARIA ELÉTRICA ELETRÔNICA
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA UNIDADE ACADEMICA DE ENGENHARIA ELÉTRICA ELETRÔNICA (1) Determine o valor da tensão na saída V o. LISTA DE EXERCICIOS
