2 Descrição dos Sistemas Estudados



Documentos relacionados
PRINCIPAIS PARTES COMPONENTES DOS GERADORES DE VAPOR

Caldeiras Manoel O. A. Méndez

Ar Condicionado e Refrigeração Ciclos de Refrigeração

'HVFULomRGDSODQWD. 'HVFULomRGRSURFHVVRGHVHFDJHP

Equipamentos que realizam a troca de calor entre dois fluidos que estão a diferentes temperaturas e separados através de uma parede sólida

Condensação. Ciclo de refrigeração

RECUPERAÇÃO DE CALOR. em processos industriais. Uso do calor residual Economia em energia primária Proteção do meio ambiente Redução de custos

NR - 13 Caldeiras e Vasos de Pressão

4. O Ciclo das Substancias na Termoelétrica Convencional De uma maneira geral todas as substâncias envolvidas na execução do trabalho são o

Ciclos de Potência a vapor. Ciclo Rankine

Inversores de Freqüência na Refrigeração Industrial

14 ASPECTOS BÁSICOS PARA SELEÇÃO E ESPECIFICAÇÃO DE EQUIPAMENTOS DE PROCESSO

COMPRESSORES PARAFUSO

Aula 23 Trocadores de Calor

TGM TURBINAS TECNOLOGIA E SOLUÇÕES PARA MELHOR EFICIÊNCIA NA GERAÇÃO DE ENERGIA CICLO A VAPOR COM AQUECIMENTO REGENERATIVO

Módulo VIII - 1ª Lei da Termodinâmica Aplicada a Volume de Controle: Regime Permanente, Dispositivos de Engenharia com Escoamento e Regime Transiente.

GERADORES DE VAPOR GERADORES DE VAPOR

Termelétrica de Ciclo Combinado

TANQUES DE ARMAZENAMENTO E AQUECIMENTO DE ASFALTO E COMBUSTÍVEL

Curso de Farmácia. Operações Unitárias em Indústria Prof.a: Msd Érica Muniz 6 /7 Período DESTILAÇÃO

TORRES DE RESFRIAMENTO REFERVEDORES CONDENSADORES CALDEIRAS

Armazenamento de energia

AULA PRÁTICA 11 INSTALAÇÃO DE BOMBEAMENTO

Controladores de temperatura

SISTEMAS TÉRMICOS DE POTÊNCIA

EFICIÊNCIA ENERGÉTICA EM SISTEMAS E INSTALAÇÕES

BOLETIM de ENGENHARIA Nº 001/15

Bomba Multiestágio de Média Pressão MBN

TERMODINÂMICA EXERCÍCIOS RESOLVIDOS E TABELAS DE VAPOR

ção Profissional na Cogeraçã EDUCOGEN

4ª aula Compressores (complemento) e Sistemas de Tratamento do Ar Comprimido

TERMELÉTRICA. Eficiência Energética 11/2015

Sistema de Arrefecimento dos Motores. Sistemas auxiliares dos motores de combustão interna

cap. 4 - GERADORES DE VAPOR

CÁLCULO DO RENDIMENTO DE UM GERADOR DE VAPOR

MÁQUINAS TÉRMICAS AT-101

4 SISTEMAS E EQUIPAMENTOS DE CLIMATIZAÇÃO

Aspectos Tecnológicos das Fontes de Energia Renováveis (Biomassa)

Geradores de Vapor. 4º ano Aula 3

AVALIAÇÃO E MELHORIA DO SISTEMA DE CONTROLE DE UMA CENTRAL DE GERAÇÃO DE VAPOR EM UMA REFINARIA

Geradores de Vapor. 4º ano Aula 4

Módulo VII - 1ª Lei da Termodinâmica Aplicada a Volume de Controle: Princípio de Conservação da Massa. Regime Permanente.

Jáder Bezerra Xavier (1) Pedro Paulo Leite Alvarez (2) Alex Murteira Célem (3)

Módulo I Segunda Lei da Termodinâmica e Ciclos

Sistema de Proporcionamento Bomba dosadora de LGE Fire Dos

Evaporadores. Ciclo de refrigeração

Centro de Seleção/UFGD Técnico em Refrigeração ==Questão 26==================== Assinale a alternativa que define refrigeração.

Energia Eólica. História

Sistema de vácuo ICE Condensation Körting. para aplicações em óleo comestível

CALDEIRAS. TM-364 MÁQUNAS TÉRMICAS I Prof. Strobel, Dr. Eng.


TRATAMENTO DE ÁGUA PARA CALDEIRAS DE ALTA PRESSÃO. Palavras chaves: geração de vapor, cogeração, tratamento químico, arraste volátil.

OPERADOR DE CALDEIRA NOME: Nº INSC.: PRRH. Pró-Reitoria de Recursos Humanos

Conceitos gerais. A movimentação do ar e dos gases de combustão é garantida por: Ventiladores centrífugos Efeito de sucção da chaminé

14 COMBUSTÍVEIS E TEMPERATURA DE CHAMA

GT CONAMA Fontes Fixas limites emissões fontes existentes. Proposta Subgrupo INEA, ABRAGET, PETROBRAS

Outros dispositivos só foram inventados muito tempo depois, um destes foi criado pelo italiano Giovanni Branca no ano de 1629.

III Congresso CBNA sobre Tecnologia da Produção de Alimentos para Animais Colégio Brasileiro de Nutrição Animal. Maringá - PR 16 de Setembro de 2015

Cogeração A Gás Natural

Empresas de diversos setores necessitam de produzir águas quentes no âmbito das suas atividades, como por exemplo:

USO DE ENERGIA LIMPA NA INDÚSTRIA. Sugestão de tema a ser estudado, transformado em curso ou disciplina e disseminado no meio acadêmico técnico.

Soluções em Troca Térmica Spirax Sarco. Garantia de eficiência do seu sistema

2º Lista de Exercícios TA 631 (1º sem/2011)

TRATAMENTO DA ÁGUA PARA GERADORES DE VAPOR

Universidade Paulista Unip

Rebaixamento do Lençol Freático

Conversão de Energia Térmica em Elétrica a partir da Biomassa

Figura Ar sangrado do compressor da APU

1 Introdução simulação numérica termoacumulação

Energia Solar Térmica. Prof. Ramón Eduardo Pereira Silva Engenharia de Energia Universidade Federal da Grande Dourados Dourados MS 2014

COMO EVITAR O DESPERDÍCIO

Índice. Aquecimento e Climatização Bombas de Calor Pedra Natural Biomassa Recuperadores Calor Biomassa - Pellets

Petróleo e Meio Ambiente

VENTILADORES INTRODUÇÃO: Como outras turbomáquinas, os ventiladores são equipamentos essenciais a determinados processos

Ar Condicionado Central VRF Ar de Confiança

Simulado ENEM. a) 75 C b) 65 C c) 55 C d) 45 C e) 35 C

BIOEN Workshop on Process for Ethanol Production - FAPESP. Optinal Industrial Fermentation. Silvio Roberto Andrietta

ENSAIO DE BOMBAS EM SÉRIE E PARALELO

ESTADO DO MARANHÃO SECRETARIA DE SEGURANÇA PÚBLICA CORPO DE BOMBEIROS MILITAR COMANDO GERAL

PRINCÍPIOS DE FUNCIONAMENTO DOS MOTORES DE COMBUSTÃO INTERNA

Disciplina: Fontes Alternativas de Energia

w w w. h e n f e l. c o m. b r HIDROVARIADOR

Motores Térmicos. 9º Semestre 5º ano

REBAIXAMENTO DO LENÇOL FREÁTICO

CALDEIRAS E VASOS DE PRESSÃO. Juarez Sabino da Silva Junior Técnico de Segurança do Trabalho

ANDRITZ Solução em bombas para atividades offshore

Secador de Ar por Refrigeração CPX. Produtos de Alta Performance. Desenvolvidos para você!

Equipamentos primários. L. Roriz

Geração, Transmissão e Distribuição de Energia Elétrica

JUSTIFICATIVAS PROPOSTA de LIMITES DE EMISSÕES FONTES EXISTENTES REFINARIAS

Fundamentos de Engenharia Solar. Racine T. A. Prado

UNIVERSIDADE FEDERAL DE ITAJUBÁ

UNIVERSIDADE DO ESTADO DE SANTA CATARINA UDESC CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT DEPARTAMENTO DE ENGENHARIA ELÉTRICA DEE

04/05/2012 TROCADORES DE CALOR

CAPÍTULO II Ar Condicionado, refrigeração e refrigerante utilizado.

Funcionamento de uma Torre de Resfriamento de Água

Pre-designed Steam Turbines. Turbinas a vapor compactas para a faixa de potência até 10 MW. Answers for energy.

23/06/2010. Eficiência Energética: Regulamentação, Classificação e Conformidade Técnica. Roberto Lamberts

SISTEMA DE TRATAMENTO DE ÁGUA DE FULIGEM

Caldeiras. Unidade 1. Monitoramento e controle de processos. Classificação das caldeiras ...

Transcrição:

33 2 Descrição dos Sistemas Estudados A seguir são descritos em detalhes os dois ciclos objetos de comparação. O ciclo tradicional é baseado em uma planta existente. O ciclo inovador é o resultado do estudo de alternativas realizado no capítulo 4. No capítulo 4 são apresentadas e analisadas diversas configurações e alternativas de aplicação da nova tecnologia. O estudo é feito para uma planta de cogeração na indústria siderúrgica. O processo siderúrgico tem como resíduos do seu processo os gases provenientes da coqueria, do alto-forno e da aciaria. No presente trabalho os dois primeiros são misturados e utilizados como combustível nas caldeiras de geração de vapor. 2.1. Ciclo Rankine Tradicional O ciclo convencional é composto de uma cadeira de geração de vapor superaquecido, uma turbina a vapor, um condensador, bombas e sistema de regeneração com trocadores de calor casco e tubo. O ciclo aqui estudado é baseado em uma planta existente de cogeração na indústria siderúrgica, porém otimizando o sistema de regeneração por trocadores de calor pelo método demonstrado no item 2-13 do livro Powerplant Technology (El Wakil, 1984). A Figura 2 apresenta o esquema do ciclo tradicional. A caldeira recebe líquido próximo da saturação e produz vapor superaquecido a 86 bar alimentando uma turbina a vapor de condensação com 7 extrações e pressão de vapor exausto de 0,06 bar. A potência mecânica bruta gerada pela turbina a vapor é de 77,3 MW. Descontando-se os consumos das bombas de condensado e de alimentação da caldeira, tem-se a potência mecânica líquida de 76,3 MW. A planta tem como principal função atender à demanda de ar para o alto-forno (6.800 Nm³/min @ 5,2 bar). Isto é feito com um soprador acoplado ao eixo da turbina a vapor consumindo 36 MW. A segunda prioridade é atender à demanda de vapor de processo (10 t/h a 15 bar) para diversas aplicações na planta. A produção adicional de energia é convertida em

34 energia elétrica através de um gerador acoplado ao eixo da turbina. Segue, na Figura 2, um esquema simplificado da planta. A válvula indicada representa a perda de carga na linha de vapor entre a caldeira e a turbina. Q F CAL 10 W e 11 TV W t W s SOP 9 12 14 19 8 PA5 PA4 13 24 15 16 17 18 CND 1 20 Q R 23 7 PA3 DES 4 PA2 3 PA1 2 BC 6 22 5 21 W bc BA W ba Figura 2- Esquema do Ciclo Rankine Tradicional onde: CAL- Caldeira TV- Turbina a Vapor SOP- Soprador CND- Condensador PA1- Aquecedor 1 PA2- Aquecedor 2

35 PA3- Aquecedor 3 PA4- Aquecedor 4 PA5- Aquecedor 5 BC- Bomba de Condensado DES- Desaerador BA- Bomba de Alimentação Q R = Taxa de Rejeição de Calor Q F = Taxa de Fornecimento de Calor W t = Taxa de Realização de Trabalho pela Turbina W s = Taxa de Consumo de Trabalho pelo Soprador W = Taxa de Consumo de Trabalho pela Bomba de Condensado bc W = Taxa de Consumo de Trabalho pela Bomba de Alimentação da Caldeira ba W e = Potência Elétrica Gerada O diagrama T vs S correspondente ao ciclo Rankine tradicional, está representado na Figura 3 abaixo: T ( C) 11 12 6 9 13 15 16 5 17 2 18 1 19 S (kj/kgk) Figura 3- Diagrama T vs S para o Ciclo Tradicional

36 O condensador recebe vapor saturado a 0,06 bar e 37 C e produz condensado saturado nas mesmas condições (19-1). O calor dissipado é absorvido pela água de resfriamento, neste caso, água do mar. O condensado é bombeado (1-2) pela bomba de condensado e, em seguida, pré-aquecido em dois trocadores de calor de baixa pressão (2-5), que recebem vapor de extração da turbina. O condensado produzido no segundo trocador é direcionado para o primeiro trocador e o condensado gerado neste é conduzido ao condensador. Em seguida, a água é encaminhada a um desaerador que retira os gases não condensáveis de modo a preservar os feixes tubulares da caldeira. O desaerador armazena a água já pronta para a alimentação da caldeira. A bomba de alimentação da caldeira eleva a pressão da água para 95 bar (5-6) encaminhando-a para uma seção de três pré-aquecedores de alta pressão (6-9), antes de entrar na caldeira. A caldeira (9-11) é composta por um economizador (que troca calor com os gases de exaustão da combustão), um evaporador e superaquecedores. A caldeira alimenta a turbina a vapor (11-19), que expande o vapor de alta pressão, gerando energia mecânica utilizada parte no acionamento do soprador e parte na conversão em energia elétrica por um gerador. 2.1.1. Componentes do Sistema Segue, nas seções seguintes, a descrição básica dos equipamentos que compõem a planta. 2.1.1.1. Caldeira A caldeira em questão é do tipo aquotubular com circulação natural e utiliza o gás de coqueria misturado com o gás de alto-forno como combustível. A pressão de operação é subcrítica. A caldeira fornece vapor superaquecido a 86 bar e 510 C para a turbina a vapor. Os combustíveis utilizados são os gases residuais do processo siderúrgico:

37 BFG (gás de alto forno) e o COG (gás de coqueria), formando o gás de mistura (BFG + COG). A caldeira é composta de um economizador que leva a água de alimentação para a temperatura de saturação trocando calor por convecção com o gás exausto; um tubulão que está ligado a feixes tubulares (chamados parede de água) revestindo a fornalha da caldeira onde ocorre a troca de calor por radiação evaporando a água que chega à condição de vapor saturado; um superaquecedor interno (radiante) composto de feixes tubulares no interior da caldeira que superaquece o vapor até 480 C; e um superaquecedor externo (convectivo) que troca calor com o gás exausto e eleva a temperatura do vapor a 510 C. A caldeira recebe 309 t/h de água subresfriada a 93 bar a e 255 C e gera 306 t/h de vapor superaquecido a 86 bar e 510 C. A per da de vazão é relativa à purga da caldeira que é feita continuamente para evitar a concentração de sais no fluido de trabalho. Com isto, deve ser feita uma reposição de água desmineralizada de mesmo valor. Segue, na Figura 4, um esquema com os componentes principais de uma caldeira aquotubular, extraído de Lora e Nascimento (2004). Figura 4- Esquema de uma caldeira aquotubular típica (Lora e Nascimento, 2004)

38 2.1.1.2. Turbina a Vapor A turbina a vapor é do tipo de condensação com carcaça única bi-partida e de exaustão axial. É alimentada por vapor de alta pressão a 86 bar e 510 C e o expande até 0,06 bar e 37 C, gerando potência mecânica de eixo. O eixo da turbina é acoplado, de um lado, ao gerador e, de outro, a um soprador que é utilizado para alimentar o alto-forno. A turbina admite 306 t/h de vapor gerando 77,3 MW, sendo que 36 MW são utilizados para acionar o soprador e 1 MW é consumidos pelas bombas. Os 40,3 MW restantes são convertidos em energia elétrica pelo gerador. A turbina tem sete extrações controladas (i. e., as condições das extrações não variam com as condições de alimentação do vapor). Três extrações de alta pressão, são utilizadas nos pré-aquecedores de alta pressão (44 bar, 20 bar e 7,65 bar) além de uma para processo da planta (10 t/h a 15 bar). Vapor de baixa pressão é utilizado no desaerador (5 bar) e para os dois pré-aquecedores de baixa pressão (2,3 bar e 0,5 bar). Segue um corte de uma turbina a vapor das séries A5/A9 da GE com 3 conjuntos de estágios; alta, média e baixa pressão. A turbina é do tipo de condensação com exaustão axial, sendo o condensador posicionado axialmente a turbina. Este tipo de configuração é utilizado para turbinas de pequeno a médio porte (de 20 a 100 MW). A turbina representada na Figura 5 é apenas um exemplo ilustrativo, não é a turbina do ciclo estudado. Figura 5- Corte de um turbina a vapor de carcaça única série A5/A9 da GE

39 Para turbinas de grande porte é utilizada a configuração com dupla exaustão radial e dupla carcaça (uma com os estágios de alta e média pressão e outra com o estágio de baixa pressão) como mostra a Figura 6, abaixo. Figura 6- Esquema de uma turbina a vapor de grande porte Para turbinas a vapor de grande porte, é construída uma estrutura de suportação da máquina, de modo a permitir que o condensador seja posicionado abaixo da mesma. 2.1.1.3. Condensador O condensador é de superfície, posicionado abaixo da turbina a vapor, resfriado a água e com dois passes. A água é circula pelos tubos trocando calor com o vapor vindo da turbina. O calor latente de condensação é transferido para a água de resfriamento, a qual é direcionada para o mar. Bombas captam água fria do mar para o condensador. Este é o chamado ciclo aberto de condensação. Para localidades com pouca disponibilidade de água ou com restrições ambientais, é adotado o circuito fechado de resfriamento com a instalação de uma torre de resfriamento. A operação do condensador ocorre na pressão manométrica negativa (vácuo) que é mantida por bombas de vácuo ou por ejetores a vapor. Os ejetores utilizam vapor de extração da turbina e têm dupla função; além de manter o vácuo de operação do condensador, retirar parte dos não condensáveis. O condensador recebe o vapor exausto da turbina (187 t/h) a 0,06 bar e utiliza água do mar para condensar esse vapor e realimentar o ciclo com condensado. A vazão nominal de água do mar para condensação do vapor é de 13.500 t/h e as

40 temperaturas da água quente e fria são, respectivamente, 32,5 C e 25,5 C. Para utilizar água do mar como fluido dissipador, o material dos tubos do condensador deve resistir à abrasão causada pela água salgada. O material utilizado na fabricação dos tubos, para estes casos, é o titânio. O condensado produzido é encaminhado a um poço localizado abaixo do corpo do condensador ainda na condição de vácuo. A bomba de condensado é conectada a este poço. A vazão de água de reposição do ciclo admitida no condensador é de 14,7 t/h. A Figura 7 apresenta um esquema de um condensador instalado abaixo da turbina a vapor: Figura 7- Esquema de um condensador de dois passes 2.1.1.4. Bomba de Condensado A bomba de condensado é centrífuga vertical do tipo can, com um reservatório próprio instalado no corpo da bomba. A sucção é feita na pressão de vácuo a partir do poço de condensado localizado abaixo do condensador. Esta bomba é utilizada em casos onde há problemas de NPSH (Net Positive Suction Head) disponível. Tipicamente o bombeamento de condensado apresenta este problema pois a pressão de sucção da água está próxima da pressão de vapor. Por este motivo a bomba deve ter seu próprio reservatório como mostra a Figura 8. A bomba de condensado eleva a pressão do condensado para 5 bar (pressão de

41 operação do desaerador). Figura 8- Corte de uma bomba tipo can modelo VIC-L da Goulds Pumps 2.1.1.5. Pré-Aquecedores Os aquecedores de água de alimentação das caldeiras são trocadores de calor do tipo casco e tubo. A água passa pelos tubos enquanto que o vapor de extrações das turbinas passa por fora dos tubos, aquecendo a água de alimentação das caldeiras e condensando. O condensado produzido pelo pré-aquecedor de alta pressão é direcionado para o desaerador. O condensado produzido no segundo préaquecedor de baixa pressão é encaminhado para o primeiro pré-aquecedor de baixa pressão e o condensado gerado neste último é encaminhado para o condensador.

42 São dois trocadores de baixa pressão e um de alta pressão. As seções de alta e baixa pressão são separadas por um desaerador. Segue, na Figura 9, um esquema ilustrativo da operação de um trocador casco e tubo. Figura 9- Esquema de um trocador de calor tipo casco e tubo 2.1.1.6. Desaerador O desaerador (Figura 10) é composto de uma torre vertical, onde ocorre o processo de arraste dos não condensáveis, e de um vaso horizontal, que funciona como reservatório para a água de alimentação da caldeira. O desaerador tem a função de retirar os gases não condensáveis da água de alimentação de modo a não danificar as caldeiras. É utilizado vapor de extração de 5 bar para retirar o ar da água por arraste de vapor, ou seja, o vapor, em contra-corrente com a água, carrega os não condensáveis, que são liberados para a atmosfera. Além de retirar não condensáveis, o desaerador promove aquecimento da água e funciona, também, como um reservatório que possibilita a sucção das bombas de alimentação da caldeira. O desaerador trabalha com pressão de operação de 5 bar. A Figura 10 apresenta o esquema de operação de um desaerador.

43 Figura 10- Esquema de um desaerador 2.1.1.7. Bomba de Alimentação da Caldeira A bomba de alimentação de caldeira é centrífuga horizontal do tipo barril com multi-estágios e eleva a pressão de 5 bar a da água proveniente do desaerador, para 95 bar de maneira que a pressão na entrada da turbina seja de 86 bar. A Figura 11 apresenta o esquema de operação da bomba: Figura 11- Esquema em corte de uma bomba horizontal multiestágios

44 2.2. Ciclo Rankine Inovador Desde suas primeiras aplicações práticas, a configuração básica do ciclo Rankine não sofreu grandes alterações. A utilização do reaquecimento do vapor após os primeiros estágios de expansão da turbina é uma prática amplamente utilizada, assim como a regeneração por troca de calor, entre vapor de extração da turbina e a água de alimentação da caldeira. A proposta do ciclo Rankine inovador é baseada na patente depositada por Cunningham e Briesch (2005) e registrada pela Siemens Westinghouse Power Corporation. Como pode ser visto na Figura 12, o ciclo inovador caracteriza-se por um sistema de regeneração com injeção de vapor de extração da turbina na água de alimentação da caldeira, seguida de bombeamento bifásico até a saturação. Neste ponto, uma nova injeção de vapor ocorre e a mistura bifásica é novamente bombeada para a condição de líquido saturado. O procedimento é repetido sucessivamente quantas vezes for conveniente. A pressão de extração de vapor de injeção deve ser definida em função da pressão de descarga da bomba bifásica a montante. inovador: A Figura 12 na página seguinte, apresenta o esquema proposto para o ciclo

45 Q A 13 CAL W e 14 TV W t W s SOP 12 21 17 CND 22 Q R 15 23 1 18 20 2 BBF5 11 10 BBF4 9 DES 5 BBF2 4 3 BBF1 W b5 W b4 8 16 BBF3 6 7 19 W b2 W b1 W b3 Figura 12- Esquema do ciclo Rankine inovador Onde: CAL- Caldeira TV- Turbina a Vapor SOP- Soprador CND- Condensador BBF1- Bomba Bifásica 1 BBF2- Bomba Bifásica 2 DES- Desaerador BBF3- Bomba Bifásica 3 BBF4- Bomba Bifásica 4 BBF5- Bomba Bifásica 5 BA- Bomba de Alimentação

46 Q R = Taxa de Rejeição de Calor Q F = Taxa de Fornecimento de Calor W t = Taxa de Realização de Trabalho pela Turbina W s = Taxa de Consumo de Trabalho pelo Soprador W = Taxa de Consumo de Trabalho pela Bomba Bifásica 1 b1 W = Taxa de Consumo de Trabalho pela Bomba Bifásica 2 b2 W = Taxa de Consumo de Trabalho pela Bomba Bifásica 3 b3 W = Taxa de Consumo de Trabalho pela Bomba Bifásica 4 b4 W = Taxa de Consumo de Trabalho pela Bomba Bifásica 4 b5 W e = Potência Elétrica Gerada A válvula indicada na Figura 12 representa a perda de carga na linha de vapor entre a caldeira e a turbina (trecho 13-14). Os retângulos pontilhados representam os pontos de mistura. O diagrama T vs S para o esquema proposto é apresentado na Figura 13. T ( C) 14 15 12 10 11 8 9 5 7 3 4 1 2 16 19 20 21 Figura 13- Diagrama T vs S para o ciclo Rankine inovador S (kj/kgk)

47 O ciclo proposto utiliza injeção de vapor na água de alimentação e posterior bombeamento bifásico ao invés do uso de pré-aquecedores utilizados no ciclo Rankine tradicional. A mistura após a injeção deve ser de até 20% e o fluido na descarga da bomba bifásica deve estar na condição de saturação (Cunningham e Briesch, 2005). A utilização desta nova técnica, que substitui o pré-aquecimento da água de alimentação por injeção direta de vapor e bombeamento bifásico, alegam os autores da patente (Cunningham e Briesch, 2005), melhora a eficiência do ciclo, visto que a adição de energia por pressurização é menos irreversível do que a adição de calor por diferença de temperatura. A proposta é que um ou mais pré-aquecedores sejam substituídos por injeção de vapor e bombeamento bifásico e este será o objeto do estudo comparativo. Uma parte do vapor exausto da turbina é encaminhado para a sucção da bomba de condensado gerando um fluxo bifásico com título de até 20% (trecho 1-2 na Figura 13) que é bombeado até a pressão de saturação (trecho 2-3 na Figura 13) (Cunningham e Briesch, 2005). Uma nova injeção de vapor de baixa pressão extraído da turbina é feita (trecho 3-4 na Figura 19) e seguida de bombeamento bifásico (trecho 4-5 na Figura 13). A água é então encaminhada ao desaerador, onde ocorre a retirada dos não condensáveis. O fluido é novamente misturado (título de até 20%) com vapor (trecho 6-7 na Figura 13) e bombeado pela bomba bifásica 3 (trecho 7-8 na Figura 13), que eleva a pressão para a condição de saturação. A segunda extração da turbina é injetada na descarga da bomba bifásica 3 produzindo fluxo bifásico (trecho 8-9 na Figura 13) o qual é bombeado pela bomba bifásica 4 (trecho 9-10 na Figura 13) para a condição de saturação novamente. Por fim, a primeira extração da turbina é injetada na descarga da bomba bifásica 4 (trecho 10-11 na Figura 13) e a mistura é bombeada pela bomba bifásica 5 (trecho 11-12 na Figura 13). Neste ponto, a água líquida saturada é encaminhada para a caldeira onde é evaporada e superaquecida (trecho 12-13 na Figura 13). O vapor superaquecido é admitido pela turbina gerando energia e, após a expansão, é direcionado para o condensador fechando o ciclo (trecho 14-21 na Figura 13). O ciclo ainda não foi colocado em prática pois depende do desenvolvimento de

48 bombas que suportem os efeitos da cavitação proporcionados pelo fluxo bifásico. É necessário um esforço de pesquisa e desenvolvimento para viabilizar tais equipamentos. 2.2.1. Componentes do Sistema Os componentes do ciclo inovador são os mesmos descritos no item 2.1.1 acrescidos das bombas bifásicas e excluídos os pré-aquecedores. Algumas condições operacionais variam, mas estas serão apresentadas na simulação. Portanto, neste item somente será descrito o equipamento adicional, a bomba bifásica. 2.2.1.1. Bombas Bifásicas Duas bombas bifásicas são utilizadas para aumentar a pressão do fluido bifásico até a pressão de saturação. Na linha de descarga das bombas vapor na mesma pressão de descarga da bomba a montante é injetado de modo a se obter uma mistura com título de até 20%. Embora bombas bifásicas para esta aplicação ainda não estejam disponíveis comercialmente, os autores da patente (Cunningham e Briesch, 2005) acreditam que o desenvolvimento do projeto e a produção de tais equipamentos sejam possíveis com as tecnologias existentes, já que existem bombas bifásicas para aplicação na indústria petroquímica em operação (de Salis, 1996). As bombas bifásicas foram modeladas com eficiência isentrópica de 75% baseado na consideração feita pelos inventores do ciclo inovador (Cunningham e Briesch, 2005). Este valor pode ser considerado baixo mas foi adotado pois, como já foi dito, tais equipamentos ainda não foram desenvolvidos e não existem dados de performance disponíveis sobre os mesmos. Sendo assim foi optado por um valor conservativo. No capítulo 4 é feito um estudo de alternativas de configuração do ciclo inovador. A alternativa de melhor eficiência será selecionada para comparação pela Segunda Lei da Termodinâmica com o ciclo tradicional.