COMPUTADOR. Adão de Melo Neto

Documentos relacionados
COMPUTADOR. Adão de Melo Neto

Memória (conceitos) MEMÓRIA VOLÁTIL

COMPUTADOR. Adão de Melo Neto

ORGANIZAÇÃO DE COMPUTADORES CAPÍTULO4: MEMÓRIAPRINCIPAL

FUNDAMENTOS DE ARQUITETURAS DE COMPUTADORES MEMÓRIA PRINCIPAL CAPÍTULO 4. Cristina Boeres

DEFINIÇÃO É TODO AQUELE DISPOSITIVO CAPAZ DE ARMAZENAR INFORMAÇÃO. A

Universidade de São Paulo


for Information Interchange. 6 Memória:

Memória Principal. Tiago Alves de Oliveira

ü Capítulo 4 Livro do Mário Monteiro ü Introdução ü Hierarquia de memória ü Memória Principal ü Memória principal ü Memória cache

Arquitetura de Computadores Memória Principal

Níveis de memória. Diferentes velocidades de acesso. Memória Cache. Memórias Auxiliar e Auxiliar-Backup

Modelo de Von Neumann: conceito do programa armazenado

Adriano J. Holanda FAFRAM. 4 e 11 de maio de 2012

Memórias. Memórias: Utilização:

Introdução à Ciência da Computação

Arquitetura e Organização de Computadores. Processador Registrador Memória. Professor Airton Ribeiro

Computador (arquitetura básica): b

SSC512 Elementos de Lógica Digital. Memórias. GE4 Bio

Organização de Computadores. 1. Calcule a corrente elétrica e a tensão em cada resistor no circuito abaixo

Arquitetura e Organização de Computadores. Processador Registrador Memória. Professor Airton Ribeiro

MEMÓRIA INTRODUÇÃO A INFORMÁTICA VINÍCIUS PÁDUA

ORGANIZAÇÃO E ARQUITETURA DE COMPUTADORES I AULA 10: MEMÓRIA E HIERARQUIA DE MEMÓRIAS

COMPUTADOR 2. Professor Adão de Melo Neto

Introdução à Informática

MEMÓRIAS SEMICONDUTORAS

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES PROF. DEJAIR PRIEBE

Memórias. IFRN -Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte 17/01/2013

Arquitetura de Computadores

FACULDADE LEÃO SAMPAIO

Arquitetura de Computadores

Capítulo 5 Organização Interna de um Computador

Sistemas de Computação Hardware. Sistema Central Periféricos

Sistema de Memórias COMPUTADOR CONTROLE ENTRADA VIA DE DADOS SAÍDA PROCESSADOR MEMÓRIA S E TO R R EC RE CEI TA S T EM S E TO R C A RNE S

Computação L. Apresentação da Disciplina e Conceitos Básicos de Computadores

Prof. Benito Piropo Da-Rin. Arquitetura, Organização e Hardware de Computadores - Prof. B. Piropo

PCS 3115 Sistemas Digitais I

Roteiro. Sistemas de Computação Hardware. Sistema Central Periféricos

Memórias. SEL-415 Introdução à Organização dos Computadores. Parte 1. Aula 4. Profa. Luiza Maria Romeiro Codá

ORGANIZAÇÃO DE COMPUTADORES

Conceitos e Gerenciamento de Memória

7) Qual a importância da Unidade de Controle?

Organização e Arquitetura de Computadores I

Arquitetura de Computadores. Arquitetura de Computadores 1

Circuitos Lógicos. Profa. Grace S. Deaecto. Faculdade de Engenharia Mecânica / UNICAMP , Campinas, SP, Brasil.

Elementos Físicos do SC e a Classificação de Arquiteturas

Universidade Federal do ABC

HARDWARE COMPONENTES BÁSICOS E FUNCIONAMENTO. Wagner de Oliveira

Hardware. Componentes Básicos e Funcionamento

SSC0112 Organização de Computadores Digitais I

MEMÓRIAS PAPEL FOTOGRAFIA FITA PERFURADA DISPOSITIVOS MAGNÉTICOS DISPOSITIVOS ÓPTICOS DISPOSTIVOS DE ESTADO SÓLIDO

Componentes de um computador Microcontroladores e microprocessadores Tecnologia em Manutenção Industrial MICROCONTROLADORES PROFESSOR FLÁVIO MURILO

MEMÓRIAS. Sistemas Digitais II Prof. Marcelo Wendling Nov/18

Memórias Parte 1. SEL-0415 Introdução à Organização de Computadores. Aula 4. Prof. Dr. Marcelo Andrade da Costa Vieira

Curso Técnico de Nível Médio

COMPUTADOR. Adão de Melo Neto

ELETRÔNICA DIGITAL II

Principais Componentes do Gabinete. Componentes Básicos de um Computador. CPU ou UCP (Processador) 17/02/2017

Campus Capivari Análise e Desenvolvimento de Sistemas (ADS) Prof. André Luís Belini /

Estrutura Básica de um Computador

Circuitos Lógicos Aula 26

Sistemas Operacionais. Conceitos de Hardware

Sistemas de Computação. Seção Notas. A Memória Principal. Notas. Sexta Aula. Haroldo Gambini Santos. 26 de abril de Notas

Sistemas de Computação

Eletrônica Digital. Prof. Gilson Yukio Sato sato[at]utfpr[dot]edu[dot]br

ELE Microprocessadores I. AULA 12 Arquitetura do Microprocessador Interface com as memórias

Memórias RAM e ROM. Adriano J. Holanda 9/5/2017. [Introdução à Organização de Computadores]

Hardware Conceitos Básicos. Introdução*à*Informática 14

Hardware: Componentes Básicos. Sistema de Computador Pessoal. Anatomia de um Teclado. Estrutura do Computador. Arquitetura e Organização

Organização e Arquitetura de computadores. Memórias

ULA (ALU) - UNIDADE DE ARITMÉTICA E LÓGICA

PCS-2529 Introdução aos Processadores. Prof. Dr. Paulo Sérgio Cugnasca

UNIVERSIDADE ESTADUAL DO PARÁ UEPA LISTA DE EXERCÍCIOS DE INTRODUÇÃO A COMPUTAÇÃO. 2. O que diferencia os computadores de 1ª geração dos da 2ª.

ORGANIZAÇÃO DE COMPUTADORES MEMÓRIA. Prof. Dr. Daniel Caetano

Arquitetura e Funcionamento do Computador

Introdução à Programação. Apresentação da Disciplina e Conceitos Básicos de Computadores

FUNDAMENTOS DE ARQUITETURAS DE COMPUTADORES SISTEMAS DE COMPUTAÇÃO. Cristina Boeres

SEL-433 APLICAÇÕES DE MICROPROCESSADORES I

Geradores de Clock e Memórias

Capítulo 2 Organização Interna de um Computador

INFORMÁTICA MEMÓRIAS. Prof. MSc. Glécio Rodrigues de Albuquerque

Introdução a Tecnologia da Informação

INFORMÁTICA (NCINF) CONCEITOS BÁSICOS DE HARDWARE

Componentes de um Computador Típico

14/3/2016. Prof. Evandro L. L. Rodrigues

Os computadores ditigais podem ser classificados em 5 grupos distintos:

Introdução à Computação

INTRODUÇÃO AOS SISTEMAS LÓGICOS INTRODUÇÃO

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES MEMÓRIA. Prof. Dr. Daniel Caetano

Visão geral do sistema de memória de computadores

Os computadores necessitam de uma memória principal, cujo papel primordial é armazenar dados e programas que estejam a ser utilizados no momento.

1. Conceitos Básicos de Computação

SUBSISTEMA DE MEMÓRIA FELIPE G. TORRES

Prof. Benito Piropo Da-Rin. Arquitetura, Organização e Hardware de Computadores - Prof. B. Piropo

INFORMÁTICA. Professor: Venicio Paulo Mourão Saldanha Site:

Aula 03. Componentes Básicos de um Computador, Dispositivos de Entrada e Saída, Dispositivos de Armazenamento de Dados, Periféricos.

Hardware. Informática

Introdução a Tecnologia da Informação

Transcrição:

COMPUTADOR Adão de Melo Neto 1

PROGRAMA É um conjunto de instruções LINGUAGEM BINÁRIA INTRODUÇÃO Os caracteres inteligíveis não são A, B, +, 0, etc., mas apenas zero(0) e um (1). É uma linguagem de comunicação dos computadores. É denominada linguagem de máquina É de difícil manipulação EVOLUÇÃO DOS COMPUTADORES (segundo elementos de sua organização) válvulas, transistores, circuito integrado, pastilhas (chips) de alta e muito alta integração. 2

Modelo de Von Newman INTRODUZIU O CONCEITO DE MEMÓRIA: É um dispositivo de armazenamento temporário onde programas (e dados) podem ser carregados a partir de uma unidade de entrada, para serem executados pela unidade aritmética e lógica, com os resultados sendo transferidos da memória para uma unidade de saída, tudo isso sob a coordenação de uma unidade de controle. Ela garantiu a flexibilidade (o computador tem seu funcionamento alterado de acordo com programa e dado carregado) 3

Modelo de Von Newman Propôs a NUMERAÇÃO BINÁRIA Economiza tempo nas operações Garante a simplicidade dos circuitos Propôs o conceito RELÓGIO DO COMPUTADOR Dispositivo que produz um sinal elétrico periódico para cadenciar todas as operações do computador. 4

Modelo Barramento de Sistema É uma evolução do Modelo de Von Newman Processador = UCP = unidade de controle + unidade lógica aritmética Memória; Barramento (novo elemento): barramento de dados, barramento de endereço e barramento de controle 5

Modelo Barramento de Sistema Barramento de Endereços Transporta os sinais de endereço até a memória. Determinam qual a posição de memória que irá ser lida ou escrita. Observação: A informação dessa posição de memória, que está sendo lida ou escrita transita pelo barramento de dados, que é bidirecional. bidirecional unidirecional 6

Modelo Barramento de Sistema Barramento de Controle Indica qual a operação que vai ser realizada: leitura ou escrita, na maior parte dos casos Possui também sinais para A arbitragem do barramento a ser utilizado e Para determinar quem vai utilizar o barramento naquele momento, que pode ser tanto a UCP como a unidade de entrada/saída. 7

Modelo Barramento de Sistema

CONCEITOS BIT É a menor unidade de informação armazenáveis em um computador. É a contração das palavras inglesas Binary Digit. O bit pode ter, então, somente dois valores: 0 e 1. CARACTERE É o menor grupo de bits representando uma informação útil e inteligível para o ser humano. Letra v ==> 0111 0110 BYTE É o grupo de 8 bits 1KB representa 2 10 = 1.024 bytes 1MB representa 1.024 * 1.024 = 2 10 *2 10 = 1.048.576 bytes Quantos bytes existem em 5 MB? 9

MEMÓRIA 10

Hierarquia de Memória 11

Memória (conceitos) MEMÓRIA VOLÁTIL É aquela que perde a informação armazenada quando a energia elétrica desaparece MEMÓRIA DE SEMICONDUTORES Fabricados com circuitos eletrônicos e baseados em semicondutores.. Note que estas memórias são construídas com Flip-flops (que por sua vez são construídas com portas lógicas, que por sua vez são implementadas com que componentes eletrônicos semicondutores como o diodo e o transistor). Ver também a aula sobre circuito integrado. São rápidas e relativamente caras, se comparadas com outros tipos. Registradores e memória principal são exemplos Volátil MEMÓRIA DE MEIO MAGNÉTICO Disquetes, discos rígidos e fitas magnéticas Armazenam informações sob a forma de campos magnéticos. Não volátil TEMPO DE ACESSO (inverso da velocidade) É o período de tempo gasto desde o instante em que foi iniciada a operação de acesso até que a informação requerida (instrução ou dado) tenha sido 12 efetivamente transferida.

Memória (conceitos) Podemos classificar as memórias de semicondutores conforme abaixo discriminado. Como vermos as memórias ROM são também memórias de acesso aleatório. O mercado incorreu em um erro ao denominar as de memórias RAM somente as R/W. Memória de Acesso aleatório: memória cujas posições de memória podem ser acessadas aleatoriamente 13

Hierarquia de Memória REGISTRADOR São dispositivos de armazenamento temporário, localizados na CPU, extremamente rápidos, com capacidade para apenas um dado (uma palavra). Memória de semicondutores MEMÓRIA CACHE Pequena porção de memória cache, localizada entre a CPU e a MP, e que funciona como um espelho de parte da MP. Objetiva aumentar a velocidade de acesso aos dados da MP por parte da UCP. Mais rápida que a memória principal, mas mais cara Memória de semicondutores MEMÓRIA PRINCIPAL Onde os programas e dados devem estar armazenados para execução pelo processador Voláteis Memória de semicondutores MEMÓRIA SECUNDÁRIA Resolve o problema do armazenamento em grandes quantidades Não voláteis Memória de meio magnético 14

Caminho percorrido pelo dados até o processador A memória cache visa aumentar a velocidade de acesso as dados 15

RAM ROM Memória tipo RAM e ROM RAM - Random Access Memory Memória de acesso aleatório Voláteis (perde os dados se perdem com a falta de energia) Todo sistema computacional utiliza uma parte do endereçamento da memória principal com memórias do tipo ROM. Os microcomputadores do tipo PC, vêm de fábrica com um conjunto de rotinas básicas do SO armazenadas em ROM, denominadas de BIOS (Basic Input Output System) Read Only Memory Memória de acesso aleatório de somente para leitura (questão de segurança, os VÍRUS não podem ser gravados nesta memória) Não voláteis. ROMs reutilizáveis EPROM EEPROM MEMÓRIA FLASH 16

Memórias tipo ROM ROMs reutilizáveis São memórias úteis em programas de sistemas (controle de vídeo, modens, dispositivos de E/S) pois eventualmente o fabricante necessita criar uma nova versão. EPROM Erasable Programmable Read Only Memory ou memória apenas de leitura, programável (escrita de bits) e apagável (com máquinas adequadas, à base de raios ultra-violeta). EEPROM (ou EAROM) Electrically Erasable Programmable Read Only Memory ou memória apenas de leitura, programável e eletronicamente apagável.. A programação (escrita de bits), o apagamento da memória a reprogramação são feitas sobre o controle da UCP, isto é por software. FLASH Processo de funcionamento bastante semelhante a da EEPROM, embora o processo de apagamento não poder ser realizado a nível de bytes como na EEPROM. 17

É a área de trabalho da UCP, seu grande rascunho, onde seus programas ( e seus dados) se sucedem em execução, uns após os outros. Para que programas sejam executados é necessário que suas instruções e os dados por elas manipulados estejam armazenados, mesmo que temporariamente na MP. Eles estão normalmente armazenados na MS (memória secundária), seja, um HD ou um CD- ROM. São constítuídas por mémórias do tipo RAM e ROM 18

A capacidade de memória refere-se à quantidade de informações que nela podem ser armazenadas, cuja unidade básica é o bit. Exemplo: 512 bits, 16.384 bits e 8.388.608 bits É possível simplificar através do emprego de unidades com K (kilo), M (mega), G(giga) e T (tera). Expressões para capacidade de uma memória 19

Vamos supor que tenhamos em uma MP com N células contendo M bits Os endereços vão de 0 a (N-1) Seja x o número de bits para representar os endereços das N células. Logo, N = 2 x x = log 2 N. A capacidade da memória é de M.N EXEMPLO MP com N=1024 (1K) endereços x= log 2 1024 =10 Portanto são necessários x= 10 bits para representar os N endereços. Supondo M=8, a memória tem uma capacidade de 1K.8=8 K bits = 8.2 10 bits 20

MP com mesma quantidade de células (256), porém com largura de célula diferente Qual é o valor de x neste caso? X = log 2 256 x=8 bits (log 2 256 = log 10 256/0,301) log 2 x =y 2 x = y Qual a capacidade da memória em cada caso? MP1 = 256 x 12 = 3072 bits MP2 = 256 x 16 = 4096 bits MP3 = 256 x 8 = 2048 bits 21

MP com mesma largura de célula, porém com quantidade de células diferentes Qual é o valor de x em cada caso? MP1 = 16 bits MP2 = 24 bits MP3 = 32 bits Qual é a capacidade da memória em cada caso? MP1 = 2 16 x 8 bits MP2 = 2 24 x8 bits MP3 = 2 32 x 8 bits 22

N = 2K = 2 x 2 10 M = 16 bits N Total de bits da MP (capacidade ) = N x M = 16 x 2 K = 32 K Tamanho de cada endereço X = log 2 N = 11 bits 23

OPERAÇÕES COM A MEMÓRIA PRINCIPAL LEITURA: armazena informações na memória ESCRITA: recupera uma informação armazenada na memória] Elementos que compõem a estrutura MP/UCP e que são utilizadas nestas operações REM (registrador de endereço de memória) RDM (registrador de dados de memória) 24

N = 2K = 2 x 2 10 M = 16 bits Tamanho do REM X = log 2 N = 11 bits Tamanho do RDM M = 16 bits Qual o maior endereço dessa MP = 11111111111 2 = 2047 10 Total de bits que pode ser armazenada na MP = N x M = 16 x 2 K = 32 K 25

OPERAÇÃO DE LEITURA Unidade de controle (UC) da UCP: transfere o endereço 1324, de um de seus registradores específicos para o REM (registrador de endereço de memória) Unidade de controle (UCP) da CPU: coloca o sinal de leitura (READ) no barramento de controle para indicar aos circuitos de controle da MP o que fazer em seguida. MP: decodifica o endereço recebido (1024, pelo barramento de endereços) e transfere seu conteúdo para o RDM (através do barramento de dados).do RDM, então, a informação é transferida para o elemento da UCP, destinatário final. 26

OPERAÇÃO DE ESCRITA Unidade de controle (UC) da UCP: coloca o endereço 21C8 no REM (registrador de endereço de memória) e o dado a ser copiado no RDM (F7). Unidade de controle (UCP) da CPU: coloca o sinal de escrita (WRITE) no barramento de controle para indicar aos circuitos de controle da MP o que fazer em seguida. MP: como resultado da decodificação do endereço pelo dispositivo de controle da memória, o valor F7 é copiado na célula desejada, de endereço 21C8 27

MEMÓRIA DO TIPO SELEÇÃO LINEAR Vamos supor que temos uma memória com N=1024 endereços de células, com M=8 bits cada uma. Nesta caso teríamos uma REM como 10 bits pois x=log 2 (1024). A saída do decodificador são 1024 linhas, uma para cada célula da memória M=8 N=1024 10 bits 28

MEMÓRIA DO TIPO SELEÇÃO LINEAR Tomemos por exemplo o endereço 12 10 ou 000000001100 2, armazenado no REM. Isto acarretaria uma saída 1 na 13ª linha do decodificador, correspondente ao endereço 12 ( 13ª linha, porque o primeiro endereço é 0). As demais linhas do decodificador seriam iguais a 0 13 a LINHA 29

MEMÓRIA DO TIPO SELEÇÃO LINEAR Iremos mostrar um exemplo de uma memória principal com 12 bits de capacidade distribuídos em N=4 células com M=3 bits cada uma (12 = 4x3) M =3 E = 2 pois E = log 2 4 = 2 N =4 30

MEMÓRIA DO TIPO SELEÇÃO LINEAR CÉLULA BÁSICA DE MEMÓRIA COM 01 BIT (escrevendo valor 1) Seleção (S) = 1 ENTRADA = 1 1 1 Habilita a Escrita (W) do valor de entrada = 1 0 1 1 SET 31

MEMÓRIA DO TIPO SELEÇÃO LINEAR CÉLULA BÁSICA DE MEMÓRIA COM 01 BIT (escrevendo valor 0) Seleção (S) = 1 ENTRADA = 0 0 1 Habilita a Escrita (W) do valor de entrada = 1 1 0 0 RESET 32

MEMÓRIA DO TIPO SELEÇÃO LINEAR CÉLULA BÁSICA DE MEMÓRIA COM 01 BIT (manter o valor atual) SELEÇÃO = 1 0 1 Habilita a Escrita = 0 0 0 VALOR MANTIDO 33

MEMÓRIA DO TIPO SELEÇÃO LINEAR (4 células com 03 bits cada) REM constituído de dois flip-flops para selecionar até 4 células ENTRADA DE DADOS Habilitação da escrita Habilitação da leitura Dos valores armazenados na saída Dos flip-flops 34

MEMÓRIA DO TIPO SELEÇÃO LINEAR Visão Expandida do Decodificador 35