Profª Eleonora Slide de aula. Metabolismo de Carboidratos

Documentos relacionados
Profª Eleonora Slide de aula. Metabolismo de Carboidratos

Universidade Federal do Pampa Campus Itaqui Bioquímica GLICÓLISE AERÓBICA. Ciclo de Krebs e Fosforilação Oxidativa. Profa.

Ciclo de Krebs ou Ciclo do ácido cítrico. Prof. Liza Felicori

Introdução ao Metabolismo Microbiano

METABOLISMO DOS CARBOIDRATOS - GLICÓLISE

Oxidação parcial o que acontece com o piruvato?

Hoje iremos conhecer o ciclo de Krebs e qual a sua importância no metabolismo aeróbio. Acompanhe!

Funções do Metabolismo

Aula de Bioquímica II SQM Ciclo do Ácido Cítrico

Pode ser polimerizada, estocada, transportada e liberada rapidamente quando o organismo precisa de energia ou para compor estruturas especiais

Semana 12 Respiração Celular

PRINCIPAIS VIAS METABÓLICAS

Glicólise. Professora Liza Felicori

12/11/2015. Disciplina: Bioquímica Prof. Dr. Vagne Oliveira

Resumo esquemático da glicólise

Metabolismo e oxidação de carboidratos: Glicólise

Biologia. Respiração Celular. Professor Enrico Blota.

O que são as duas reações abaixo?

Aula de Bioquímica II. Ciclo do Ácido Cítrico

Introdução ao Metabolismo. Profª Eleonora Slide de aula

METABOLISMO. Estudo das reações químicas que ocorrem nos organismos

Matéria: Biologia Assunto: Respiração celular Prof. Enrico blota

5/4/2011. Metabolismo. Vias Metabólicas. Séries de reações consecutivas catalisadas enzimaticamente, que produzem produtos específicos (metabólitos).

aaa Bento Gonçalves/RS 1

1. Produção de Acetil-CoA. 2. Oxidação de Acetil-CoA. 3. Transferência de elétrons e fosforilação oxidativa

Obtenção de Energia. Obtenção de Energia. Obtenção de Energia. Oxidação de Carboidratos. Obtenção de energia por oxidação 19/08/2014

Profª Eleonora Slide de aula. Introdução ao Metabolismo

Metabolismo celular. É o conjunto de todas as reacções químicas que ocorrem numa célula.

Utilização de glicose pelas células. A glicólise é a via metabólica mais conservada nos sistemas biológicos

METABOLISMO ENERGÉTICO

17/3/2014. Metabolismo Microbiano. Definição FUNÇÕES ESPECÍFICAS

QBQ 0204 Bioquímica. Carlos Hotta. Glicólise 13/05/17

Membrana interna. Cristas. Matriz Membrana externa. P i P i P i. 7,3 kcal/mol 7,3 kcal/mol 3,4 kcal/mol

FISIOLOGIA VEGETAL 24/10/2012. Respiração. Respiração. Respiração. Substratos para a respiração. Mas o que é respiração?

Aula 13: teórico-prática RESPIRAÇÃO - 2 (Fisiologia Vegetal, Ano lectivo de 2012)

Metabolismo de Carboidratos

BIOENERGÉTICA. Equipe de Biologia Leonardo da Vinci

A partir de agora, o processo de respiração celular ocorre dentro da organela citoplasmática chamada mitocôndria.

METABOLISMO CELULAR PROCESSOS E MOLÉCULAS ESPECÍFICAS 06/08/2015. Oxidação: ocorre a saída de um átomo H; Redução: envolve o ganho de um átomo H.

Transformação e utilização de energia respiração aeróbia

MÓDULO 2 - METABOLISMO. Bianca Zingales IQ-USP

OXIDAÇÕES BIOLÓGICAS: Cadeia respiratória e fosforilação oxidativa

- Hidrólise das ligações glicosídicas mediada por glicosidades

UNIVERSIDADE ESTADUAL PAULISTA

A energética celular:

METABOLISMO ENERGÉTICO

A energética celular:

Glória Braz GLICÓLISE

21/11/2016. Destinos do Piruvato na Célula. Respiração Celular X Combustão. Respiração Celular

Variam em: localização, abundancia, forma... Axonema flagelar

AULA 6 Respiração Mitocondrial nos vegetais

BIOQUÍMICA GERAL. Fotossíntese. Respiração. Prof. Dr. Franciscleudo B Costa UATA/CCTA/UFCG. Aula 11. Glicólise FUNÇÕES ESPECÍFICAS.

Processo de obtenção de energia das células respiração celular

LCB 311 Fisiologia Vegetal (ESALQ/USP) RESPIRAÇÃO. Prof. Ricardo Kluge

Pontifícia Universidade Católica de Goiás Departamento de Biologia Bioquímica Metabólica. Rotas Metabólicas. Prof. Raimundo Júnior M.Sc.

Dra. Kátia R. P. de Araújo Sgrillo.

Faculdade de Tecnologia de Araçatuba. Curso Superior de Tecnologia em Bioenergia Sucroalcooleira

METABOLISMO ENERGÉTICO

Glicólise. Monica Montero Lomeli Sylvia Alquéres

Processo de obtenção de energia das células respiração celular

Universidade Federal do Pampa Campus Itaqui Bioquímica GLICONEOGÊNESE. Profa. Dra. Marina Prigol

Tecnologia de Cultivo de Microrganismos. Aula 2 Metabolismo energético microbiano. Profa. Ana Paula Veeck

Sistema glicolítico ou metabolismo anaeróbio lático

Conversão de energia Mitocôndria - Respiração

Quantas moléculas de acetil-coa uma molécula de glicose e uma molécula de ácido graxo com 16 carbonos podem produzir após sua oxidação?

Aula: 09 Temática: Metabolismo das principais biomoléculas parte I. Na aula de hoje, irei abordar o metabolismo das principais biomoléculas. Veja!

CADEIA DE TRANSPORTE DE ELÉTRONS E FOSFORILAÇÃO OXIDATIVA COMO AS CÉLULAS SINTETIZAM ATP

Citoplasma organelas energéticas

Biologia Prof. Edgard Manfrim

MAPA II Vias metabólicas degradativas

Glicose / carboidratos Ácidos graxos Aminoácidos. Acetil-CoA. Ciclo de Krebs (NADH e FADH 2 )

Organelas Produtoras de energia

BIOQUÍMICA FOTOSSÍNTESE E RESPIRAÇÃO CELULAR Resumo final FOTOSSÍNTESE

Introdução e apresentação geral do metabolismo da glicose

Respiração Celular - Fisiologia Vegetal 2016/2

7. OXIDAÇÕES BIOLÓGICAS

Corpos cetônicos. Quais são? A partir de qual composto se formam? Como se formam? Quando se formam? Efeitos de corpos cetônicos elevados?

Saccharomyces cerevisiae

MAPA II Vias metabólicas degradativas

Aula de Bioquímica II SQM Glicólise

LCB 311 Fisiologia Vegetal (ESALQ/USP) RESPIRAÇÃO. Prof. Ricardo Kluge

Aula de Bioquímica II. Glicólise e Fermentação

Metabolismo e diversidade metabólica dos microrganismos Microbiologia FFI 0751 Profa. Nelma R. S. Bossolan 27/04/2016

FERMENTAÇÕES. Via metabólica de degradação da glicose

CADEIA DE TRANSPORTE DE ELÉTRONS E FOSFORILAÇÃO OXIDATIVA COMO AS CÉLULAS SINTETIZAM ATP

Química e Bio Química Aplicada METABOLISMO ENZIMOLOGIA. Metabolismo Energético Respiração Celular e Fermentação

RESPIRAÇÃO EM PLANTAS

BIOLOGIA - 1 o ANO MÓDULO 18 RESPIRAÇÃO CELULAR AERÓBIA

Dividido em: Anabolismo Catabolismo

Glicogênio, amido e sacarose

Bibliografia. BIOQUÍMICA I 2010/2011 Ensino teórico - 1º ano Mestrado Integrado em Medicina. Stryer, Biochemistry, 5ª Ed, 2006, Capítulo 17

Metabolismo de Carboidratos

MANUAL DA DISCIPLINA DE BIOQUÍMICA CURSO DE FISIOTERAPIA

Metabolismo de Glicídios

Estrutura e química dos carboidratos:

Transcrição:

Metabolismo de Carboidratos

Metabolismo de Carboidratos Profª Eleonora Slide de aula Condições de anaerobiose Fermentação alcoólica Glicose 2 Piruvato Ciclo do ácido cítrico Condições de anaerobiose Condições de 2 2 Etanol + 2 CO Lactato 2 aerobiose 2 Acetil-CoA 4 CO 2 + 4 H 2 O Glicólise (10 reações sucessivas) 2 CO 2 Fermentação láctica Animais, vegetais e muitas células microbianas em condições de aerobiose. A glicose ocupa uma posição central no metabolismo da maioria das células. É uma fonte de energia metabólica e forma os precursores para a síntese de outras biomoléculas. A glicose é a molécula orgânica mais abundante na Terra, produzida em um ritmo de 50 bilhões de toneladas por ano, principalmente pelos organismos fotossintéticos.

Glicólise (Via Glicolítica ou Via Embden-Meyerhof) Glicólise é uma via metabólica que ocorre em 10 etapas e transforma a glicose, uma molécula com seis átomos de carbono, em duas moléculas de piruvato, com três átomos de carbonos cada. A via metabólica exibe as seguintes propriedades: Cada etapa da via é catalisada por uma enzima diferente. A energia livre consumida ou liberada em certas reações é transferida por moléculas como ATP e o NADH. A velocidade da via pode ser controlada pela alteração da atividade de enzimas individuais Se os processos metabólicos não ocorressem por múltiplas etapas catalisadas por enzimas, as células teriam pouco controle sobre a quantidade e o tipo dos produtos da reação e não teriam como controlar a energia livre. Por exemplo, a combustão de glicose e O 2 a CO 2 e H 2 O se ocorresse a um só tempo liberaria 2.850 kj.mol -1 de energia livre, tudo de uma vez. Na célula, a oxidação da glicose necessita de muitas etapas, de modo que a célula possa aproveitar a liberação, sucessiva e em pequenas quantidades, da energia livre da molécula.

Glicólise (Via Glicolítica ou Via Embden Meyerhof) Enzimas da glicólise: 1. Hexoquinase 2. Fosfoglicoisomerase 3. Fosfofrutoquinase 4. Aldolase 5. Triose-fosfato isomerase 6. Gliceraldeído 3-fosfato desidrogenase 7. Fosfoglicerato quinase 8. Fosfoglicerato mutase 9. Enolase 10. Piruvato quinase

Glicólise Fase preparatória: Fosforilação da glicose e sua conversão em gliceraldeído-3-fosfato 1 2 ATP Hexoquinase Fosfoglico isomerase 3 ATP Fosfofrutoquinase 4 Aldolase 5 Triosefosfato isomerase

Glicólise Fase de conservação de energia: Conversão de gliceraldeído-3-fosfato em piruvato e a formação acoplada de ATP e NADH+H + Gliceraldeído-3-fosfato desidrogenase NADH Fosfoglicerato quinase ATP Fosfoglicerato mutase Enolase Piruvato quinase ATP

Glicólise (ou Via glicolítica) Equação química global C 6 H 12 O 6 (glicose) + 2 ADP + 2 NAD + + 2 Pi 2 C 3 H 4 O 3 (piruvato) + 2 ATP + 2 NADH + 2 H + + 2 H 2 O Energia da glicólise C 6 H 12 O 6 (glicose) 2 C 3 H 4 O 3 (piruvato) G 0 = - 147 kj.mol -1 ( - 36 kcal.mol -1 ) ADP + Pi ATP + H 2 O G 0 = + 30 kj.mol -1 ( + 7,3 kcal.mol -1 ) Para a produção de piruvato Oxigênio não é necessário Duas moléculas de ADP são fosforiladas Duas moléculas de NAD + são reduzidas Destino do piruvato Disponibilidade de oxigênio para a célula Situação de energia da célula Mecanismos disponíveis na célula para oxidar o NADH

Destino do piruvato e dos elétrons formados na glicólise Em condições de Anaerobiose Bactérias do ácido láctico: Piruvato Lactato desidrogenase Lactato NADH+H + NAD + Levedura: Piruvato Piruvato descarboxilase TPP Mg ++ CO 2 acetaldeído Álcool desidrogenase NADH+H + TPP NAD + etanol Observação: TPP = tiamina pirofosfato (coenzima) Em condições de Aerobiose Piruvato descarboxilado e oxidado a acetil-coa NADH reoxidada pelo O 2 na cadeia respiratória Piruvato Piruvato desidrogenase CO 2 NAD + NADH+H + CoA Acetil-CoA

Destino do piruvato Profª Eleonora Slide de aula O piruvato, produto final da glicólise, pode seguir diferentes vias metabólicas dependendo do organismo considerado e das condições metabólicas em que se encontra. Lactato desidrogenase Piruvato desidrogenase Piruvato descarboxilase Álcool desidrogenase

Balanço Final Considerações: 1. O destino do esqueleto carbônico da glicose 2. O caminho dos elétrons através das reações de oxido-redução 3. O consumo de fosfato e ATP e a produção de ATP 2 Glicose + 2 ATP + 2 Pi + 2 NAD + + 2 NADH + 2 H + + 4 ADP 2 lactato - (+ 2 H + ) + 4 ATP + 2 H 2 O + 2 NADH + 2 H + + 2 NAD + + 2 ADP 2 Em anaerobiose Fermentação láctica Glicose + 2 Pi + 2 ADP 2 lactato - (+ 2 H + ) + 2 ATP + 2 H 2 O Fermentação alcoólica Glicose + 2 Pi + 2 ADP 2 etanol + 2 CO 2 + 2 ATP + 2 H 2 O Em aerobiose Glicose + 2 Pi + 2 ADP + 2 NAD + 2 piruvato - (+ 2 H + ) + 2 ATP + 2 NADH + 2 H + + 2 H 2 O

Produtos obtidos da fermentação com diferentes microrganismos Na primeira etapa, através da glicólise, ocorre a conversão de glicose em piruvato. Na segunda etapa, as coenzimas reduzidas na glicólise doam seus elétrons e prótons (hidrogênios) para o piruvato, ou para um composto derivado do piruvato, para formar o produto final da fermentação Ácido Pirúvico Organismo Streptococcus, Saccharomyces Propionibacterium Clostridium Escherichia, Enterobacter Lactobacillus (levedura) Salmonella Produto Ácido láctico Etanol Ácido propiônico, Ácido butírico, Etanol, Etanol, Final da e CO 2 ácido acético, butanol, ácido láctico, ácido láctico Fermentação CO 2 e H 2 acetona, álcool ácido succínico, isopropílico e ácido acético, CO 2 CO 2 e H 2 Observação: Fermentação homoláctica produção apenas de ácido láctico Fermentação heteroláctica produção de ácido láctico e de outros ácidos ou álcoois

Estágios da Respiração Celular 1º estágio: As moléculas orgânicas (carboidratos, ácidos graxos, alguns aminoácidos) são oxidadas e liberam fragmentos com dois átomos de carbono - os grupos acetil - que são ligados a moléculas de coenzima A (CoA) formando um intermediário metabólico denominado acetil-coenzima A. 2º estágio: Os grupos acetil da acetil-coa são lançados no ciclo do ácido cítrico (ciclo de Krebs), no qual são degradados, enzimaticamente, liberando átomos de hidrogênio ricos em energia e, também, moléculas de CO 2 - o produto da oxidação final da estrutura carbônica das moléculas orgânicas utilizadas como combustível celular. 3º estágio: Os átomos de hidrogênio são separados em prótons (H + ) e elétrons (e - ) ricos em energia. Os elétrons são transferidos ao longo de uma seqüência de moléculas transportadoras - a cadeia de transporte de elétrons ou cadeia respiratória - até o oxigênio molecular, o qual é reduzido para formar água. A energia liberada no processo é conservada na forma de ATP.

Esquema da oxidação completa da glicose No citossol, a glicose é oxidada a piruvato e este, na mitocôndria, é oxidado a CO 2. Os (H + + e ) são recebidos por coenzimas. Da oxidação destas coenzimas por oxigênio resulta a síntese da maior parte do ATP obtido pela oxidação da glicose. Os produtos da oxidação da glicose estão destacados em vermelho

Ciclo do Ácido Cítrico (Ciclo de Krebs ou Ciclo dos Ácidos Tricarboxílicos) + Enzimas do ciclo de Krebs: 1. Citrato sintase 2. Aconitase 3. Isocitrato desidrogenase 4. α-cetoglutarato desidrogenase 5. Succinil-CoA sintetase 6. Succinato desidrogenase 7. Fumarase 8. Malato desidrogenase GTP GDP + Pi

Ciclo do Ácido Cítrico (ou Ciclo de Krebs) O piruvato é desidrogenado para liberar acetil-coa e CO 2 por um complexo de enzimas denominado complexo da piruvato desidrogenase. O citrato é formado pela condensação de acetil-coa com o oxaloacetato. A reação é catalisada pela enzima denominada citrato sintetase. Ocorre a liberação da coenzima A, que fica livre para atuar na descarboxilação oxidativa de outra molécula de piruvato e formar outra molécula de acetil-coa capaz de entrar no ciclo. O citrato é convertido em isocitrato via cis-aconitato. A enzima aconitase catalisa a transformação reversível do citrato em isocitrato através da formação intermediária de cis-aconitato. Desidrogenação do isocitrato resulta em α-cetoglutarato e CO 2. O isocitrato sofre desidrogenação pela ação da enzima isocitrato desidrogenase, uma enzima ligada à coenzima NAD +, resultando na formação de α-cetoglutarato e CO 2. O α-cetoglutarato é oxidado a succinil-coa e CO 2. O α-cetoglutarato sofre descarboxilação oxidativa a succinil-coa e CO 2 pela ação do complexo α-cetoglutarato desidrogenase, uma enzima ligada à coenzima NAD +.

Conversão de succinil-coa em succinato. O succinil-coa é um composto de alta energia. Fosforila a guanosina difosfato (GDP) a guanosina trifosfato (GTP) pela ação da enzima succinil-coa sintetase. Na reação ocorre a liberação do succinato e da coenzima A (CoA-SH) e a formação de um grupo fosfato terminal de alta energia do GTP a partir de GDP + Pi. Exemplo de uma fosforilação no nível do substrato. ADP + GTP Nucleosídeo di-fosfato quinase ATP + GDP Desidrogenação do succinato a fumarato. A reação é catalisada pela enzima succinato desidrogenase que contem a flavina adenina dinucleotídeo (FAD) ligada covalentemente, sendo, portanto, uma flavoproteína. Hidratação do fumarato para formar o malato. A reação é catalisada pela enzima fumarato hidratase ou fumarase. Desidrogenação do malato para formar oxaloacetato. Na última reação do ciclo do ácido cítrico ocorre a desidrogenação do malato a oxaloacetato. A reação é catalisada pela malato desidrogenase, uma enzima ligada à coenzima NAD +.

Conservação da energia química na forma de ATP quando a glicose é oxidada a CO 2 e H 2 O 1. A glicose oxidada na via glicolítica resulta em: Duas moléculas de piruvato Duas moléculas de NADH+H + Duas moléculas de ATP Glicose + 2 Pi + 2 ADP + 2 NAD + 2 piruvato + 2 ATP + 2 NADH + H + + 2 H 2 O 2. Os dois pares de elétrons das duas moléculas de NADH formadas na glicólise são transportados para o interior da mitocôndria, transferidos para a cadeia de transporte de elétrons e fluem para o oxigênio. Neste processo são formadas 3 moléculas de ATP por molécula de coenzima reoxidada. 2 NADH + 2H + + 6 Pi + 6 ADP + O 2 2 NAD + + 6 ATP + 8 H 2 O 3. Desidrogenação de duas moléculas de piruvato para formar duas moléculas de acetil-coa e duas moléculas de CO 2. Reação ocorre na mitocôndria e resulta na formação de duas moléculas de NADH e na subseqüente transferência de dois pares de elétrons para o oxigênio formando três moléculas de ATP, cada. 2 piruvato + 2 CoA-SH + 6 Pi + 6 ADP + O 2 2 acetil-coa + 2 CO 2 + 6 ATP + 8 H 2 O

4. Oxidação de duas moléculas de acetil-coa até CO 2 e H 2 O através do ciclo do ácido cítrico, juntamente com a fosforilação oxidativa acoplada ao sistema de transporte de elétrons para o oxigênio, forma: a partir do isocitrato, α-cetoglutarato e malato três moléculas de ATP, cada um; e a partir do succinato duas moléculas de ATP. Formação de dois ATP por fosforilação no nível de substrato a partir do succinil-coa. 2 acetil-coa + 24 Pi + 24 ADP + 4 O 2 2 CoA-SH + 4 CO 2 + 24 ATP + 26 H 2 O 5. Equação completa da glicólise mais respiração Glicose + 38 Pi + 38 ADP + 6 O 2 6 CO 2 + 38 ATP + 44 H 2 O

Rendimento em ATP, a partir da oxidação de uma molécula de glicose, durante metabolismo aeróbico Fonte Glicólise 1. Oxidação de glicose a ácido pirúvico 2. Produção de 2 NADH Etapa preparatória 1. Formação de acetil-coa produz 2 NADH Ciclo de Krebs 1. Oxidação de succinil-coa a ácido succínico 2. Produção de 6 NADH 3. Produção de 2 FADH 2 Produção de ATP 2 ATP (fosforilação no nível de substrato) 6 ATP (fosforilação oxidativa na cadeia de transporte de elétrons) 6 ATP (fosforilação oxidativa na cadeia de transporte de elétrons) 2 GTP (equivalente a ATP; fosforilação no nível de substrato) 18 ATP (fosforilação oxidativa na cadeia de transporte de elétrons) 4 ATP (fosforilação oxidativa na cadeia de transporte de elétrons) Total: 38 ATP Na maioria das células eucarióticas, o total produzido é de 36 ATP. Alguma energia é perdida quando os elétrons são transportados através da membrana mitocondrial que separa a glicólise (no citoplasma) da cadeia de transporte de elétrons. Esta separação não existe em células procarióticas onde a cadeia de transporte de elétrons se encontra na membrana plasmática.

Variação da energia livre padrão para o catabolismo da glicose Processo Catabólico G (kj.mol -1 ) (kcal.mol -1 ) C 6 H 12 O 6 2 C 3 H 5 O - 3 + 2 H + - 196-47 (Glicose) (Lactato) C 6 H 12 O 6 2 C 2 H 6 O + 2 CO 2-235 - 56 (Glicose) (Etanol) C 6 H 12 O 6 2 C 3 H 4 O 3 + 2 H 2-147 - 36 (Glicose) (Ácido Pirúvico) C 6 H 12 O 6 + 6 O 2 6 CO 2 + 6 H 2 O - 2.850 686 (Glicose) Observação: 1 Joule = 0,239 cal

Comparação entre respiração aeróbica, fermentação e respiração anaeróbica Processo de produção de energia Condições de crescimento Aceptor final de elétrons Tipo de fosforilação usada para gerar ATP Moléculas de ATP produzidas por molécula de glicose Respiração aeróbica Aeróbico Moléculas de oxigênio (O 2 ) Nível de substrato e Oxidativa 36 (eucariotes) 38 (procariotes) Fermentação Aeróbico ou Anaeróbico Uma molécula orgânica Nível de substrato 2 Respiração anaeróbica Anaeróbico Normalmente uma substância inorgânica (1) (como NO 3-, SO 4 2-, ou CO 3 2- ). Mas não oxigênio molecular (O 2 ) Nível de substrato e Oxidativa Variável (2) (1) Nitrato (NO 3 - ) é reduzido a nitrito (NO 2 - ); óxido nitroso (N 2 O) ou gás nitrogênio (N 2 ). Sulfato (SO 4 2- ) é reduzido a sulfeto de hidrogênio (H 2 S) Carbonato (CO 3 2- ) é reduzido a metano (CH 4 ) (2) A quantidade de ATP formado (menor do que 38, mas maior do que 2) varia com o organismo e a via metabólica. Uma vez que apenas parte do Ciclo de Krebs atua sob condições de anaerobiose e que nem todos os componentes da cadeia de transporte de elétrons participam na respiração anaeróbica, o rendimento em ATP nunca é tão alto quanto na respiração aeróbica.

Outros carboidratos na seqüência glicolítica Polissacarídeos de reserva: glicogênio e amido. Dissacarídeos: maltose, lactose, sacarose, trealose. Monossacarídeos: frutose, manose, galactose. Polissacarídeos de reserva As unidades de D-glicose dos ramos externos do glicogênio e do amido chegam à via glicolítica através da ação sucessiva de duas enzimas: fosforilase do glicogênio (ou fosforilase do amido) (glicogênio) n + Pi (glicogênio) n-1 + D-glicose-1-fosfato Fosfoglicomutase D-glicose-1-fosfato D-glicose-6-fosfato Dissacarídeos Maltose + H 2 O Lactose + H 2 O Sacarose + H 2 O Trealose + H 2 O maltase lactase invertase trealase D-glicose + D-glicose (α-1,4) D-galactose + D-glicose (β-1,4) D-frutose + D-glicose (α-1,2) D-glicose + D-glicose (α-1,1)

Catabolismo de Dissacarídeos; Hexoses; Glicogênio e Amido. invertase Via glicolítica