Capítulo 141-Regionalização hidrográfica



Documentos relacionados
Método da Regionalização Hidrográfica. (Vazão firme regularizada Caso: Guarulhos -Tanque Grande) 1

Exercício 1: Calcular a declividade média do curso d água principal da bacia abaixo, sendo fornecidos os dados da tabela 1:

Relatório da Situação Atual e Previsão Hidrológica para o Sistema Cantareira

Capítulo 133 Vazão mínima com Weibull

5.1 Potencialidade, Disponibilidade e Capacidade de Armazenamento Potencial

O Sistema de Monitoramento Hidrológico dos Reservatórios Hidrelétricos Brasileiros

NOTA TÉCNICA MANUTENÇÃO DA PRODUÇÃO DO SISTEMA CANTAREIRA PARA A POPULAÇÃO DA RMSP

DOSSIÊ Sistema Alto Tietê

Concepção de instalações para o abastecimento de água

INSTRUÇÃO TÉCNICA DPO Nº 5, de 10/11/2011

Estiagem é tema de edição especial deste mês Instituições contam as medidas adotadas para atravessar o período de crise

14/12/09. Implantação de sistemas de reuso e aproveitamento de água de chuva

RESOLUÇÃO Nº 131, DE 11 DE MARÇO DE 2003

Departamento de Águas e Energia Elétrica

USO DE SIMULAÇÃO COMPUTACIONAL COMO APOIO PARA O DIMENSIONAMENTO DE RESERVATÓRIOS PARA ARMAZENAMENTO DE ÁGUA PLUVIAL

Gestão da Demanda de Água Através de Convênios e Parcerias com o Governo do Estado de São Paulo e Prefeitura da Cidade de São Paulo SABESP

FACULDADE SUDOESTE PAULISTA CURSO - ENGENHARIA CIVIL DISCIPLINA- HIDROLOGIA

Processos de Outorga e Licenciamento do Uso da Água na Atividade Agrícola Eng. Msc. Guilherme Busi de Carvalho Eng Msc. Marco Antônio Jacomazzi

INSTRUÇÃO NORMATIVA Nº 12, DE 03 DE SETEMBRO DE 2008.

Eixo Temático ET Recursos Hídricos NOVAS TECNOLOGIAS PARA MELHOR APROVEITAMENTO DA CAPTAÇÃO DA ÁGUA DE CHUVA

BOLETIM DE MONITORAMENTO DA BACIA DO ALTO PARAGUAI

INÍCIO DE OPERAÇÃO DO SISTEMA: A primeira etapa entrou em operação em 1975 e a segunda, em 1982.

"Água e os Desafios do. Setor Produtivo" EMPRESAS QUE DÃO ATENÇÃO AO VERDE DIFICILMENTE ENTRAM NO VERMELHO.

ARQUITETURA E A SUSTENTABILIDADE DA ÁGUA NO MEIO URBANO.

VI Simpósio Ítalo Brasileiro de Engenharia Sanitária e Ambiental

ANEXO V PROGRAMA DE MONITORAMENTO DA UNIDADE DEMONSTRATIVA DO MANGARAI

Capitulo 3. Previsão de consumo de água não potável

Pesquisa de controle de desperdícios e ramais clandestinos em ligações de água residenciais unifamiliares 1

Curso Aproveitamento de água de chuva em cisternas para o semi-árido 5 a 8 de maio de 2009

PLANO DA BACIA HIDROGRÁFICA DO ALTO TIETÊ

VISÃO 2011 Estar entre as 03 empresas do Brasil que mais avançaram na universalização dos serviços de água e esgotamento sanitário.

Monitoramento Sismológico Bacias do Rio Claro e Rio Verde AHE Foz do Rio Claro. Execução do Programa de Monitoramento Sismológico Relatório Resumo

11º Seminário Tecnologia de Sistemas Prediais SindusConSP. Agua: pague menos

Rio São Francisco ERROS DA TRANSPOSIÇÃO

Falta de água e excesso de água

Ciclo hidrológico. Distribuição da água na Terra. Tipo Ocorrência Volumes (km 3 ) Água doce superficial. Rios. Lagos Umidade do solo.

MUDANÇAS DO CLIMA E OS RECURSOS HÍDRICOS. São Carlos, 25 de fevereiro de 2010

PORTARIA DAEE nº 2292 de 14 de dezembro de Reti-ratificada em 03/08/2012

Livro: Água pague menos água Engenheiro Plinio Tomaz 11/12/2010. Capítulo 2. Nitro PDF Trial

ÁGUA INDUSTRIAL 1 1 Escrito em julho de

WEB VISUALIZADOR SSD SABESP - MANANCIAIS DA REGIÃO METROPOLITANA DE SÃO PAULO

Principais ações desenvolvidas pela empresa

FACULDADE SUDOESTE PAULISTA CURSO - ENGENHARIA CIVIL DISCIPLINA - HIDROLOGIA APLICADA EXERCÍCIO DE REVISÃO

ANEXO VI REMUNERAÇÃO E MECANISMOS DE PAGAMENTO

PREVISÃO HIDROLÓGICA E ALERTA DE ENCHENTES PANTANAL MATO-GROSSENSE

PORTARIA SERLA N 591, de 14 de agosto de 2007

PREVISÃO HIDROLÓGICA E ALERTA DE ENCHENTES PANTANAL MATO-GROSSENSE

ESTUDO DO TEMPO DE DETENÇÃO HIDRÁULICO (TDH) EM REATORES UASB E SUA RELAÇÃO COM A EFICIÊNCIA DE REMOÇÃO DE DBO

ESTUDOS DE CASO APROVEITAMENTO DE ÁGUA PLUVIAL PARA FINS NÃO POTÁVEIS EM INSTITUIÇÃO DE ENSINO: ESTUDO DE CASO EM FLORIANÓPOLIS - SC

DIRETRIZES PARA ELABORAÇÃO

FUNDAÇÃO AGÊNCIA DAS BACIAS HIDROGRÁFICAS DOS RIOS PIRACICABA, CAPIVARI E JUNDIAÍ. AGÊNCIA DAS BACIAS PCJ

Projeto Tecnologias Sociais para a Gestão da Água

CURSO ON-LINE PROFESSOR GUILHERME NEVES

Revista Brasileira de Farmacognosia Sociedade Brasileira de Farmacognosia

HIDROLOGIA AULA semestre - Engenharia Civil. Profª. Priscila Pini prof.priscila@feitep.edu.br

CRISE HÍDRICA NO ESTADO DE SÃO PAULO SINTAEMA, São Paulo SP, 11 de Novembro de 2014

3.1. JUIZ DE FORA Sistema Existente de Abastecimento de Água

PROJETO DE LEI Nº, DE 2014

Enchente - caracteriza-se por uma vazão relativamente grande de escoamento superficial. Inundação - caracteriza-se pelo extravasamento do canal.

EVOLUÇÃO DO TRANSPORTE DE SEDIMENTOS DO RIO PARAGUAI SUPERIOR EVOLUÇÃO DO TRANSPORTE DE SEDIMENTOS DO RIO PARAGUAI SUPERIOR

RESOLUÇÃO Nº 96 DE 25 DE FEVEREIRIO DE 2014

MONITORAMENTO HIDROLÓGICO EM ATENDIMENTO AO CONVÊNIO CASAN BACIA DA LAGOA DO PERI

Prêmio por um País s Melhor REAPROVEITAMENTO DE ÁGUA DE PROCESSO

CONTRIBUIÇÕES REFERENTES À AUDIÊNCIA PÚBLICA Nº 053/2009 NOME DA INSTITUIÇÃO: CPFL GERAÇÃO AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA ANEEL

DOSSIÊ Sistema Rio Grande

OUTORGA DE DIREITO DE USO DA ÁGUA. Ivo Heisler Jr. SUDERHSA

PODER EXECUTIVO FEDERAL. Instituto Nacional de Colonização e Reforma Agrária do Rio Grande do Sul

Softwares da Elipse são utilizados nos processos de redução de perdas de água e eficientização energética da Águas Guariroba

INSTRUÇÃO NORMATIVA Nº 01, DE 27 DE FEVEREIRO DE 2007.

Metodologia de Análise da Economia Hídrica em Bacias Degradadas: Estudo de Caso da Bacia do Rio Jaguari/MG-SP

- DIMENSIONAMENTO DE VERTEDOUROS -

Alegre-ES, CEP.: , Caixa Postal 16,

Vitor Amadeu Souza

F4-018 F4-017 F4-035 F4-022 F4-014

Sumário. Zeca. O amigo da água. 04. A importância da água. 05. Por que preservar 06. Como a água chega à sua casa 07. Dicas para preservar a água 09

Taxa de ocupação e. no consumo per capita. As cidades representam demandas. Conexão

VIII EXPOSIÇÃO DE EXPERIÊNCIAS MUNICIPAIS EM SANEAMENTO

EDITAL DE TOMADA DE PREÇOS Nº

VI-004 MONITORAMENTO EM TEMPO REAL DA QUALIDADE DA ÁGUA DOS MANANCIAIS DA REGIÃO METROPOLITANA DE SÃO PAULO - RMSP

XXX CONGRESO INTERAMERICANO DE INGENIERÍA SANITARIA Y AMBIENTAL 26 al 30 de noviembre de 2006, Punta del Este - Uruguay

ESTADO DOS CADASTROS DE USUÁRIOS NAS BACIAS PCJ NO ANO DE 2013

Profa. Ana Luiza Veltri

INSTITUTO DE ENGENHARIA

DELTA DO JACUÍ ILHAS DA PINTADA, GRANDE DOS MARINHEIROS, FLORES E PAVÃO: Estudo Preliminar de Viabilidade para Abastecimento de Água

COMITÊ DE BACIAS PCJ SISTEMA CANTAREIRA CONDICIONANTES DE 2004 CONDICIONANTES PARA 2014 BARRAGENS DE PEDREIRA E DUAS PONTES TRANSPOSIÇÃO DO RIO

SOFTWARES DA ELIPSE SÃO UTILIZADOS NOS PROCESSOS DE REDUÇÃO DE PERDAS DE ÁGUA E EFICIENTIZAÇÃO ENERGÉTICA DA ÁGUAS GUARIROBA

3.5 SANTOS DUMONT. Quanto ao sistema de esgotamento sanitário, sua operação e manutenção cabe a Prefeitura local, através da Secretaria de Obras.

Carta Regional dos Municípios de Itaguaí, Mangaratiba, Seropédica e Rio de Janeiro.

COMO FAZER O ACOMPANHAMENTO FINANCEIRO DE UM PROJETO (Pós-Auditoria) Conceitos e Procedimentos Para Serem Colocados em Prática Imediatamente

O sistema ora descrito apresenta as seguintes unidades operacionais: O sistema conta com dois mananciais, ambos com captações superficiais:

3.9 VISCONDE DE RIO BRANCO

-Torre de tomada d água com dispositivos de comportas e tubulações com diâmetro de 1.200mm;

Os desafios da gestão de recursos hídricos e as ações para redução do potencial de escassez de água

IMPACTO DA BARRAGEM DE CAMARÁ SOBRE O HIDROGRAMA DE CHEIA NA CIDADE DE ALAGOA GRANDE/PB. Elisângela do Rego Lima

PERGUNTAS MAIS FREQÜENTES SOBRE VALOR PRESENTE LÍQUIDO (VPL)

4 Avaliação Econômica

DISCIPLINA: SISTEMAS DE ABASTECIMENTO DE ÁGUA E SANEAMENTO PROFESSOR: CÁSSIO FERNANDO SIMIONI

ANEXO III INFORMAÇÕES PARA A ELABORAÇÃO DA PROPOSTA TÉCNICA

DELIBERAÇÃO CEIVAP Nº 226/2015 DE 24 DE MARÇO DE 2015.

IT AGRICULTURA IRRIGADA. (parte 1)

Transcrição:

Capítulo 141-Regionalização hidrográfica 141-1

Capítulo 141-Regionalização hidrográfica 141.1 Introdução O mundo passa por grandes transformações e os recursos hídricos deverão no séeculo XXI ser analisado de quatro maneiras básicas: Aproveitamento dos recursos hidricos superficiais como rios e lagos Aproveitamento dos recursos de águas subterrâneas Aproveitamento de água de chuva de telhados Reúso de água Vamos tratar neste capítulo da quantidade de água que podemos retirar de rios e córregos para abastecimento público usando o Método da Regionalização Hidrográfica. O Departamento de Águas e Energia Elétrica do Estado de São Paulo (DAEE) vem realizando estudos desde 1980 para estimar a disponibilidade hídrica das bacias hidrográficas paulistas, que não disponham de dados hidrográficos observados. As pesquisas do DAEE concluíram como estudo da regionalização das variáveis hidrológicas: vazões médias e mínimas, volumes de regularização intra-anual e curvas de permanência. O estudo foi apoiado nos dados anuais precipitados em 444 postos pluviométricos, 19 estações fluviométricas para as descargas mensais e 88 postos fluviométricos para observação das séries históricas de vazões diárias. Este trabalho foi apresentado no livro Conservação da água de 1999 em aplicação do caso do Reservatório do Tanque Grande e acrescido agora com Tabelas e Figuras do trabalho original do DAEE de 1088. 141. Regionalização hidrológica Freqüentemente, nos estudos de aproveitamento dos recursos hídricos das bacias hidrográficas, o hidrólogo é convocado para avaliar a disponibilidade hídrica superficial em locais onde não existe série histórica de vazões ou, se existe, a extensão da série observada é pequena. Neste caso, deve ser aplicada a regionalização hidrológica. Esta regionalização é uma ferramenta que possibilita a avaliação de maneira rápida, em conformidade à agilidade que a administração dos recursos hídricos requer para suas decisões. No estudo de águas superficiais, o objetivo pode ser avaliar a capacidade de autodepuração do curso de água para a vazão mínima, associada à dada probabilidade de ocorrência. No caso de pequeno aproveitamento hidrelétrico deseja-se quantificar a energia possível de ser gerada, comumente estimada pela análise da curva de permanência. Quando, por outro lado, o objetivo é atender uma determinada demanda para abastecimento, é necessário verificar se a vazão a ser captada é menor que a descarga mínima para um dado período de retorno (captação a fio de água). Caso a demanda seja maior que a mínima e menor que a média de longo período, é preciso avaliar o volume de armazenamento necessário para atendê-la, associado a um determinado risco de não atendimento em um ano qualquer. Em resumo, as variáveis hidrológicas são: vazão média de longo período; vazão mínima de duração variável de um a seis meses, associada à probabilidade de ocorrência; curva de permanência de vazões; volume de armazenamento intra-anual, necessário para atender dada demanda, sujeito a um risco conhecido; vazão mínima de sete dias, associada à probabilidade de ocorrência. 141. Vazão média de longo período A descarga média plurianual numa dada seção de um curso de água pode ser obtida, com aproximação, através da relação linear dessa vazão Q com o total anual médio precipitado na bacia hidrográfica (P) Q = a + b. P (Equação 141.1) na qual a e b são parâmetros da reta de regressão; Q em l/s/km (litros por segundo por km ) e P em milímetro por ano (mm/ano). 141-

Guarulhos é a região G determinada pelo DAEE conforme figura no fim deste Apêndice, apresentando os seguintes valores de a e b, conforme Tabela (141.1). Região do Estado Tabela 141.1- Parâmetros da análise de regressão linear Parâmetro a Parâmetro b G -6, 0,078 R=0,940 (Coeficiente de determinação) Para Guarulhos, a precipitação média anual P pode ser considerada igual a 1500mm. Portanto, aplicando a Equação (141.1) temos: Q=a + b.p = -6, + 0,078. 1500= 15,47 l/s/km Assim, a vazão média plurianual de Guarulhos é de 15,47 l/s/km. Considerando-se, para exemplo prático, a bacia do reservatório do Tanque Grande, em Guarulhos, com área de bacia de 8, km, teremos, na seção de interesse, isto é, na barragem: Q= 15,47. 8,= 16,85 l/s (Equação 141.) Portanto, a vazão média plurianual da bacia do Tanque Grande, na seção de interesse considerada, é de 16,85 l/s. 141.4 Período de retorno É muito importante a adoção de um período de retorno T. O período de retorno XT foi obtido, estatisticamente, através da análise dos postos fluviométricos. Os períodos de retorno são de 10, 15, 0, 5, 50 e 100 anos, conforme a Tabela (141.). Região G Tabela 141.- Valores dos períodos de retorno XT, A e B 10 15 0 5 50 100 Valor anos anos anos anos anos anos A 0,6 0,588 0,561 0,54 0,496 0,461 0,4089 Valor B 0,0 141.5 Vazão mínima anual de um mês de duração e dez anos de período de retorno (Q 1,10). A fórmula a ser usada, pesquisada pelo DAAE, é: Q d,t= XT. ( A + B. d).q (Equação 141.) sendo: d= meses de duração; 1/T= probabilidade de ocorrência; XT,A e B= Tabela (141.) O valor XT, referente ao período de dez anos, é 0,6, conforme a Tabela (141.), portanto, X10= 0,6. Queremos o valor Q1,10, para d= 1, sendo tabelados os valores de A e B: Q1,10= X10 ( A + B. 1 ). Q A= 0,4089 B= 0,0 d= 1 mês X10= 0,6 Substituindo os valores, teremos: Q1,10= 0,6 (0,4089+0,0. 1). 16,85 = 5,44 l/s 141- (4)

Portanto, a vazão mínima anual de um mês de duração e dez anos de período de retorno é 5,44 l/s. Esta vazão média mensal pode ser captada, sem regularização, admitindo-se que, em média, ocorre uma vazão inferior a ela uma única vez num período de dez anos. 141.6 Vazões mínimas anuais de sete dias consecutivos (Q7,10) Uma solicitação freqüente sobre vazões mínimas refere-se àquela com sete dias de duração. Sua vantagem é sofrer menos influência de erros operacionais e intervenções humanas no curso de água do que a vazão mínima diária e ser suficientemente mais detalhada que a vazão mínima mensal. Assim, esta vazão é utilizada com freqüência (Q7,10) como indicador da disponibilidade hídrica natural num curso de água. O período de retorno é de dez anos. O significado do parâmetro Q7,10 é de que o manancial não irá atender esta vazão, em média, uma vez em dez anos (sem regularização). O cálculo do Q7,10 é dado pela fórmula: Q7,10= C. XT. ( A + B). Q (Equação 141.5) Sendo: C= 0,75 obtido nas pesquisas do DAAE e válido para Guarulhos; XT= X10= 0,6; A= 0,4089; B= 0,0 e Q= 16,85 l/s. Substituindo em (5) teremos: Q7,10= 0,75. 0,6 (0,4089+0,0). 16,85= 6,58 l/s (Equação 141.6) Portanto, a vazão de 6,58 l/s é a vazão que pode ser retirada do manancial sem armazenamento, isto é, a fio de água. É a chamada vazão mínima ou vazão ecológica. 141.7 Volume de regularização intra-anual Quando a demanda a ser atendida supera a vazão mínima que pode ocorrer num curso de água, muitas vezes, com armazenamento relativamente pequeno, pode-se aumentar significativamente o nível de atendimento da demanda, sem incorrer nos gastos requeridos por aproveitamentos com regularização plurianual. O número máximo de meses da duração crítica é de oito. A maior diferença entre a demanda e a disponibilidade (V), representa o volume de regularização intra-anual necessário para suprir a demanda QF, com um risco de (100/T)% de não atendimento, em um ano qualquer. A probabilidade de sucesso ou fracasso é predeterminada, em um ano qualquer, em função dos estudos feitos pelo DAEE. O valor máximo da função do volume é fornecido pela fórmula: [ QF-(XT.A.Q)] V= ----------------------------.K 4.XT.B.Q (Equação 141.7) sendo: V= volume de regularização intra-anual em m ; QF= vazão firme a ser regularizada em m /s; A e B= coeficiente da reta de regressão da média das vazões mínimas; K= número de segundos em um mês =.68.000 segundos; XT= fator relativo à probabilidade de sucesso; dc= duração crítica em meses 6 meses Q= vazão média de longo período (m /s). 141-4

A fórmula da duração crítica dc é a seguinte: QF - ( XT. A.Q) dc =-------------------------- 6 meses (Equação 141.8). XT. B. Q Vamos supor que QF= 50 l/s = 0,050 m /s. Para 10% (T=10 anos) de probabilidade de não atendimento em um ano qualquer, ou seja, 90% de probabilidade de atendimento, aplicando a Equação (141.7) e (141.8) temos: [ 0,050- (0,6. 0,4089. 0,16)] V= ------------------------------------------. 68000= 7175 m 4. 0,6. 0,0. 0,16 0,050 - ( 0,6. 0,4089. 0.16) dc= ------------------------------------------- =, meses < 6 meses OK.. 0,6. 0,0. 0,16 Portanto, para a vazão firme de 50 l/s e probabilidade de atendimento de 90%, o volume necessário é 7.175 m e a duração crítica calculada é de, meses, que é menor que o limite máximo de validade da fórmula que é seis meses. Usando as mesmas fórmulas acima, para QF= 0,06 m /s, teremos V= 18.857 m e dc= 5,1 meses. Podemos verificar que, sendo o volume da represa do Tanque Grande de 88.000 m, a vazão firme QF estará entre 0,050 m /s e 0,060 m /s. Interpolando ou tirando-se o QF da Equação (141.7) poderemos, dado o volume que temos, achar o valor de QF e depois conferir o valor de dc, devendo dc ser 6 meses. No caso, o valor da vazão firme é QF= 0,05 m /s = 5 l/s. Façamos a Tabela (141.) dos valores encontrados: Tabela 141.-Vazão firme, volume de regularização e duração crítica Vazão firme QF escolhida Volume necessário para a Duração crítica regularização intra-anual (m /s) (m ) (meses) 0,050 7.175, 0,051 81.91,4 0,05 91.16,6 0,060 18.857 5,1 0,065 56.11 6,1 A vazão firme, com 90% de probabilidade de sucesso, é 5 l/s para o volume de regularização intra anual de 88.000 m sem deixar passar a vazão Q7,10. O correto seria deixar passar a vazão Q 7,10= 6,58 L/s e a vazão que poderíamos retirar seria de 5 L/s menos o Q7,10: 5L/s -6,58 L/s = 5,4 L/s Muitas barragens pequenas da Sabesp não deixam passar a vazão Q7,10 embora esteja errado. 141.8 Curvas de permanência O DAEE, através de 10 postos fluviométricos, realizou análises das freqüências acumuladas, com base em séries de vazões mensais observadas. A curva de permanência em uma seção é importante quando nos interessa saber a amplitude de variação das vazões e, principalmente, a freqüência com que cada valor de vazão ocorre numa determinada seção do rio. Para as curvas de permanência usamos a fórmula abaixo: Qp= qp. Q ( Equação 141.9 ) sendo: Qp= vazão para a freqüência acumulada escolhida; qp= freqüência acumulada que consta da Tabela (141.); Q= vazão média plurianual. Na Tabela (141.4), temos com os seguintes valores de qp para a freqüência acumulada escolhida: 141-5

Tabela 141.4- Curva de permanência Freqüência acumulada Curva de permanência (%) Valor de qp 5,96 10 1,98 15 1,664 0 1,44 5 1,55 0 1,11 40 0,9 50 0,789 60 0,679 70 0,59 75 0,547 80 0,506 85 0,469 90 0,40 95 0,6 100 0, Vamos elaborar, agora, a curva de permanência. Usando a vazão plurianual de 16,85l/s, o coeficiente qp, correspondente à freqüência acumulada, e a Equação (141.9), teremos a Tabela (141.5). Tabela 141.5-Curva de permanência de vazões médias mensais do Tanque Grande Tempo Vazão (%) (litros/segundo) 5 04 10 5 15 11 0 18 5 159 0 14 40 117 50 100 60 86 70 75 80 64 85 59 90 5 95 46 100 8 A curva de permanência é para a retirada da água a fio d água, o que não é o nosso caso. Significa quem em 95% do tempo teremos vazão de 46 L/s. Como a vazão mínima Q7,10= 6,58 L/s poderemos retirar a fio d água a diferença 46L/s 6,58L/s= 19,4 L/s Observar que, para a curva de permanência, não está considerado o volume do reservatório, que é de 88.000 m. Para a represa do Tanque Grande, executamos a Estação de Tratamento de Água (ETA), para a vazão máxima de 90 l/s, a qual teremos em praticamente 60% do tempo, conforme a curva de permanência da Tabela (141.5). A vazão firme obtida foi de 5 l/s, que é obtida com a ajuda do reservatório de 88.000 m, com probabilidade de sucesso de 90%. 141-6

Observação importante: Para manter os cursos de água é necessário manter uma vazão mínima, também chamada de vazão ecológica. No Estado de São Paulo é usada a vazão mínima Q7,10 que são sete dias consecutivos com período de retorno de 10anos. Mesmo no Estado de São Paulo existem bacias em que é permitido valor de 50% de Q 7,10, mas normalmente é usado o Q7,10. Então a vazão que se pode utilizar deve-se ser descontado o valor de Q7,10. Assim se a vazão achada for 100L/s e o Q7,10 for 0L/s a vazão que podemos retirar é 80 L/s. 141.9 Estudo de outros casos: Cabuçu, Barrocada, Engordador, Lago Azul A Tabela (141.6) fornece a vazão firme regularizada, o volume crítico do reservatório e a duração crítica dos principais reservatórios existentes em Guarulhos e nas imediações. Não estão incluídos reservatórios particulares. Tabela 141.6-Vazão firme regularizada em litros/segundo Área Vol. exist. Vazão firme regul. Vol. crítico do res. Duração crítica (km ) (m ) (L/s) (m ) (meses) T. Grande 8, 88.000() 5 91.16,6 Cabuçu 4,0 1.776.000() 190 746.011 6,0 Barrocada 8,5 0.000() 45 8.909,0 Engordador 9,6 500.000() 76 98.404 6,0 Lago Azul 1,54 100.000(1) 1 44.877 5,8 Ururuquara,08(5) 5.000(1) 11 7.01,0 Córrego Guaraçau 18,91(4) 85.000(1) 15 77.67 4,8 Barragem (1) Os volumes foram estimados, isto é, não houve estudos de batimetria. () Volume obtido no SAAE por estudo de batimetria. () Dados fornecidos pela SABESP. (4) O córrego Guaraçau é afluente do Rio Baquirivu, junto ao Inocoop. A seção de estudo é na estrada que cruza o rio, onde a jusante existem duas antigas cavas de areia. (5) Área obtida de planta da antiga Repartição de Águas e Esgoto - RAE, de outubro de 1940. Trata-se de área de contribuição do ribeirão Ururuquara, cuja vazão mínima estimada, em 195, foi de 7 a 9 l/s Nota: não deixamos passar a jusante a vazão Q 7,10. Conforme planta de 194, o Sistema Cabuçu (Cabuçu + Barrocada + Engordador) forneceu para a Capital em média cerca de 1.000.000 m /mês, ou seja, 86 l/s. O SAAE de Guarulhos utiliza o manancial do Tanque Grande, sendo que a capacidade da ETA Tanque Grande é de 90 l/s. O estudo para aproveitamento do Lago Azul, em Bonsucesso, foi examinado e, devido aos problemas de contaminação do manancial, foi descartada esta hipótese. O manancial do Engordador está próximo ao Posto de Gasolina 555, na rodovia Fernão Dias. Não foi cedido pelo DAEE a Guarulhos. O córrego Guaraçau consta devido a estudos que fizemos sobre seu aproveitamento para água industrial (não-potável). As duas cavas de areia servirão, também, como regulador de vazão, evitando-se mais enchentes junto ao Rio Baquirivu. 141-7

Podemos a partir da Tabela (141.6), fazer algumas comparações interessantes, presentes na Tabela (141.7), abaixo: Tabela 141.7- Comparações Barragem Área Vol. exist. Vazão firme Vazão Fonte dos (km ) (m ) regul. utilizada dados (l/s) (l/s) T. Grande 8, Cabuçu 4,0 Barrocada 8,5 Engordador 9,6 Ururuquara,08 88.000 5 90 SAAE 1.776.000 0.000 500.000 5.000 190 45 76 11 71(1)() 10() 155 1 SABESP SAAE SABESP DAE (1) Esta vazão é só do manancial do Cabuçu, não incluindo os mananciais do Barrocada e do Engordador. () A vazão cedida pelo DAEE a Guarulhos é de até 10 l/s. () A vazão cedida pelo DAEE a Guarulhos é de até 00 l/s. 141.10 Conclusão O método de regionalização de bacias hidrográficas elaborado pelo Departamento de Águas e Energia Elétrica do Estado de São Paulo é fácil de usar, principalmente quando não se tem a série histórica das vazões, como no caso do córrego Tanque Grande. O que nos levou a divulgar este método foi a extrema dificuldade que os engenheiros têm para encontrar literatura a respeito do assunto. 141.11 BIBLIOGRAFIA -CHOW, VEN TE. Applied Hydrology, McGraw-Hill, 1988; -DAEE (DEPARTAMENTO DE ÁGUAS E ENERGIA ELÉTRICA), Revista Águas e energia elétrica, ano 5, número 14, 1988- Regionalização Hidrológica no Estado de São Paulo. Os estudos foram desenvolvidos pelos técnicos: Alexandre Liazi, Joao Gilverto Lotufo Conejo, José Carlos Francisco Palos e Paulo Sergio Cintra. O Superintendente do Departamento de Águas e Energia Elétrica era o dr. Paulo Bezerril Júnior. -GARCEZ, LUCAS NOGUEIRA. Hidrologia, Editora Edgard Blucher Ltda, editôra da Universidade de São Paulo, 1967; -PALOS et al, Regionalização de vazões mínimas, médias, curvas de permanência e volumes de regularização intra anual em pequenas bacias hidrográficas do Estado de São Paulo, VII Simpósio Brasileiro de Hidrologia e Recursos Hídricos, Salvador, novembro 1987. -TOMAZ, PLINIO. Conservação da água. Guarulhos, 1999. -TUCCI, CARLOS E. M. Hidrologia-ciência e aplicação, editora da Universidade de São Paulo, 199. - VILLELA, SWAMI MARCONDES E MATTOS, ARTHUR. Hidrológica Aplicada, McGraw-Hill, 1985. 141-8

Fonte: DAEE, 1988 141-9

Fonte: DAEE, 1988 141-10

Fonte: DAEE, 1988 141-11

Fonte: DAEE, 1988 141-1