Microeletrônica. Prof. Fernando Massa Fernandes. Sala 5017 E
|
|
|
- Rafael Salgado de Paiva
- 8 Há anos
- Visualizações:
Transcrição
1 Microeletrônica Prof. Fernando Massa Fernandes Sala 5017 E [email protected] (Prof. Germano Maioli Penello) 1
2 Trabalho 3 1. Projetar o leiaute de um transistor NMOS com W = 20 e L = 3 utilizando o processo C5. 2. Projetar o esquemático do NMOS e comparar as duas células (LVS) 3. Simular as duas células no SPICE variando a tensão VDS de 0 a 5V em passos de 1mV e VGS de 0 a 5V em passos de 1V. Apresentar os gráficos I x V Tutorial 2 no CMOSedu.com
3 * BSIM3 models for AMI Semiconductor's C5 process * * Don't forget the.options scale=300nm if using drawn lengths * and the MOSIS SUBM design rules * * 2<Ldrawn<500 10<Wdrawn<10000 Vdd=5V * Note minimum L is 0.6 um while minimum W is 3 um * Change to level=49 when using HSPICE or SmartSpice Conteúdo do arquivo C5_models.txt.MODEL NMOS NMOS ( LEVEL = 8 +VERSION = 3.1 TNOM = 27 TOX = 1.39E-8 +XJ = 1.5E-7 NCH = 1.7E17 VTH0 = K1 = K2 = K3 = K3B = W0 = 1E-8 NLX = 1E-9 +DVT0W = 0 DVT1W = 0 DVT2W = 0 +DVT0 = DVT1 = DVT2 = U0 = UA = 1E-13 UB = E-18 +UC = E-11 VSAT = E5 A0 = AGS = B0 = E-6 B1 = 5E-6 +KETA = E-3 A1 = E-5 A2 = RDSW = E3 PRWG = PRWB = WR =1 WINT = E-7 LINT = E-8 +XL =0 XW =0 DWG = E-8 +DWB = E-8 VOFF = 0 NFACTOR = CIT = 0 CDSC = 2.4E-4 CDSCD = 0 +CDSCB = 0 ETA0 = ETAB = E-3 +DSUB = PCLM = PDIBLC1 = PDIBLC2 = E-3 PDIBLCB = DROUT = PSCBE1 = E8 PSCBE2 = E-5 PVAG = 0 +DELTA = 0.01 RSH = 81.8 MOBMOD = 1 +PRT = UTE = -1 KT1 = KT1L = -2.58E-9 KT2 = 0 UA1 = 5.4E-10 +UB1 = -4.8E-19 UC1 = -7.5E-11 AT = 1E5 +WL =0 WLN = 1 WW =0 +WWN = 1 WWL = 0 LL =0 +LLN = 1 LW =0 LWN = 1 +LWL = 0 CAPMOD = 2 XPART = 0.5 +CGDO = 2E-10 CGSO = 2E-10 CGBO = 1E-9 +CJ = E-4 PB = 0.99 MJ = CJSW = E-10 PBSW = 0.1 MJSW = CJSWG = 1.64E-10 PBSWG = 0.1 MJSWG = CF =0 PVTH0 = PRDSW = PK2 = WKETA = LKETA = E-3 +AF =1 KF = 0) *
4 Resistores, capacitores e MOSFETs Já vimos todas as camadas (máscaras) responsáveis pelo processamento de dispositivos. Neste momento, veremos em mais detalhes os leiautes de resistores, capacitores e MOSFETs. 4
5 Resistores Os valores dos resistores e capacitores em um processo CMOS são dependentes da temperatura e da tensão (~10-6/oC). Coeficiente de temperatura R aumenta com a T Coeficiente de temperatura de primeira ordem TCR1 também varia com a temperatura! 5
6 Resistores Cálculo SPICE (termo quadrático): No cálculo a mão, consideramos TCR2 = 0 6
7 Exercício 7
8 Exercício 8
9 Resistores A resistência sempre aumenta com a temperatura? Mas o aumento da temperatura não causa um aumento de portadores livre? Mais portadores livres não causariam uma resistência menor? 9
10 Resistores A resistência também se altera com a aplicação de tensão. O coeficiente de tensão é dado por VCR: V é a tensão média aplicada nos terminais do resistor. Este fenômeno é observado principalmente por causa da largura da região de depleção entre o poço-n e o substrato que altera a resistência de folha. 10
11 Exercício 11
12 Exercício Bem menor que a variação devido a temperatura 12
13 Exemplo Divisor de tensão. Relacionar Vout e Vin 13
14 Exemplo Divisor de tensão. Relacionar Vout e Vin Em função da temperatura: Independente da temperatura! 14
15 Exemplo Divisor de tensão. Relacionar Vout e Vin Em função da temperatura: Em função da tensão: Com e Independente da temperatura! Dependente da tensão! 15
16 Resistores Elemento unitário Vantagens em utilizar elementos unitários: Precisão sobre uma alta faixa de temperatura Evitar erros devido aos cantos da serpentina Variação da resistência nominal não afeta a tensão num divisor de tensão 16
17 Resistores Guard ring Todo circuito de precisão está sujeito a ruídos do substrato (corrnete em circuitos adjacentes influenciando os vizinhos) Guard ring num resistor O guard ring (implantação de p+ entre os circuitos) é um método simples de reduzir o ruído. Mantém o potencial em volta do circuito Protege o circuito de injeção de portadores indesejadas vindas do substrato. 17
18 Resistores Leiaute interdigitated O casamento de valores entre os resistores pode ser melhorado com o design abaixo Variações devido ao processo em diferentes regiões do substrato são minimizadas Note que a orientação dos resistores é a mesma (vertical) Os resistores tem essencialmente os mesmos efeitos parasíticos. 18
19 Resistores Leiaute common-centroid (centro comum) O casamento de valores entre os resistores pode ser melhorado também com o design abaixo Variações devido ao processo em diferentes regiões do substrato são minimizadas Note que a orientação dos resistores é a mesma (vertical) Os resistores já não tem essencialmente os mesmos efeitos parasíticos. 19
20 Resistores Leiaute common-centroid (centro comum) vs. interdigitated Resistor A teria 20 e B teria 16 Resistor A teria 18 e B teria 18 Melhor casamento entre os resistores 20
21 Exercício 21
22 Exercício 22
23 Resistores Leiaute common-centroid (centro comum) O Leiaute common-centroid melhora o casamento de MOSFETs e capacitores também! 23
24 Resistores Elementos dummy (falso, postiço) Difusão desigual devido a variações de concentração de dopantes levaria a um descasamento entre elementos. O elemento dummy não tem função elétrica nenhuma, ele é normalmente aterrado ou ligado ao VDD em vez de ficarem flutuando. 24
Física Básica do Dispositivo MOS. Aula 4 Prof. Nobuo Oki
Física Básica do Dispositivo MOS Aula 4 Prof. Nobuo Oki Estrutura do Dispositivo MOS O transistor NMOS está sobre um substrato p-. Duas regiões n+ formam os terminais da fonte S (source) e do dreno D (drain).
MicroElectrónica. Trabalho de Laboratório. Desenho de um Amplificador Operacional
MicroElectrónica Ano Lectivo 2004/2005 Trabalho de Laboratório Desenho de um Amplificador Operacional Marcelino Santos, F. Gonçalves, J. P. Teixeira Abril, 2005 1 1 Introdução Pretende-se com este trabalho
Concepção de Circuitos Integrados Analógicos ENG 04055. Eric Fabris. ENG04055 Concepção de CI Analógicos Eric Fabris
Concepção de Circuitos Integrados Analógicos ENG 04055 Eric Fabris Créditos semanais: 4 Caráter: eletiva Professor: Eric Ericson Fabris (Teoria, [email protected], sala 302) Informações Gerais Atendimento:
Microeletrônica. Germano Maioli Penello. http://www.lee.eng.uerj.br/~germano/microeletronica%20_%202015-1.html
Microeletrônica Germano Maioli Penello http://www.lee.eng.uerj.br/~germano/microeletronica%20_%202015-1.html Sala 5145 (sala 17 do laboratorio de engenharia elétrica) Aula 12 1 Pauta ÁQUILA ROSA FIGUEIREDO
Trabalho 2: Projeto Elétrico e de Leiaute de um Inversor CMOS
Trabalho 2: Projeto Elétrico e de Leiaute de um Inversor CMOS 1. Introdução Dieison Soares Silveira Universidade Federal do Rio Grande do Sul UFRGS Instituto de Informática Programa de Pós-Graduação em
Amplificadores Diferenciais. ENG04055 Concepção de CI Analógicos Eric Fabris
Amplificadores Diferenciais Introdução Inserção do Amplificador Diferencial na Hierarquia de Projeto de um Módulo Analógico O amplificador diferencial é um subcircuito composto de um conjunto de transistores
Trabalho 3: Projeto, Leiaute e Análise de um Buffer CMOS Multi-estágio
1. Introdução Trabalho 3: Projeto, Leiaute e Análise de um Buffer CMOS Multi-estágio Dieison Soares Silveira Universidade Federal do Rio Grande do Sul UFRGS Instituto de Informática Programa de Pós-Graduação
] 1 λ V. Modelo Analítico de TMOS. Triodo: Resistência controlada por tensão: Saturação: Fonte de corrente controlada por tensão: V gs.
Triodo: Modelo Analítico de TMOS Resistência controlada por tensão: Saturação: L [ I ds =μ C ox W V I ds = gs V T V ds Fonte de corrente controlada por tensão: 2 V ds ] 1 λ V 2 ds para 0 V ds V gs V T
FACULDADE DE TECNOLOGIA DE SÃO PAULO. TÉCNICAS DE EXTRAÇÃO DE PARÂMETROS DE PROCESSO (TEPP) Prof. Victor Sonnenberg
TÉCNICAS DE EXTRAÇÃO DE PARÂMETROS DE PROCESSO (TEPP) Prof. Victor Sonnenberg 1 o Experiência: Capacitor MOS Nome Número OBS. PREENHER O RELATÓRIO EM LETRA LEGÍVEL OU DE FORMA. Se necessário, use folha
Centro Federal de Educação Tecnológica de Pelotas CEFET-RS. Aula 03. Modelos de Transistores MOS. Prof. Sandro Vilela da Silva.
Centro Federal de Educação Tecnológica de Pelotas CEFET-RS Projeto Físico F Digital Aula 03 Modelos de Transistores MOS Prof. Sandro Vilela da Silva [email protected] Copyright Parte dos slides foram
Amplificadores de Estágio Simples (1) Aula 5 Prof. Nobuo Oki
Amplificadores de Estágio Simples (1) Aula 5 Prof. Nobuo Oki Estágio Amplificadores Simples (1) Estágio Amplificadores Simples (2) Conceitos Básicos (1) Conceitos de grande e pequenos sinais : Quando x
O MOSFET como Amplificador. ENG04055 Concepção de CI Analógicos Eric Fabris
O MOSFET como Amplificador Amplificador Básico Amplificador Fonte Comum Topologia Básica Representação Gráfica da Reta de Carga eterminação da Curva de Transferência v i i O v S f ( v f ( v V GS GS R )
Espelhos e Fontes de Correntes. Aula 9 Prof. Nobuo Oki
Espelhos e Fontes de Correntes Aula 9 Prof. Nobuo Oki Espelhos e Fontes de Correntes (1) As fonte e espelhos de correntes são bastante usadas em circuitos integrados analógicos. Eles podem trabalhar como
Microeletrônica. Germano Maioli Penello. http://www.lee.eng.uerj.br/~germano/microeletronica%20_%202015-1.html
Microeletrônica Germano Maioli Penello http://www.lee.eng.uerj.br/~germano/microeletronica%20_%202015-1.html Sala 5145 (sala 17 do laboratorio de engenharia elétrica) Aula 18 1 Pauta ÁQUILA ROSA FIGUEIREDO
UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7051 Materiais Elétricos - Laboratório
UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7051 Materiais Elétricos - Laboratório EXPERIÊNCIA 04 RESISTORES E PROPRIEDADES DOS SEMICONDUTORES 1 INTRODUÇÃO Este roteiro
Circuitos com Amplificadores Operacionais
Experiência N o 05 Circuitos com Amplificadores Operacionais I - Objetivos Esta experiência tem como objetivo analisar circuitos contendo amplificadores operacionais utilizando as aproximações de amplificador
Amplificadores de Múltiplos Estágios
Universidade do Estado de Santa Catarina CCT Centro de Ciências Tecnológicas Amplificadores de Múltiplos Estágios Acadêmicos: Chrystian Lenon Remes Fernando Raul Esteche Pedrozo Gilmar Nieckarz Hallan
Eletrotécnica. Circuitos Elétricos
Eletrotécnica Circuitos Elétricos Introdução Caracterizamos um circuito elétrico como sendo um conjunto de componentes elétricos / eletrônicos ligados entre si formando pelo menos um caminho para a passagem
IFBA MOSFET. CELET Coordenação do Curso Técnico em Eletrônica Professor: Edvaldo Moraes Ruas, EE. Vitória da Conquista - 2009
IFBA MOSFET CELET Coordenação do Curso Técnico em Eletrônica Professor: Edvaldo Moraes Ruas, EE Vitória da Conquista - 2009 MOSFET s - introdução Semicondutor FET de óxido metálico, ou Mosfet (Metal Oxide
Transístores MOS. Assuntos. João Canas Ferreira Modelo de funcionamento do transístor MOS. 2 Condensadores intrínsecos
Transístores MOS João Canas Ferreira Universidade do Porto Faculdade de Engenharia 2012-02-17 Assuntos 1 Modelo de funcionamento do transístor MOS 2 Condensadores intrínsecos 3 Correntes de fugas João
CIRCUITOS ELETRÔNICOS LINEARES TE054. Introdução a simulação de circuitos usando o programa QUCS
CIRCUITOS ELETRÔNICOS LINEARES TE054 Introdução a simulação de circuitos usando o programa QUCS 1) Simulações cc e ca de um circuito linear Para familiarizar-se com o uso do programa QUCS, faremos uma
Tecnologia em Automação Industrial ELETRÔNICA II. Aula 03. Transistores JFET. Prof. Dra. Giovana Tripoloni Tangerino
Tecnologia em Automação Industrial ELETRÔNICA II Aula 03 Transistores JFET Prof. Dra. Giovana Tripoloni Tangerino https://giovanatangerino.wordpress.com [email protected] [email protected]
Amplificadores Diferenciais. Aula 8 Prof. Nobuo Oki
Amplificadores Diferenciais Aula 8 Prof. Nobuo Oki Vantagens dos Amplificadores Diferenciais (1) O amplificadores diferenciais possuem as seguintes vantagens: 1. Circuitos diferenciais possuem maior imunidade
Díodo Zener. Para funcionar com polarização inversa. Modelo mais simples assume r z =0. Electrónica 1
Díodo Zener Para funcionar com polarização inversa. Modelo mais simples assume r z =0 exemplo como é que calcula I, I Z e I L? Díodo Zener Ef.Zener(V z 7V) Especificações: corrente
SSC0180- ELETRÔNICA PARA COMPUTAÇÃO. Professor: Vanderlei Bonato EstagiárioPAE: Leandro S. Rosa
SSC0180- ELETRÔNICA PARA COMPUTAÇÃO Professor: Vanderlei Bonato EstagiárioPAE: Leandro S. Rosa 2 Sumário Nível lógico x nível de tensão Transistor NMOS Transistor PMOS Porta lógica CMOS Comportamento dos
Eletrônica II. Germano Maioli Penello. Aula 02
Eletrônica II Germano Maioli Penello [email protected] www.lee.eng.uerj.br/~germano Aula 02 Amplificador É comum ter situações temos um sinal de baixa intensidade (mv ou mv). O processamento desses sinais
Tutorial: Componentes passivos.
Tutorial: Componentes passivos. Autor: Samuel Cerqueira Pinto T-16 Data: 24/02/2013 Componentes Passivos Componentes passivos são os componentes eletrônicos que não possuem a capacidade de amplificar um
TRANSISTORES DE EFEITO DE CAMPO DE JUNÇÃO JFET
TRANSISTORES DE EFEITO DE CAMPO DE JUNÇÃO JFET Transistores bipolares dispositivos controlados por corrente (corrente do coletor é controlada pela corrente da base). Transistores de efeito de campo (FET
CI's das família TTL e CMOS
Aula 04 CI's das família TTL e CMOS Prof. Tecgº Flávio Murilo 30/04/13 1 Famílias lógicas O que diferencia as famílias lógicas é o material no qual os circuitos integrados são construídos. RTL - Lógica
ELETRÔNICA II. Aula 09 CONFIGURAÇÕES COMPOSTAS PAR DIFERENCIAL. Claretiano 2015 Mecatrônica Prof. Dra. Giovana Tripoloni Tangerino
ELETRÔNICA II Aula 09 CONFIGURAÇÕES COMPOSTAS PAR DIFERENCIAL Claretiano 2015 Mecatrônica Prof. Dra. Giovana Tripoloni Tangerino CONFIGURAÇÕES COMPOSTAS Conexão em cascata Conexão cascode Conexão Darlington
Amplificador Operacional OTA Miller
Amplificador de 2 Estágios Amplificador Operacional OTA Miller O que é um Amplificador Operacional? O OPAMP é um amplificador de alto ganho, acoplado em DC projetado para operar em realimentação negativa
Universidade Federal de São João del-rei. Material Teórico de Suporte para as Práticas
Universidade Federal de São João del-rei Material Teórico de Suporte para as Práticas 1 Amplificador Operacional Um Amplificador Operacional, ou Amp Op, é um amplificador diferencial de ganho muito alto,
Capítulo 9 Amplificador Operacional
Capítulo 9 Amplificador Operacional Considerações Gerais Amplificadores operacionais fazem parte de várias implementações analógicas e mistas. O projeto de um amplificador operacional ainda é um desafio
Tecnologia em Automação Industrial 2016 ELETRÔNICA II
Tecnologia em Automação Industrial 2016 ELETRÔNICA II Aula 05 Transistores JFET Prof. Dra. Giovana Tripoloni Tangerino https://giovanatangerino.wordpress.com [email protected] [email protected]
Arduino Lab 06 Leitura de um sensor de temperatura do tipo NTC com o Arduino
Arduino Lab 06 Leitura de um sensor de temperatura do tipo NTC com o Arduino Imagem montagem Resumo Neste Lab trataremos da leitura de temperatura utilizando um sensor do tipo NTC (Negative Temperature
Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 5
Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 5 1 Título Prática 11 MOSFETs (parte 1) 2 Objetivos eterminar experimentalmente os parâmetros de um MOSFET. Estudar a
Lógica Matemática e Elementos de Lógica Digital (Representação analógica e digital)
Lógica Matemática e Elementos de Lógica Digital (Representação analógica e digital) Curso: Ciência da Computação Lívia Lopes Azevedo [email protected] Lógica Matemática e Elementos de Lógica Digital Circuitos
AULAS DE LABORATÓRIO DE ELETRÔNICA I (ELT 031) Experiências com Transistores MOSFET's (1 a 3)
Universidade Federal de Minas Gerais Departamento de Engenharia Eletrônica AULAS DE LABORATÓRIO DE ELETRÔNICA I (ELT 031) 's (1 a 3) Universidade Federal de Minas Gerais Departamento de Engenharia Eletrônica
Transistor. Este dispositivo de controle de corrente recebeu o nome de transistor.
Transistor Em 1947, John Bardeen e Walter Brattain, sob a supervisão de William Shockley no AT&T Bell Labs, demonstraram que uma corrente fluindo no sentido de polaridade direta sobre uma junção semicondutora
MOSFET: Revisão. MOSFET: Revisão
Contacto de dreno/fonte (drain/source : Revisão Contacto da Porta (gate Polisilício Metalização Contacto de fonte/dreno (source/drain Contacto de substrato S i O min p + Oxido fino p- Substrato Não há
CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA DEPARTAMENTO DE ELETRÔNICA Conversores Estáticos (ELP )
Aula LAB Simulação de conversores ccca (inversores) monofásicos e trifásicos CNTRO FRAL UCAÇÃO TCNOLÓGICA SANTA CATARINA PAAMNTO LTRÔNICA Conversores státicos (LP 3) AULA LAB SIMULAÇÃO CONVRSORS CCCA (INVRSORS)
Análise CA para o TBJ. Prof. Dr. Ulisses Chemin Netto ET74C Eletrônica 1
Análise CA para o TBJ Prof. Dr. Ulisses Chemin Netto ([email protected]) 09 de Novembro de 2015 Objetivo da Aula Conhecer o modelo r e aplicado na representação do TBJ à análise CA. 2 Conteúdo Programático
Eric Ericson Fabris
ELETRÔNICA III ENG04038 Eric Ericson Fabris [email protected] Informações Gerais Professor: Eric Ericson Fabris» [email protected]» Gabinete: DELET Sl. 302 II Sl. 227» Ramais: 3308 4272 e 3308 7023
Amplificadores de Estágio Simples (2) Aula 6 Prof. Nobuo Oki
Amplificadores de Estágio Simples (2) Aula 6 Prof. Nobuo Oki Cálculos das Impedâncias de Entrada e de Saída a Pequenos Sinais (1) Como calcular as impedâncias (ou admitâncias) de entrada e de saída de
3 e I x = 0,2I E (considere inicialmente = ). (b) Recalcule I E (somente) para o caso do transistor apresentar = 100.
1) (271099) Para o circuito mostrado na figura abaixo, encontre as tensões indicadas no circuito para (a) = + (b) = 100 (c) = 10. 2) (271099) (a) Projete R C e R B para o circuito mostrado na figura abaixo
CIRCUITOS INTEGRADOS. Professor Adão de Melo Neto
CIRCUITOS INTEGRADOS Professor Adão de Melo Neto R = RESISTÊNCIA É A OPOSIÇÃO A CIRCULAÇÃO DA CORRENTE GERADA POR UMA TENSÃO OU DIFERENÇA DE POTENCIAL (medido em ohms) I = CORRENTE FLUXO DE ELÉTRONS DO
A figura 1 apresenta um esboço da polarização de um J-FET canal N: junção PN inversamente polarizada, VGS 0, e VDS positivo (VDS > 0).
EXPERIMENTO N O 06 Transistor de Efeito de Campo OBJETIVO: Estudar o funcionamento do J-FET MATERIAIS: Instrumentos: Osciloscópio duplo traço Gerador de funções Materiais (responsabilidade do aluno): Fonte
Prof. Amauri Assef. UTFPR Campus Curitiba 1
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA CURSO DE ENGENHARIA INDUSTRIAL ELÉTRICA Disciplina de Eletrônica de Potência ET66B Aula 20 Chaves Eletrônicas [email protected]
Microeletrônica. Germano Maioli Penello
Microeletrônica Germano Maioli Penello Contato Site http://www.lee.eng.uerj.br/~germano/microeletronica_2015-2.html [email protected] Visão geral do curso Níveis de abstração Introdução CMOS Substrato
Introdução 5. Amplificador em coletor comum 6. Princípio de funcionamento 7
Sumário Introdução 5 Amplificador em coletor comum 6 Princípio de funcionamento 7 Parâmetros do estágio amplificador em coletor comum 10 Ganho de tensão 10 Ganho de corrente 10 Impedância de entrada 10
10.0 Conversores DA. Conceitos básicos:
100 Conversores DA Monitorar grandezas físicas, coletar dados e armazena-los para possíveis tomadas de decisão é grande interesse da indústria A precisão dos sinais coletados é de extrema importância,
Microeletrônica. Germano Maioli Penello. http://www.lee.eng.uerj.br/~germano/microeletronica%20_%202015-1.html
Microeletrônica Germano Maioli Penello http://www.lee.eng.uerj.br/~germano/microeletronica%20_%202015-1.html Sala 5145 (sala 17 do laboratorio de engenharia elétrica) 1 Pauta (14/04/2015) ÁQUILA ROSA FIGUEIREDO
Amplificador operacional
Amplificador operacional Um amplificador operacional 741 num encapsulamento metálico TO-5. Um amplificador operacional ou amp op é um amplificador com ganho muito elevado, tendo dois terminais de entrada:
Centro Federal de Educação Tecnológica de Pelotas CEFET-RS. Aula 04. Inversor CMOS. Prof. Sandro Vilela da Silva.
Centro Federal de Educação Tecnológica de Pelotas CEFET-RS Projeto Físico F Digital Aula 04 Inversor CMOS Prof. Sandro Vilela da Silva [email protected] Copyright Parte dos slides foram realizados
Dispositivos e circuitos com FET s. Lista equipamentos. Capacitor 0.1 uf eletrolítico. 2 x Resistor 10K Protoboard + fios CI CD4007
EN2719 Lab #4 Dispositivos e circuitos com FET s Lista equipamentos Resistor 1M capacitor 47uF eletrolítico Resistor 2K2 Transistor JFET BF245 Resistor 6K8 Capacitor 0.1 uf eletrolítico 2 x Resistor 10K
Eletrônica II. Germano Maioli Penello. Aula 13
Eletrônica II Germano Maioli Penello [email protected] Aula 13 1 BJT como amplificador BJT tem que estar na região ativa (fonte de corrente controlada por tensão) Corrente i c em função de v BE Claramente
2 Objetivos Verificação e análise das diversas características de amplificadores operacionais reais.
Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 6 1 Título Prática 11 Características dos Amplificadores Operacionais 2 Objetivos Verificação e análise das diversas características
Introdução sobre Pares Diferenciais (Bipolares e MOS)
p. 1/1 Resumo Introdução sobre Pares Diferenciais (Bipolares e MOS) Par Diferencial com Transistor MOS Gama de Tensão em Modo Comum Operação com sinal diferencial Operação para grandes sinais Operação
5 Avaliação de desempenho do divisor
5 Avaliação de desempenho do divisor Para avaliar o desempenho do divisor foram realizados ensaios de tipo e de rotina no divisor completo e em partes deste, com o objetivo de avaliar sua suportabilidade
V in (+) V in (-) V O
CAPÍTULO III INTRODUÇÃO AOS AMPLIFICADORES OPERACIONAIS Introdução aos OPAMPS I - Introdução : Os amplificadores operacionais são dispositivos aplicados à eletrônica analógica. É o dispositivo de maior
Dispositivos Semicondutores. Diodos junções p-n Transistores: p-n-p ou n-p-n
Dispositivos Semicondutores Diodos junções p-n Transistores: p-n-p ou n-p-n Junção p-n Junções p-n tipo-p tipo-n tensão reversa tensão direta zona isolante zona de recombinação buracos elétrons buracos
O Amplificador Operacional como uma fonte de tensão controlada por tensão diferencial
Slide 1 O Amplificador Operacional como uma fonte de tensão controlada por tensão diferencial entrada entrada entrada entrada configuração nula Amplificadores operacionais são amplificadores diferenciais
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO Uma Ferramenta para Automação da Geração do Leiaute de Circuitos Analógicos sobre uma Matriz de
Aula Prática 01. O Amplificador Diferencial e Aplicações
Aula Prática 01 I - Objetivos O objetivo desta aula prática é estudar o amplificador diferencial, suas propriedades e aplicações. A técnica adotada é reforçar a noção de associação de amplificadores em
Introdução 5. Amplificador em base comum 6. Princípio de funcionamento 8 Com sinal de entrada positivo 8 Com sinal de entrada negativo 10
Sumário Introdução 5 Amplificador em base comum 6 Princípio de funcionamento 8 Com sinal de entrada positivo 8 Com sinal de entrada negativo 10 Parâmetros do estágio amplificador em base comum 12 Ganho
IFBA. CELET Coordenação do Curso Técnico em Eletrônica Professor: Edvaldo Moraes Ruas, EE. Vitória da Conquista
IFBA 1 a Parte CELET Coordenação do Curso Técnico em Eletrônica Professor: Edvaldo Moraes Ruas, EE Vitória da Conquista - 2009 JFET s - estrutura e símbolo Transistor de junção por efeito de campo (Junction
PROJETO DE CIRCUITOS INTEGRADOS PCI
Componentes Passivos - Compatíveis com os passos de fabricação usados na construção dos elementos MOS Capacitores, Resistores e Indutores. Capacitores - Em projetos de circuitos integrados analógicos são
CIRCUITO AUTOPOLARIZAÇÃO Análise do modelo equivalente para o circuito amplificador em autopolarização a JFET.
MÓDULO 6: RESPOSTA EM FREQÜÊNCIA DO AMPLIFICADOR DE PEQUENOS SINAIS A JFET. 1. Introdução: O circuito amplificador de sinal a JFET possui ganho alto, uma impedância alta de entrada e ampla faixa de resposta
Transístores 1. João Canas Ferreira. FEUP/DEEC Setembro de 2007. Tópicos de Projecto de Circuitos VLSI
Transístores MOS João Canas Ferreira FEUP/DEEC Setembro de 007 Tópicos de Projecto de Circuitos Transístores 1 Conteúdo Transístores MOS: modelos estáticos modelo clássico modelo DSM Comportamento dinâmico
Conversores Digital/Analógico (D/A) e Analógico/Digital (A/D)
Conversores Digital/Analógico (D/A) e Analógico/Digital (A/D) Conversores A/D e D/A são a base de todo o interfaceamento eletrônico entre o mundo analógico e o mundo digital. Estão presentes na grande
ELETRICIDADE CAPÍTULO 2 ELEMENTOS DOS CIRCUITOS ELÉTRICOS
ELETRICIDADE CAPÍTULO 2 ELEMENTOS DOS CIRCUITOS ELÉTRICOS 2.1 - INTRODUÇÃO - EXISTEM CINCO ELEMENTOS BÁSICOS IDEAIS QUE SÃO UTILIZADOS EM CIRCUITOS ELÉTRICOS. - ELEMENTOS ATIVOS (GERAM ENERGIA ELÉTRICA)
Circuitos Ativos em Micro-Ondas
Circuitos Ativos em Micro-Ondas Unidade 1 Comportamento de Dispositivos Passivos e Semicondutores em Micro-Ondas Prof. Marcos V. T. Heckler 1 Conteúdo Introdução Resistores operando em Micro-Ondas Capacitores
Eletrônica Digital II. Engenharia de Computação
Eletrônica Digital II ELT013 Engenharia de Computação Aula 10 INTERFACE COM O MUNDO ANALÓGICO ELT013 - Eletrônica Digital II Aula 10 - Interface com o Mundo Analógico 2 Quantidade Digital Vs. Quantidade
Exemplo 4.1 (pag.245)
Exemplo 4.1 (pag.245) Considere um processo tecnológico com min =0,4 μm, t ox =8nm, μ n =450 cm 2 /V.s, e V t =0,7 V. a) Determine C ox e k n. b) Para um MOSFET com W/=8 μm/0,8 μm, determine os valores
Junção p-n Diodo retificador Diodo Emissor de Luz (LED s e OLED s) Transistor. Revisão: Semicondutores dopados
Unidade 2 Aula 3 Estado Sólido Semicondutores: Junção p-n Diodo retificador Diodo Emissor de Luz (LED s e OLED s) Transistor Revisão: Semicondutores dopados A aplicação da teoria de bandas aos semicondutores
Evento: VII SEMINÁRIO DE INOVAÇÃO E TECNOLOGIA
BANCADA EXPERIMENTAL PARA CARACTERIZAÇÃO DE ELEMENTOS SENSORES PIEZORESISTIVOS 1 EXPERIMENTAL BENCH FOR CHARACTERIZATION OF ELEMENTS PIEZORESISTIVE SENSORS Carlos Augusto Valdiero 2, Luiz Antônio Rasia
Aula 05 Transitores de Potência
Aula 05 Transitores de Potência Prof. Heverton Augusto Pereira Universidade Federal de Viçosa - UFV Departamento de Engenharia Elétrica - DEL Gerência de Especialistas em Sistemas Elétricos de Potência
CAPÍTULO IV AMPLIFICADORES OPERACIONAIS 4.1. TENSÕES E CORRENTES DE COMPENSAÇÃO OU OFFSET
CAPÍTULO IV AMPLIFICADORES OPERACIONAIS 4.1. TENSÕES E CORRENTES DE COMPENSAÇÃO OU OFFSET Definição : O offset é definido como uma tensão residual que aparece na saída do Amplificador Operacional quando
Símbolo Curva aproximada Curva próxima do real. Símbolo Curva aproximada Curva próxima do real. Símbolo Curva aproximada Curva próxima do real
Amplificadores operacionais como filtros Filtros são circuitos eletrônicos projetados para permitir, ou não, a passagem de um sinal, cujo espectro esteja dentro de um valor preestabelecido pelo projetista.
Curso Técnico em Eletroeletrônica Eletrônica Analógica II
Curso Técnico em Eletroeletrônica Eletrônica Analógica II Aula 09 Amplificador Operacional: Características Buffer Prof. Dra. Giovana Tripoloni Tangerino 2016 AMPLIFICADORES OPERACIONAIS É um amplificador
Microeletrônica. Germano Maioli Penello. http://www.lee.eng.uerj.br/~germano/microeletronica%20_%202015-1.html
Microeletrônica Germano Maioli Penello http://www.lee.eng.uerj.br/~germano/microeletronica%20_%202015-1.html Sala 5145 (sala 17 do laboratorio de engenharia elétrica) Aula 19 1 Pauta ÁQUILA ROSA FIGUEIREDO
Instituto Educacional São João da Escócia Colégio Pelicano Curso Técnico de Eletrônica. FET - Transistor de Efeito de Campo
1 FET - Transistor de Efeito de Campo Introdução Uma importante classe de transistor são os dispositivos FET (Field Effect Transistor). Transistor de Efeito de Campo. Como nos Transistores de Junção Bipolar
V L V L V θ V L = V E + I L + θ +... V E I L θ
DISCIPLINA CIRCUITOS ELETRÔNICOS Circuitos Eletrônicos Módulo um: Estudo dos reguladores de tensões. Objetivo: Este módulo de ensino o aluno de aprender o conceito de regulador. É mostrado que para ter
Índice. Agradecimentos Prefácios Sobre o livro Sobre os autores
Índice Agradecimentos Prefácios Sobre o livro Sobre os autores Capítulo 1 Semicondutores 1.1 Introdução 1.2 Semicondutores simples e compostos: Estrutura 1.2.1 Semicondutores simples 1.2.2 Semicondutores
EN Dispositivos Eletrônicos
EN 2719 - Dispositivos Eletrônicos Aula 5 Transistor Bipolar 2015.1 1 Introdução Os dispositivos semicondutores de três terminais são muito mais utilizados que os de dois terminais (diodos) porque podem
Sumário. Volume II. Capítulo 14 Efeitos de frequência 568. Capítulo 15 Amplificadores diferenciais 624. Capítulo 16 Amplificadores operacionais 666
Volume II Capítulo 14 Efeitos de frequência 568 14-1 Resposta em frequência de um amplificador 570 14-2 Ganho de potência em decibel 575 14-3 Ganho de tensão em decibel 579 14-4 Casamento de impedância
Instituto Educacional São João da Escócia Colégio Pelicano Curso Técnico de Eletrônica. Polarização de um JFET
1 Polarização de um JFET Polarizar um transistor FET, significa estabelecer valores de tensões e correntes satisfatórios para o funcionamento do transistor. Lembrando que qual seja o modo de ligação, sempre
Tecnologia de Circuitos Integrados
Tecnologia de Circuitos Integrados Introdução.. Tecnologias de Fabrico de Circuitos Integrados.. Componentes Disponíveis. Etapas de Fabrico. Layout. Quando os átomos se unem para formarem as moléculas
Plano de Ensino de Disciplina Engenharia Elétrica
Plano de Ensino de Disciplina - 2017 Engenharia Elétrica Disciplina: DISPOSITIVOS E CIRCUITOS ELETRÔNICOS 3 Código: DCE 3 Período: 7 o semestre Carga Horária Semanal: Teoria: 02 horas Laboratório: 02 horas
Resposta em Frequência dos Circuitos
Instituto Federal de Santa Catarina Curso Técnico em Telecomunicações PRT- Princípios de Telecomunicações Resposta em Frequência dos Circuitos Prof. Deise Monquelate Arndt São José, abril de 2016 Resposta
DIVISOR DE TENSÃO SEM CARGA
DIVISOR DE TENSÃO SEM CARGA OBJETIVOS: a) estudar o funcionamento de circuitos resistivos divisores de tensão; b) estudar o funcionamento de circuitos divisores de tensão variável. INTRODUÇÃO TEÓRICA A
Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 7
Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 7 1 Título Prática 5 egulação de tensão 2 Fundamentos teóricos Como comentado na Prática 4 (circuitos retificadores),
LABORATÓRIO ATIVIDADES 2013/1
LABORATÓRIO ATIVIDADES 2013/1 RELATÓRIO DAS ATIVIDADES DESENVOLVIDAS NO LABORATÓRIO MÓDULO I ELETRICIDADE BÁSICA TURNO NOITE CURSO TÉCNICO EM AUTOMAÇÃO INDUSTRIAL CARGA HORÁRIA EIXO TECNOLÓGICO CONTROLE
Tecnologias de Circuitos Integrados
Tecnologias de Circuitos Integrados Tecnologias de Circuitos Integrados MOS-CMOS MOSFET (Metal Oxide Silicon Field Effect Field) nmos (N-type MOS) pmos (P-type MOS) CMOS (Complementary - type MOS) Manoel
Via. Ligação entre as camadas de metal M1 e M2. Elementos parasitas principais: Resistência de contacto 0.05 Ω a 0.08 Ω
Via Ligação entre as camadas de metal M1 e M2 Dimensões: 2 µm 2 µm Elementos parasitas principais: Resistência de contacto 0.05 Ω a 0.08 Ω Metal migration limit: 0.4 ma/contacto Correntes entre M1 e M2
FET AMPLIFIERS Amplificadores FET
FET AMPLIFIERS Amplificadores FET M-1106A *Only illustrative image./imagen meramente ilustrativa./imagem meramente ilustrativa. EXPERIMENTS MANUAL Manual de Experimentos Manual de Experimentos 1 Conteúdo
