Topologias de Rede de Computadores

Tamanho: px
Começar a partir da página:

Download "Topologias de Rede de Computadores"

Transcrição

1 Topologias de Rede de Computadores As redes de computadores possibilitam que indivíduos possam trabalhar em equipes, compartilhando informações, melhorando o desempenho da realização de tarefas, e estão presentes no diaa-dia de todos nós. São estruturas sofisticadas e complexas, que mantém os dados e as informações ao alcance de seus usuários. É a topologia de redes que descreve como as redes de computadores estão interligadas, tanto do ponto de vista físico, como o lógico. A topologia física representa como as redes estão conectadas (layout físico) e o meio de conexão dos dispositivos de redes (nós ou nodos). Já a topologia lógica refere-se à forma com que os nós se comunicam através dos meios de transmissão. Topologias Físicas A topologia física pode ser representada de várias maneiras e descreve por onde os cabos passam e onde as estações, os nós, roteadores e gateways estão localizados. As mais utilizadas e conhecidas são as topologias do tipo estrela, barramento e anel. Ponto a Ponto A topologia ponto a ponto é a mais simples. Une dois computadores, através de um meio de transmissão qualquer. Dela pode-se formar novas topologias, incluindo novos nós em sua

2 estrutura. Barramento Esta topologia é bem comum e possui alto poder de expansão. Nela, todos os nós estão conectados a uma barra que é compartilhada entre todos os processadores, podendo o controle ser centralizado ou distribuído. O meio de transmissão usado nesta topologia é o cabo coaxial. Cada nó é ligado em série (um nó é conectado atrás do outro) em um mesmo backbone, de forma semelhante às luzinhas de natal. As informações enviadas por um nó trafegam pelo backbone até chegar ao nó de destino. Cada extremidade de uma rede de barramento deve ser terminada por um resistor para evitar que o sinal enviado por um nó através da rede volte quando chegar ao fim do cabo. Todos os computadores são ligados em um mesmo barramento físico de dados. Apesar de os dados não passarem por dentro de cada um dos nós, apenas uma máquina pode escrever no barramento num dado momento. Todas as outras escutam e recolhem para si os dados destinados a elas. Quando um computador estiver a transmitir um sinal, toda a rede fica ocupada e se outro computador tentar enviar outro sinal ao mesmo tempo, ocorre uma colisão e é preciso reiniciar a transmissão.

3 Essa topologia utiliza cabos coaxiais. Para cada barramento existe um único cabo, que vai de uma ponta a outra. O cabo é seccionado em cada local onde um computador será inserido na rede. Com o seccionamento do cabo formam-se duas pontas e cada uma delas recebe um conector BNC. No computador é colocado um T conectado à placa que junta as duas pontas. Embora ainda existam algumas instalações de rede que utilizam esse modelo, é uma tecnologia obsoleta. Embora esta topologia descrita fisicamente ter caído em desuso, logicamente ela é amplamente usada. Redes ethernet utilizam este tipo lógico de topologia. Na topologia de barramento todos os computadores estão ligados a um cabo contínuo que é terminado em ambas as extremidades por uma pequena ficha com uma resistência ligada entre a malha e o fio central do cabo (terminadores). A função dos terminadores é de adaptarem a linha, isto é, fazerem com que a impedância vista para interior e para o exterior do cabo seja a mesma, senão constata-se que há reflexão do sinal e, consequentemente, perda da comunicação. Neste tipo de topologia a comunicação é feita por broadcast, isto é, os dados são enviados para o barramento e todos os computadores vêem esses dados, no entanto, eles só serão recebidos pelo destinatário. As estações de trabalho e servidores são ligados ao cabo através de conectores, conhecidos como vampiros, que permitem a ligação ao cabo sem a necessidade de cortá-lo, já que mecanicamente uma pequena agulha penetra no cabo fazendo contato com o condutor interno, enquanto o restante faz contato com a malha externa. Vantagens: Bidirecional Baixo custo inicial. Desvantagens:

4 Dificuldade de isolar a fonte de uma falha de sistema ou equipamento. Ampliação da rede: inclusão de novas estações e/ou servidores implicam na paralisação da rede. Anel ou Ring A topologia em anel utiliza em geral ligações ponto-a-ponto que operam em um único sentido de transmissão. O sinal circula no anel até chegar ao destino. Esta topologia é pouco tolerável à falha e possui uma grande limitação quanto a sua expansão pelo aumento de retardo de transmissão (intervalo de tempo entre o início e chegada do sinal ao nó destino). Como uma rede de barramento, os anéis também têm nós ligados em série. A diferença é que a extremidade da rede volta para o primeiro nó e cria um circuito completo. Em uma rede em anel, cada nó tem sus vez para enviar e receber informações através de um token (ficha). O token, junto com quaisquer informações, é enviado do primeiro para o segundo nó, que extrai as informações endereçadas a ele e adiciona quaisquer informações que deseja enviar. Depois, o segundo nó passa o token e as informações para o terceiro nó e assim por diante, até chegar novamente ao primeiro nó. Somente o nó com o token pode enviar informações. Todos os outros nós devem esperar o token chegar.

5 Na topologia em anel os dispositivos são conectados em série, formando um circuito fechado (anel). Os dados são transmitidos unidirecionalmente de nó em nó até atingir o seu destino. Uma mensagem enviada por uma estação passa por outras estações, através das retransmissões, até ser retirada pela estação destino ou pela estação fonte. Os sinais sofrem menos distorção e atenuação no enlace entre as estações, pois há um repetidor em cada estação. Há um atraso de um ou mais bits em cada estação para processamento de dados. Há uma queda na confiabilidade para um grande número de estações. A cada estação inserida, há um aumento de retardo na rede. É possível usar anéis múltiplos para aumentar a confiabilidade e o desempenho. Vantagens: Direcionamento simples. Possibilidade de ter dois anéis funcionando ao mesmo tempo, onde caso exista falha em um, somente ocorrerá uma queda de performance. Desvantagens: Dificuldade de isolar a fonte de uma falha de sistema ou de equipamento. Ampliação da rede, inclusão de novas estações ou servidores implica na paralisação da rede. Estrela

6 A topologia em estrela utiliza um nó central (comutador ou switch) para chavear e gerenciar a comunicação entre as estações. É esta unidade central que vai determinar a velocidade de transmissão, como também converter sinais transmitidos por protocolos diferentes. Neste tipo de topologia é comum acontecer o overhead localizado, já que uma máquina é acionada por vez, simulando um ponto-a-ponto. Em uma rede em estrela, cada nó se conecta a um dispositivo central chamado hub. O hub obtém um sinal que vem de qualquer nó e o passa adiante para todos os outros nós da rede. Um hub não faz nenhum tipo de roteamento ou filtragem de dados. Ele simplesmente une os diferentes nós. A mais comum atualmente, a topologia em estrela utiliza cabos de par trançado e um concentrador como ponto central da rede. O concentrador se encarrega de retransmitir todos os dados para todas as estações, mas com a vantagem de tornar mais fácil a localização dos problemas, já que se um dos cabos, uma das portas do concentrador ou uma das placas de rede estiver com problemas, apenas o nó ligado ao componente defeituoso ficará fora da rede. Esta topologia se aplica apenas a pequenas redes, já que os concentradores costumam ter apenas oito ou dezesseis portas. Em redes maiores é utilizada a topologia de árvore, onde temos vários concentradores

7 interligados entre si por comutadores ou roteadores. Vantagens: Facilidade de isolar a fonte de uma falha de sistema ou equipamento, uma vez que cada estação está diretamente ligada ao concentrador. Facilidade de inclusão de nova estação na rede, bastando apenas conectá-las ao concentrador. Direcionamento simples, apenas o concentrador tem esta atribuição. Baixo investimento a médio longo prazo. Desvantagens: Confiabilidade uma falha no concentrador, no caso de redes sem redundância, todas as estações perderão comunicação com a rede. Todo o tráfego flui através do concentrador, podendo representar um ponto de congestionamento. Árvore A topologia em árvore é basicamente uma série de barras interconectadas. É equivalente a várias redes estrelas interligadas entre si através de seus nós centrais. Esta

8 topologia é muito utilizada na ligação de Hub s e repetidores. A topologia em árvore é essencialmente uma série de barras interconectadas. Geralmente existe uma barra central onde outros ramos menores se conectam. Esta ligação é realizada através de derivadores e as conexões das estações realizadas do mesmo modo que no sistema de barra padrão. Cuidados adicionais devem ser tomados nas redes em árvores, pois cada ramificação significa que o sinal deverá se propagar por dois caminhos diferentes. A menos que estes caminhos estejam perfeitamente casados, os sinais terão velocidades de propagação diferentes e refletirão os sinais de diferentes maneiras. Em geral, redes em árvore, vão trabalhar com taxa de transmissão menores do que as redes em barra comum, por estes motivos. Topologia física baseada numa estrutura hierárquica de várias redes e sub-redes. Existem um ou mais concentradores que ligam cada rede local e existe um outro concentrador que interliga todos os outros concentradores. Esta topologia facilita a manutenção do sistema e permite, em caso de avaria, detectar com mais facilidade o problema. Estrutura Mista ou Híbrida A topologia híbrida é bem complexa e muito utilizada em grandes redes. Nela podemos encontrar uma mistura de topologias, tais como as de anel, estrela, barra, entre

9 outras, que possuem como características as ligações ponto a ponto e multiponto. É a topologia mais utilizada em grandes redes. Assim, adequa-se a topologia de rede em função do ambiente, compensando os custos, expansibilidade, flexibilidade e funcionalidade de cada segmento de rede. Muitas vezes acontecem demandas imediatas de conexões e a empresa não dispõe de recursos, naquele momento, para a aquisição de produtos adequados para a montagem da rede. Nestes casos, a administração de redes pode utilizar os equipamentos já disponíveis considerando as vantagens e desvantagens das topologias utilizadas. Consideremos o caso de um laboratório de testes computacionais onde o número de equipamentos é flutuante e que não admite um layout definido. A aquisição de concentradores ou comutadores pode não ser conveniente, pelo contrário até custosa. Talvez uma topologia em barramento seja uma solução mais adequada para aquele segmento físico de rede. Numa topologia híbrida, o desenho final da rede resulta da combinação de duas ou mais topologias de rede. A combinação de duas ou mais topologias de rede permite-nos beneficiar das vantagens de cada uma das topologias que integram esta topologia. Embora muito pouco usada em redes locais, uma variante da topologia em malha, a malha híbrida, é usada na Internet e em algumas WANs. A topologia de malha híbrida pode ter múltiplas ligações entre várias localizações, mas isto é feito por uma questão de redundância, além de que não é uma verdadeira malha porque não há ligação entre cada um e todos os nós, somente em alguns por uma questão de backup.

10 Topologias Lógicas A topologia lógica descreve o fluxo de dados através da rede. Os dois tipos de topologias lógicas mais comuns são o Broadcast e a passagem Token. Na primeira o nó envia seus dados a todos os nós espalhados pela rede (Ethernet). Já na passagem de Token, um sinal de Token controla o envio de dados pela rede (Token Ring). Questões de Concursos (CESPE 2010 INMETRO) Em relação aos meios de transmissão e às topologias das redes de computadores, assinale a opção correta. a) Os meios de transmissão não guiados transportam ondas eletromagnéticas com o uso de um condutor físico. b) Os cabos de par trançado podem transportar sinais de frequência mais alta que os cabos coaxiais. c) As ondas infravermelhas são utilizadas atualmente, principalmente, para a comunicação em curta distância. Todavia, elas também podem ser usadas em redes WAN internas. d) A topologia em anel é multiponto. Um sinal percorre todo o anel em um sentido, até atingir seu destino. e) Em uma topologia de barramento, os nós são conectados ao barramento por meio de cabos transceptores e transceptoresvampiros. (FCC 2009 MPE-SE) Considere as seguintes características: vulnerabilidade a falha no nó central; roteamento centralizado; ligações ponto a ponto; todas as mensagens passam pelo nó central; custos dos meios físicos sobem proporcionalmente com o aumento da quantidade de estações em relação a outras

11 topologias. Com respeito à topologia de redes: a) todas se aplicam ao tipo Barramento. b) apenas as duas últimas se aplicam ao tipo Estrela. c) todas se aplicam ao tipo Estrela. d) apenas as duas primeiras se aplicam ao tipo Anel. e) todas se aplicam ao tipo Anel. Comentários/Gabarito das Questões (CESPE 2010 INMETRO) Em relação aos meios de transmissão e às topologias das redes de computadores, assinale a opção correta. a) Os meios de transmissão não guiados (infravermelho, rádio/microondas, satélites) transportam ondas eletromagnéticas SEM o uso de um condutor físico, mas sim utilizam o meio disperso, no caso o AR. b) Os cabos de rede do tipo par trançado tem uma taxa maior de dados (até 1000 mbps) e sempre tem uma frequência menor (até 500 MHz cat 7) em comparação ao coaxial (até 20 mbps na taxa de dados e até 1 GHz na frequência) c) O infravermelho realmente só pode ser utilizado em distâncias curtas, mas não se aplicam às WAN por não ultrapassar barreiras físicas. A sua utilização não passar, normalmente, de 7 metros e os dois objetos devem ver um ao outro, ou seja, alinhados. d) A topologia em anel utiliza conexão ponto-a-ponto. Veja a imagem do artigo. e) CORRETA

12 Fica a dica para conferirem o artigo sobre Meios de Transmissão de Dados aqui do meu blog. (FCC 2009 MPE-SE) Considere as seguintes características: vulnerabilidade a falha no nó central; roteamento centralizado; ligações ponto a ponto; todas as mensagens passam pelo nó central; custos dos meios físicos sobem proporcionalmente com o aumento da quantidade de estações em relação a outras topologias. Letra C. Todas se aplicam a topologia Estrela. Meios de Transmissão de Dados O meio de transmissão de dados serve para oferecer suporte ao fluxo de dados entre dois pontos. Computadores em rede ficam interligados por meio de fios elétricos, fibras ópticas, ondas de rádio ou raios de luz e nas redes com fio, pode-se utilizar o par trançado ou cabo coaxial. Cabo de Par Trançado

13 Cabo de Par Trançado O cabo de par trançado é formado de pares de fios entrelaçados, separados por material isolante, que normalmente são recobertos por uma proteção de PVC (Poly VinylChloride). Cada par constitui um condutor positivo (normalmente um fio de cor laranja, verde, azul ou marrom) e negativo (normalmente de cor branca), que ao serem dispostos como estão geram um campo eletromagnético que faz o papel de barreira contra interferências externas, reduzindo a diafonia (ruídos provocados pelos sinais elétricos que trafegam em sentidos opostos). Cabos de Par Trançado não Blindado (UTP) Geralmente combina quatro tipos de pares de fios dentro da mesma capa externa. Cada par é trançado com um número diferente de voltas por polegada. Essetrançamento evita o ruído elétrico dos pares adjacentes e de outras interferências do meio. Embora ele pareça externamente com os cabos de telefone, estes não servem para transportar dados. Os cabos sem blindagem são chamados de UTP (Unshielded Twisted

14 Pair, que significa, literalmente, cabo de par trançado sem blindagem ). Velocidade e Fluxo: Rápido o Bastante Custo Médio por Nó: O Mais Barato Mídia e Tamanho do Conector: Pequeno Comprimento do Cabo: Curto Cabos de Par Trançado Blindado (STP) A maioria dos Cabos de Par Trançado Blindado (STP Shielded Twisted Pair) utilizam um encapsulamento de PVC, o que, no entanto, não é indicado em instalações próximas à dutos de ar, já que este material emite gases tóxicos quando é inflamado (nesses casos outro material deve ser utilizado, normalmente teflon). Usado apenas para especificações das redes locais Token-Ring, utiliza um tecido de cobre trançado, um envoltório metálico entre e em volta dos pares de fios, para oferecer alto grau de proteção contra corrente elétrica externa. Velocidade e Fluxo: Rápido o Bastante Custo Médio por Nó: O Mais Barato Mídia e Tamanho do Conector: Pequeno Comprimento do Cabo: Curto Em redes de computadores encontramos três tipos de cabos de par trançado, que são classificados quanto à sua amperagem: nível 3 (para redes de até 10 mbps, padrão 10BaseT para redes Ethernet), nível 4 (16 mbps, padrão 16BaseT, pouco utilizado) e nível 5 (100 mbps, padrão 100BaseT). O último é mais comum, sendo o mais indicado para a maioria das instalações, como LANs que interligam salas de aula e escritórios. O conector utilizado em redes de computadores baseadas no cabo

15 de par trançado é o RJ-45 (similar ao conector RJ-11, de aparelhos telefônicos), macho para os segmentos de par trançado e fêmea para as placas de rede. Este conector possui oito pinos internos: T2, R2, T3, R1, T1, R3, T4, R4, sendo que em redes que operam com uma taxa de até 10 mbps são utilizados os conectores T2, R2, T3 e R3, logo será necessário um cabo com dois pares de fios (nível 3). Em redes de 100 mbps utilizamos os oito conectores, e quatro pares de fios (nível 5). O cabo de par trançado é economicamente mais viável do que o cabo coaxial, e sua instalação também é mais fácil. Essas vantagens associadas a sua predisposição contra ruídos internos e/ou externos torna cada vez menos popular a implementação de cabos coaxiais nas redes locais, principalmente em redes padrão Ethernet (a qualidade de transmissão depende muito do material condutor, sendo o cobre o mais indicado). Redes cliente-servidor já não utilizam cabos coaxiais, mesmo porque HUBs com conectores BNC fêmea estão gradativamente saindo do mercado. O HUB é um equipamento necessário em redes cliente-servidor, e mesmo em redes ponto-a-ponto baseadas em cabos de par trançado, que concentra todos os segmentos da rede. É por isso que não existem conectores de terminação para este tipo de cabo, cabos coaxiais necessariamente não precisam de um concentrador, os de par trançado sim. Os cabos blindados, por sua vez, se dividem em três categorias: FTP, STP e SSTP. Os cabos FTP (Foiled Twisted Pair) são os que utilizam a blindagem mais simples. Neles, uma fina folha de aço ou de liga de alumínio envolve todos os pares do cabo, protegendo-os contra interferências externas, mas sem fazer nada com relação ao crosstalk, ou seja, a interferência entre os pares de cabos:

16 Cabo FTP Os cabos STP (Shielded Twisted Pair) vão um pouco além, usando uma blindagem individual para cada par de cabos. Isso reduz o crosstalk e melhora a tolerância do cabo com relação à distância, o que pode ser usado em situações onde for necessário crimpar cabos fora do padrão, com mais de 100 metros: Cabo STP Finalmente, temos os cabos SSTP (Screened Shielded Twisted Pair), também chamados de SFTP (Screened Foiled Twisted Pair), que combinam a blindagem individual para cada par de cabos com uma segunda blindagem externa, envolvendo todos os pares, o que torna os cabos especialmente resistentes a interferências externas. Eles são mais adequados a ambientes com fortes fontes de interferências:

17 Cabo SSTP Para melhores resultados, os cabos blindados devem ser combinados com conectores RJ-45 blindados. Eles incluem uma proteção metálica que protege a parte destrançada do cabo que vai dentro do conector, evitando que ela se torne o elo mais fraco da cadeia Categorias de Cabos Par Trançado Hoje em dia, os cabos de pares trançados mais usados são os não blindados, nas seguintes classificações e características: Categoria 3 / Classe C = 16 MHz, utilizado em ligações de até 10 Mbps; Categoria 4 / Classe B = 20 MHz, utilizado em ligações de até 16 Mbps, utilizado em redes Token Ring e Ethernet; Categoria 5 / Classe D = 100 MHz, utilizado em ligações de até 100 e 1000 Mbps; Categoria 5e = Existe de 100/110/125/155 MHz, utilizado em ligações de até 100 e 1000 Mbps, com alcance de até 100 metros; Categoria 6 / Classe E = 250 MHz, utilizado em ligações de até 10 Gbps, com alcance de até 55 metros; Categoria 6a = 500 MHz, utilizado em ligações de até 10 Gbps, com alcance de até 100 metros; Categoria 7 / Classe F = 500/600 MHz, utilizado em ligações de até 100 Gbps; Cabo Coaxial

18 Cabo Coaxial O cabo coaxial é constituído de dois condutores dispostos axialmente (na forma de eixo), separados entre si e envoltos por material isolante. O condutor interno, mais rígido, é feito de cobre e pode ser torcido ou sólido (o condutor sólido é mais indicado em redes locais, já que os dados fluem com mais facilidade num meio homogêneo). O condutor externo é uma malha metálica que, além de atuar como a segunda metade do circuito elétrico, também protege o condutor interno contra interferências externas (campos eletromagnéticos estranhos). Quando esta malha externa é feita de alumínio o cabo coaxial é dito cabo coaxial grosso (especificação RG-213 A/U), ou de banda larga, pois possui uma resistência de 75 ohms, transmitindo dados numa velocidade de até 10 mbps (megabits por segundo) à freqüência de 10 ghz (gigahertz). Os cabos coaxiais de banda larga obedecem ao padrão 10Base5, e são muito utilizados em circuitos internos de TV. Este tipo de cabo é indicado para instalações externas, como aquelas que fazem a conexão de redes de computadores situadas em diferentes prédios num mesmo campus universitário. Se a malha externa for de cobre a resistência obtida é de 50 ohms, o que permite a transmissão de dados à velocidade de 10 mbps a uma freqüência de 2 ghz. Este cabo é chamado de cabo coaxial fino (especificação RG-58 A/U), ou cabo coaxial de banda base. Este

19 tipo de cabo obedece ao padrão 10Base2, sendo utilizado em redes padrão Ethernet com baixo escopo de atuação. Existem cinco tipos de conectores para serem utilizados com cabos coaxiais em redes de computadores: conector BNC, padrão macho para as pontas do cabo coaxial e fêmea para as placas de rede (que, ao serem instaladas, atrelam as estações de trabalho à rede); conector BNC tipo T, liga dois conectores BNC macho (dois segmentos de cabo coaxial, cada um com destino a uma outra estação) ao conector BNC fêmea da placa de rede, logo é formado de duas entradas (BNC fêmea) e uma saída (BNC macho); conector BNC tipo I, que serve para ligar as extremidades de dois segmentos de cabo coaxial, muito utilizado para aumentar a distância entre um nó e outro; conectortransceiver (ou conector Vampiro ) que serve para ligar um cabo coaxial grosso à estação; e finalmente conector BNC de terminação, ou simplesmente terminador, que deve ser colocado na extremidade final localizada no último segmento de rede. Uma atenção especial deve ser dada à este último conector. Numa rede padrão Ethernet os dados trafegam serialmente através de uma linha única de dados, linha esta hora formada pelos segmentos de cabo coaxial, hora pelos conectores que fazem a ligação destes com as placas de rede ou entre si. De modo a evitar que um sinal seja refletido de volta ao se chocar na extremidade da rede, utilizamos os terminadores, que absorvem os sinais para um perfeito casamento de impedância. Esses terminadores podem ser de 50 ou 75 ohms, variando de acordo com o cabeamento. Os cabos coaxiais possibilitam uma taxa de transferência de até 10 mbps, e se forem instalados adequadamente oferecem uma boa resistência contra interferências externas, ou ruídos (EMI Eletromagnetic Interference, Interferência Eletromagnética; RFI Radiofrequency Interference, Interferência de Radiofreqüência). Não obstante, o seu processo de instalação é mais complicado e também tem custo elevado. Velocidade e Fluxo: Muito Rápido

20 Custo Médio por Nó: Não muito Caro Mídia e Tamanho do Conector: Médio Comprimento do Cabo: Médio Fibra Óptica Fibra Óptica O inventor da fibra óptica foi um indiano chamado Narinder Singh. Na década de 60 as fibras ópticas tiveram aplicação prática devido ao aparecimento dos LEDs, fontes de luz de estado sólido inclusive a luz do tipo laser. As fibras ópticas começaram a ser fabricadas comercialmente em 1978 e nos anos 80 elas foram substituindo os cabos coaxiais. No Brasil o uso da fibra óptica foi iniciado com a implantação dos backbones (conexão de grande porte, espinha dorsal na qual se ligam diversas redes). O cabo de fibra óptica possui um filamento condutor interno feito de substância derivada de material vítreo ou plástico, revestida por um material com baixo índice refratário, normalmente silicone ou acrilato. Podemos ter um agrupamento de fibras envoltas por gel, encapsuladas num revestimento secundário de náilon e, finalmente, uma capa externa de PVC. A tecnologia empregada em cabos de fibra óptica é muito

21 complicada se comparada com a que é empregada em cabos coaxiais. Seu custo de produção ainda é elevado, e sua instalação também requer a utilização de equipamentos sofisticados. Por isso, a fibra óptica não é tão empregada em redes locais como o cabo coaxial ou o cabo de par trançado. Dois problemas oferecidos: a conexão com a fibra óptica é ponto-a-ponto, não podemos espetar um novo segmento de rede a um que já existe, como se faz com cabos coaxiais; o cabo de fibra óptica também não pode apresentar uma curvatura intensa, primeiro porque ele quebra com facilidade, e segundo porque o sinal emitido poderia chocar-se com a superfície do revestimento e ser refletido, interferindo na transmissão. Os dados trafegam pela fibra óptica, como o próprio nome indica, na forma de sinais luminosos que são gerados ou por tecnologia laser (Light Amplification by StimulatedEmission of Radiation) ou por um diodo emissor de luz (LED Light Emissor Diode). Tirando o alto custo e a dificuldade de instalação (os repetidores de sinal devem ser colocados numa faixa que pode ir de dois a cem quilômetros, de acordo com as especificações) a fibra óptica apresenta, na prática, uma série de vantagens com relação ao cabo coaxial e cabo de par trançado. Primeiro a velocidade de transmissão, conseguimos taxas de até 16 tbps (terabits por segundo, ou 16 trilhões de bits por segundo), operando à freqüências de até 800 terahertz. Outra vantagem é a economia de espaço (nesse aspecto a fibra óptica facilita o processo de instalação). Um cabo de um centímetro de diâmetro pode comportar 144 fibras, possibilitando até oito mil conversações simultâneas em ambos os sentidos de transmissão. Por último, a fibra óptica é totalmente imune às variações eletromagnéticas externas, o que torna a transmissão altamente confiável. Ambientes sujeitos a uma variação extrema de ruídos EMI e/ou RFI requerem a implementação de redes de computadores baseadas em fibra óptica. A tendência atual é que nos próximos anos

22 ocorra uma queda brusca de preços nas tecnologias envolvidas com este tipo de cabeamento. Os cabos de fibra óptica utilizam o fenômeno da refração interna total para transmitir feixes de luz a longas distâncias. Um núcleo de vidro muito fino, feito de sílica com alto grau de pureza é envolvido por uma camada (também de sílica) com índice de refração mais baixo, chamada de cladding, o que faz com que a luz transmitida pelo núcleo de fibra seja refletida pelas paredes internas do cabo. Com isso, apesar de ser transparente, a fibra é capaz de conduzir a luz por longas distâncias, com um índice de perda muito pequeno. O núcleo e o cladding são os dois componentes funcionais da fibra óptica. Eles formam um conjunto muito fino (com cerca de 125 microns, ou seja, pouco mais de um décimo de um milímetro) e frágil, que é recoberto por uma camada mais espessa de um material protetor, que tem a finalidade de fortalecer o cabo e atenuar impactos chamado de coating, ou buffer. O cabo resultante é então protegido por uma malha de fibras protetoras, composta de fibras de kevlar (que têm a função de evitar que o cabo seja danificado ou partido quando puxado) e por uma nova cobertura plástica, chamada de jacket, ou jaqueta, que sela o cabo. Cabos destinados a redes locais tipicamente contêm um único fio de fibra, mas cabos destinados a links de longa distância e ao uso na área de telecomunicações contêm vários fios, que compartilham as fibras de kevlar e a cobertura externa. A transmissão de dados usando sinais luminosos oferece desafios, já que os circuitos eletrônicos utilizam eletricidade e não luz. Para solucionar o problema, é utilizado um transmissor óptico, que converte o sinal elétrico no sinal luminoso enviado através da fibra e um receptor, que faz o processo inverso. O transmissor utiliza uma fonte de luz, combinada com uma lente, que concentra o sinal luminoso, aumentando a percentagem que é efetivamente transmitida pelo

23 cabo. Do outro lado, é usado um receptor ótico, que amplifica o sinal recebido e o transforma novamente nos sinais elétricos que são processados. Para reduzir a atenuação, não é utilizada luz visível, mas sim luz infravermelha, com comprimentos de onda de 850 a 1550 nanômetros, de acordo com o padrão de rede usado. Antigamente, eram utilizados LEDs nos transmissores, já que eles são uma tecnologia mais barata, mas com a introdução dos padrões Gigabit e 10 Gigabit eles foram quase que inteiramente substituídos por laseres, que oferecem um chaveamento mais rápido, suportando, assim, a velocidade de transmissão exigida pelos novos padrões de rede. Existem padrões de fibra óptica para uso em redes Ethernet desde as redes de 10 megabits. Antigamente, o uso de fibra óptica em redes Ethernet era bastante raro, mas com o lançamento dos padrões de 10 gigabits a utilização vem crescendo, com os links de fibra sendo usados sobretudo para criar backbones e links de longa distância. Via Satélite Satélite

24 Há mais de quatro décadas utilizam-se satélites em sistemas de comunicação. Os satélites de comunicação foram os primeiros satélites utilizados comercialmente, para prover serviços de transmissão principalmente de rádio, TV, telefonia e dados. Sendo a sua utilização em sistemas de radiodifusão de televisão a aplicação mais comum. No entanto, o seu uso em comunicação de dados também não é uma aplicação muito recente, já que desde o início da Internet as primeiras conexões intercontinentais usavam enlaces de satélites. Podemos classificar os satélites quanto à sua órbita em: GEOS Geostationery Earth Orbit Satelities Em sua grande maioria os satélites usados comercialmente são do tipo GEOS. Os satélites desta classificação são denominados satélites geoestacionários. Eles são colocados em uma órbita denominada Órbita dos Satélites Geoestacionários OSG. A OSG é uma órbita circular, equatorial e direta, ou seja, sua velocidade de translação é igual à de rotação da Terra, e deve ter uma altitude de aproximadamente Km. Nesta órbita, para os olhos de um observador na terra, o satélite parece fixo no espaço. LEO Low Earth Orbit Satelities Os LEOS são satélites localizados mais próximos da Terra e, portanto movem-se em relação à mesma. Esse tipo de satélite é utilizado em aplicações de auxílio à navegação, sensoriamento remoto e militares e comunicações móveis onde não se exige que a área de cobertura seja fixa. Como exemplo pode-se citar o Sistema Globalstar, para serviços de voz, dados, paging, correio eletrônico, composto de 48 satélites em oito órbitas a Km. MEO Medium Earth Orbit Satelities Na busca por valores intermediário para os parâmetros de

25 latência e área de cobertura, surgiram os satélites MEO, como um meio termo entre os GEOs e o LEOs. Operam na altitude de a Km. A maioria dos projetos para uso dos satélites LEO / MEO está prevista para operar apenas dentro de alguns anos. Temos como exemplo o Sistema Teledesic financiado por Bill Gates, Motorola, entre outros, com previsão para início das operações em A internet via satélite já é realidade no Brasil. O uso de satélites em soluções de acesso a Internet para usuários finais é uma aplicação relativamente recente, mas muitos estudos e investimentos têm sido feitos, principalmente no sentido de adaptar a tecnologia de comunicação via satélite, criada para radiodifusão, à interatividade típica das aplicações cliente servidor da Internet. Outra adaptação foi feita no protocolo TCP, já que na sua concepção original não foi considerado a sua utilização em sistemas de latência muito elevada, especialmente com taxas de erros e perdas de pacotes substanciais, fatores presentes na comunicação via satélite. Infravermelho Um outro tipo de meio de transmissão sem fio baseia-se na luz infravermelha. Funciona basicamente como o sistema de comunicação utilizando fibra ótica, porém o feixe é transmitido através do espaço livre (ondas luminosas) ao invés da fibra de vidro. O sinal é convertido em formato digital e transmitido pelo espaço livre. Infrared Data Association (IrDA) é uma definição de padrões de comunicação entre equipamentos de comunicação wireless. As tecnologias classificadas como transmissão infravermelha enquadram-se nas seguintes categorias: Ponto a ponto Broadcast

26 Benefícios da tecnologia de comunicação infravermelha: Velocidades do canal completo Fácil instalação Segurança Compatibilidade com interfaces de cobre e fibra Baixo custo Ambientes internos e externos Latência zero a distância Transparência a redes ou protocolos Baixa manutenção Disponibilidade operacional de 99,9% Tipo de barramento que permite a conexão de dispositivos sem fio ao microcomputador (ou equipamento com tecnologia apropriada), tais como impressoras, telefones celulares, notebooks e PDAs. Para computadores que não possuem infravermelho (IRDA) é necessário um adaptador ligado a porta USB do computador, desta maneira este computador poderá trocar arquivos com qualquer outro equipamento que possui infravermelho (IRDA). O adaptador infravermelho (IRDA) é um padrão de comunicação sem fio para transmissão de dados entre outros dispositivos, não possui memória interna e portanto não armazena os dados, apenas os transfere de um equipamento para outro servindo apenas como uma ponte. Velocidade O IRDA em celulares chega de 5 a 10 kbps, dependendo da distância. Padrões: com taxas de transmissão de até bps 1 com taxas de transmissão de até bps (4 Mbps). As transmissões são feitas em half-duplex.

27 A transmissão de dados sem fio ( Wireless ), está tornando-se possível entre computadores pessoais e periféricos através de IrDA (infravermelho). Existe uma oportunidade para a comunicação sem fios de alcance pequeno efetiva e barata em sistemas e dispositivos de todos os tipos. Os padrões de IrDA foram desenvolvido rapidamente (comparados a outros padrões). Porém não tem alcançado todos os cantos do universo em sistemas e periféricos. Este papel deve-se a uma avaliação dos protocolos de IrDA com comentários no uso em sistemas e periféricos. A Associação de Dados Infravermelha (IrDA) é um grupo indústria de mais de 150 companhias que especialmente desenvolveram padrões de comunicação serviram para baixo custo, alcance pequeno, independência de plataforma, comunicações de ponto para ponto a um alcance largo de velocidades. Estes padrões foram implementados em várias plataformas de computador e mais recentemente ficou disponível para muitas aplicações. Por causa da larga aceitação, as especificações de IrDA estão agora em um rasto acelerado para adoção como padrões de ISO. Rádio Frequência A transmissão de sinais via rádio frequências (RF) é um assunto que deveria ser dominado por todo profissional que desenvolve trabalhos na área de segurança ou investigação. Afinal, estes profissionais deveriam saber diferenciar entre uma transmissão UHF de uma VHF ou mesmo de uma em VLF. Pois, frequentemente fazemos uso de equipamentos que se utilizam de transmissões RF como celulares, rádios comunicadores, escutas ambientes e micro câmeras, só para dar alguns exemplos. Transmissões de rádio frequências são aquelas cujo canal de transmissão é o ar. As ondas de rádio viajam como as ondas do mar. O sinal pode ser refletido em paredes, enviando múltiplos e algumas vezes versões distorcidas do mesmo sinal para o usuário, causando interferência ou outras formas de recepções

28 pobres ou distorcidas. Rádio transmissores são sujeitos a interferência devido a: relâmpagos, reflexões em prédios ou outras superfícies, ou transmissões ou freqüências adjacentes. O resultado é uma freqüência pobre ou uma transmissão de dados truncada gerando a necessidade de repetir informação para estar certo que ela foi recebida. Transmissões de rádio podem se sobrepor, possibilitando que duas conversações sejam ouvidas ao mesmo tempo.

Meios de Transmissão de Dados

Meios de Transmissão de Dados Meios de Transmissão de Dados O meio de transmissão de dados serve para oferecer suporte ao fluxo de dados entre dois pontos. Computadores em rede ficam interligados por meio de fios elétricos, fibras

Leia mais

Topologias de Rede de Computadores

Topologias de Rede de Computadores Topologias de Rede de Computadores As redes de computadores possibilitam que indivíduos possam trabalhar em equipes, compartilhando informações, melhorando o desempenho da realização de tarefas, e estão

Leia mais

Todos os computadores são ligados em um um cabo contínuo (barramento).

Todos os computadores são ligados em um um cabo contínuo (barramento). TOPOLOGIA DE REDE A topologia de rede descreve como é o layout duma rede de computadores através da qual há o tráfego de informações, e também como os dispositivos estão conectados a ela. Há várias formas

Leia mais

Prof. Marcelo Cunha Parte 7

Prof. Marcelo Cunha Parte 7 Prof. Marcelo Cunha Parte 7 www.marcelomachado.com Cabos Elétricos Coaxiais Pares trançados Ópticos Fibras ópticas Um dos primeiros tipos de cabo a ser utilizado em redes; Características: Núcleo de cobre

Leia mais

Par Trançado e Cabo Coaxial

Par Trançado e Cabo Coaxial UNIVERSIDADE LUTERANA DO BRASIL COMUNIDADE EVANGÉLICA LUTERANA SÃO PAULO Reconhecida pela Portaria Ministerial nº 681 de 07/12/89 DOU de 11/12/89 Campus Torres Par Trançado e Cabo Coaxial Redes 1 Vitor

Leia mais

Categorias e modelos de cabos. Prof. Marciano dos Santos Dionizio

Categorias e modelos de cabos. Prof. Marciano dos Santos Dionizio Categorias e modelos de cabos Prof. Marciano dos Santos Dionizio Cabos Par Trançado STP Os cabos STP (Shielded Twisted Pair) vão um pouco além do cabo UTP, usando uma blindagem individual para cada par

Leia mais

Mídias Físicas Utilizadas Cabo Coaxial e Par Trançado. Prof. Alexandre Beletti Ferreira. Cabo Coaxial

Mídias Físicas Utilizadas Cabo Coaxial e Par Trançado. Prof. Alexandre Beletti Ferreira. Cabo Coaxial Mídias Físicas Utilizadas Cabo Coaxial e Par Trançado Prof. Alexandre Beletti Ferreira COMPOSTO POR: Cabo Coaxial Fio de cobre rígido que forma o núcleo Envolto por um material isolante, O isolante, por

Leia mais

Meios Físicos de Transmissão

Meios Físicos de Transmissão Meios Físicos de Transmissão Prof. M.e Helber Wagner da Silva [email protected] Maio de 2014 Roteiro Introdução aos Meios Físicos de Transmissão Meios Físicos Guiados Conclusão 2 Introdução Nível

Leia mais

11/04/2009. Redes de Computadores. Topologias. Topologia das Redes. Estrela. Anel. Híbrida/Mista

11/04/2009. Redes de Computadores. Topologias. Topologia das Redes. Estrela. Anel. Híbrida/Mista Redes de Computadores Aula 03 Topologias Definição É a forma como os MP s e os caminhos físicos do meio físico (enlace) de comunicação estão organizados. Estrela Anel Híbrida/Mista 1 Barramento Todos os

Leia mais

Redes de Computadores.

Redes de Computadores. Redes de Computadores www.profjvidal.com TOPOLOGIA DE REDES Topologia de Redes A topologia de rede descreve como é o layout de uma rede de computadores, através da qual há o tráfego de informações, e também

Leia mais

REDES DE COMPUTADORES. Vinícius Pádua

REDES DE COMPUTADORES. Vinícius Pádua REDES DE COMPUTADORES Introdução Necessidade Compartilhar dados em tempo hábil Constituída por vários computadores conectados através de algum meio de comunicação onde recursos são compartilhados Telecomunicação

Leia mais

Meios de Transmissão 1

Meios de Transmissão 1 Meios de Transmissão Meios de Transmissão Transmissão de bits entre sistemas via terrestre cabos metálicos fibra ótica via aérea transmissão de superfície transmissão via satélite Meios de Transmissão

Leia mais

REDES DE COMPUTADORES

REDES DE COMPUTADORES REDES DE COMPUTADORES Rede é um conjunto de módulos processadores capazes de trocar informações e compartilhar recursos. O tipo de rede é definido pela sua área de abrangência, podemos classificar as redes

Leia mais

Prof. Marcelo Machado Cunha Parte 2

Prof. Marcelo Machado Cunha Parte 2 Prof. Marcelo Machado Cunha Parte 2 www.marcelomachado.com As redes de computadores se classificam conforme a forma de ligação entre as estações nas seguintes categorias: Linear ou Barramento Estrela Anel

Leia mais

Meios físicos de transmissão

Meios físicos de transmissão Meios físicos de transmissão Conexão lógica tipo barramento Meios físicos utilizados pelo padrão Ethernet (semelhante ao padrão IEEE 802.3) IEEE (Institute of Electrical an Electronic Engineers) 10Base2

Leia mais

Topologia de Redes. Alberto Felipe Friderichs Barros

Topologia de Redes. Alberto Felipe Friderichs Barros Topologia de Redes Alberto Felipe Friderichs Barros Introdução Etimologicamente a palavra topologia deriva do grego, Topos = forma e Logos = estudo, portanto, a palavra topologia significa o estudo das

Leia mais

A camada Física. Universidade Estadual de Minas Gerais - UEMG. Referência: -Redes de Computadores. A. S. Tanenbaum. Campus/Elsevier, Capítulo 2

A camada Física. Universidade Estadual de Minas Gerais - UEMG. Referência: -Redes de Computadores. A. S. Tanenbaum. Campus/Elsevier, Capítulo 2 Universidade Estadual de Minas Gerais - UEMG A camada Física Referência: -Redes de Computadores. A. S. Tanenbaum. Campus/Elsevier, 2003 - Capítulo 2 Camada Física Camada mais baixa da hierarquia do modelo

Leia mais

Aula 2 Topologias de rede

Aula 2 Topologias de rede Aula 2 Topologias de rede Redes e Comunicação de Dados Prof. Mayk Choji UniSALESIANO Araçatuba 13 de agosto de 2016 Sumário 1. Topologias de Rede 2. Topologias Físicas Ponto-a-Ponto Barramento BUS Anel

Leia mais

REDES DE COMPUTADORES

REDES DE COMPUTADORES REDES DE COMPUTADORES Prof. Esp. Fabiano Taguchi [email protected] http://fabianotaguchi.wordpress.com Meios de comunicação Protocolos de rede AULA 03 Meios de comunicação COMUTAÇÃO CIRCUITOS Necessário

Leia mais

FUNDAMENTOS DE REDES DE COMPUTADORES AULA 4: REDE DE ACESSO CAMADA FÍSICA Prof. Luiz Leão

FUNDAMENTOS DE REDES DE COMPUTADORES AULA 4: REDE DE ACESSO CAMADA FÍSICA Prof. Luiz Leão Prof. Luiz Leão Conteúdo Desta Aula SISTEMAS DE COMUNICAÇÃO CABEAMENTO DE COBRE ORGANIZAÇÕES DE PADRONIZAÇÃO 1 2 3 4 5 CAMADA FÍSICA REDES SEM FIO PRÓXIMOS PASSOS Sistema de Comunicações Tarefa de Comunicações

Leia mais

Professor: Jarbas Araújo.

Professor: Jarbas Araújo. Professor: Jarbas Araújo [email protected] TOPOLOGIAS Topologias de Rede? Conceito A topologia de rede é o canal no qual o meio de rede está conectado aos computadores e outros componentes

Leia mais

Disciplina: Informática II Profª: Micheli Wink 1

Disciplina: Informática II Profª: Micheli Wink 1 Disciplina: Informática II Profª: Micheli Wink 1 1. TOPOLOGIA: INÍCIO Conceito extensamente baseado em continuidade matemática. Na matemática, a topologia é a área em que se estudam os espaços topológicos.

Leia mais

Tipos de cabos. cabos de par trançado cabos coaxiais cabos de fibra óptica Sem Fio *

Tipos de cabos. cabos de par trançado cabos coaxiais cabos de fibra óptica Sem Fio * Cabeamento Tipos de cabos cabos de par trançado cabos coaxiais cabos de fibra óptica Sem Fio * Wireless wi-fi Cabo Coaxial Instalação difícil terminador / problemas Custo elevado Cabos de Fibra Óptica

Leia mais

Instituto Federal de Ciência e Tecnologia de São Paulo. Campus Presidente Epitácio REDES DE COMPUTADORES I (RC1A2) MEIOS DE TRASMISSÃO

Instituto Federal de Ciência e Tecnologia de São Paulo. Campus Presidente Epitácio REDES DE COMPUTADORES I (RC1A2) MEIOS DE TRASMISSÃO Instituto Federal de Ciência e Tecnologia de São Paulo. Campus Presidente Epitácio REDES DE COMPUTADORES I (RC1A2) MEIOS DE TRASMISSÃO Aluna: Pamela Nascimento da Silva 2º Semestre ADS Presidente Epitácio

Leia mais

ÍNDICE CAPÍTULO 1 INTRODUÇÃO... 6 O QUE É UMA REDE E PARA QUE SERVE?... 7 O PORQUE DE UMA REDE... 9

ÍNDICE CAPÍTULO 1 INTRODUÇÃO... 6 O QUE É UMA REDE E PARA QUE SERVE?... 7 O PORQUE DE UMA REDE... 9 Redes -1- ÍNDICE CAPÍTULO 1 INTRODUÇÃO... 6 O QUE É UMA REDE E PARA QUE SERVE?... 7 O PORQUE DE UMA REDE... 9 CAPÍTULO 2 ARQUITETURAS... 12 MEIOS DE TRANSMISSÃO... 12 TIPOS DE TRANSMISSÃO... 14 CAPÍTULO

Leia mais

REDES DE COMPUTADORES

REDES DE COMPUTADORES Informática REDES DE COMPUTADORES REDES DE COMPUTADORES Redes de computadores são estruturas físicas (equipamentos) e lógicas (programas, protocolos) que permitem que dois ou mais computadores possam compartilhar

Leia mais

Plano de Aula: Cabeamento - Cabos metálicos: coaxiais e de par trançado CABEAMENTO - CCT0014

Plano de Aula: Cabeamento - Cabos metálicos: coaxiais e de par trançado CABEAMENTO - CCT0014 Plano de Aula: Cabeamento - Cabos metálicos: coaxiais e de par trançado CABEAMENTO - CCT0014 Título Cabeamento - Cabos metálicos: coaxiais e de par trançado Número de Aulas por Semana Número de Semana

Leia mais

Topologias e abrangência de redes de computadores

Topologias e abrangência de redes de computadores Topologias e abrangência de redes de computadores Aula 10 1º semestre Prof. Nataniel Vieira [email protected] Objetivos Tornar os estudantes capazes de reconhecer os tipos de topologias de redes

Leia mais

DET427 Redes de Computadores

DET427 Redes de Computadores 1- Introdução DET427 Redes de Computadores Redes de computadores e as tecnologias necessárias para conexão e comunicação através e entre elas continuam a comandar as indústrias de hardware de computador,

Leia mais

DA ROSA OLIVEIRA TOPOLOGIAS E ABRANGÊNCIAS DE REDES

DA ROSA OLIVEIRA TOPOLOGIAS E ABRANGÊNCIAS DE REDES Serviço Nacional de Aprendizagem Comercial E.E.P. Senac Pelotas Centro Histórico Programa Nacional de Acesso ao Ensino Técnico e Emprego Curso Técnico em Informática RAFAEL DA ROSA OLIVEIRA TOPOLOGIAS

Leia mais

Agente Administrativo da Receita Federal REDES DE COMPUTADORES

Agente Administrativo da Receita Federal REDES DE COMPUTADORES REDES DE COMPUTADORES O QUE É UMA REDE? Rede é um conjunto de módulos processadores capazes de trocar informações e compartilhar recursos, ou seja, dois ou mais computadores interligados por algum meio

Leia mais

MEIOS DE TRANSMISSÃO REDES E SR1 ETER-FAETEC. Rio de Janeiro - RJ ETER-FAETEC

MEIOS DE TRANSMISSÃO REDES E SR1 ETER-FAETEC. Rio de Janeiro - RJ ETER-FAETEC MEIOS DE TRANSMISSÃO REDES E SR1 Rio de Janeiro - RJ INTRODUÇÃO É a conexão física entre os nós. Pode ser através de cabos ou por ondas de rádio, como no caso do wireless. Influencia diretamente no custo

Leia mais

Topologias e Classificação das RC. Prof. Eduardo

Topologias e Classificação das RC. Prof. Eduardo Topologias e Classificação das RC Prof. Eduardo Introdução As redes de computadores de modo geral estão presentes em nosso dia-a-dia. Estamos tão acostumados a utilizá-las que não nos damos conta da sofisticação

Leia mais

Definição Rede Computadores

Definição Rede Computadores Definição Rede Computadores Uma rede de computadores consiste na interconexão entre dois ou mais computadores e dispositivos complementares acoplados através de recursos de comunicação, geograficamente

Leia mais

Sumário: Par Trançado (UTP) 07/07/2016. Meios de Comunicação para (LAN): Fios e Cabos de Cobre; Fibras Óticas; Irradiação Eletromagnética;

Sumário: Par Trançado (UTP) 07/07/2016. Meios de Comunicação para (LAN): Fios e Cabos de Cobre; Fibras Óticas; Irradiação Eletromagnética; Sumário: Meios de Comunicação para (LAN): Fios e Cabos de Cobre; Fibras Óticas; Irradiação Eletromagnética; Técnico em Informática 4º Integrado Redes de Computadores Fabricio Alessi Steinmacher Par Trançado

Leia mais

Redes de Computadores. Alan Santos

Redes de Computadores. Alan Santos Redes de Computadores Alan Santos Parte 01 Definição de redes, vantagens e desvantagens Redes - Definição "Latu Sensu": Conj. de terminais, equipamentos, meios de transmissão e comutação que, interligados,

Leia mais

APRENDIZAGEM INDUSTRIAL. UNIDADE 4 Tipos de cabo Ferramentas e componentes do cabeamento

APRENDIZAGEM INDUSTRIAL. UNIDADE 4 Tipos de cabo Ferramentas e componentes do cabeamento APRENDIZAGEM INDUSTRIAL UNIDADE 4 Tipos de cabo Ferramentas e componentes do cabeamento Meios de transmissão Meios de TX guiados Cabo par trançado Isolante Cabos U/UTP e F/UTP Condutores Categorias dos

Leia mais

Introdução A partir do momento em que passamos a usar mais de um micro, seja dentro de uma empresa, escritório, ou mesmo em casa, fatalmente surge a

Introdução A partir do momento em que passamos a usar mais de um micro, seja dentro de uma empresa, escritório, ou mesmo em casa, fatalmente surge a Introdução A partir do momento em que passamos a usar mais de um micro, seja dentro de uma empresa, escritório, ou mesmo em casa, fatalmente surge a necessidade de transferir arquivos e programas, assim

Leia mais

4. Rede de Computador. Redes de computadores e suas infraestruturas

4. Rede de Computador. Redes de computadores e suas infraestruturas Redes de computadores e suas infraestruturas Definição Uma rede de computadores é formada por um conjunto de módulos processadores capazes de trocar informações e compartilhar recursos, interligados por

Leia mais

Redes de Computadores

Redes de Computadores Instituto Superior Politécnico de Ciências e Tecnologia Redes de Computadores Prof Pedro Vunge I Semestre de 2017 SUMÁRIO Capítulo2 Topologias de redes de computadores 2.1 Considerações iniciais ; 2.2

Leia mais

Prof. Luís Rodolfo. Unidade IV REDES DE COMPUTADORES E TELECOMUNICAÇÃO

Prof. Luís Rodolfo. Unidade IV REDES DE COMPUTADORES E TELECOMUNICAÇÃO Prof. Luís Rodolfo Unidade IV REDES DE COMPUTADORES E TELECOMUNICAÇÃO Redes de computadores e telecomunicação Objetivos da Unidade IV: Apresentar as facilidades das camadas mais inferiores da pilha de

Leia mais

17/03/2011. Nesta topologia, cada dispositivo possui um link ponto-a-ponto com todos os outros dispositivos da rede.

17/03/2011. Nesta topologia, cada dispositivo possui um link ponto-a-ponto com todos os outros dispositivos da rede. A Topologia de uma rede é a representação geométrica dos relacionamentos de todos os links e dispositivos de uma rede. Existem quatro tipos básicos de topologias possíveis: Árvore, Barramento, Estrela

Leia mais

Topologias de redes de computadores

Topologias de redes de computadores Topologias de redes de computadores Objetivos Apresentar as principais topologias de redes e suas classificações. Caracterizar as topologias e sua formação. Conhecer as topologias em sua essência. Apresentar

Leia mais

A CAMADA FÍSICA. Redes de Computadores. Prof. Gabriel F. C. Campos camposg.com.br

A CAMADA FÍSICA. Redes de Computadores. Prof. Gabriel F. C. Campos camposg.com.br A CAMADA FÍSICA Redes de Computadores Prof. Gabriel F. C. Campos [email protected] camposg.com.br REDES DE COMPUTADORES Roteiro do curso: Introdução às redes de computadores; Camada Física + Camada

Leia mais

Informática I. Aula 20. Aula 20-26/06/06 1

Informática I. Aula 20.  Aula 20-26/06/06 1 Informática I Aula 20 http://www.ic.uff.br/~bianca/informatica1/ Aula 20-26/06/06 1 Ementa Histórico dos Computadores Noções de Hardware e Software Microprocessadores Sistemas Numéricos e Representação

Leia mais

Topologias de Redes. Professor Leonardo Larback

Topologias de Redes. Professor Leonardo Larback Topologias de Redes Professor Leonardo Larback Topologias de Redes A topologia de rede descreve o modo como todos os dispositivos estão ligados entre si e a forma como se processa a troca de informação

Leia mais

Serviço Nacional de Aprendizagem Comercial. E.E.P. Senac Pelotas Centro Histórico. Programa Nacional de Acesso ao Ensino Técnico e Emprego

Serviço Nacional de Aprendizagem Comercial. E.E.P. Senac Pelotas Centro Histórico. Programa Nacional de Acesso ao Ensino Técnico e Emprego Serviço Nacional de Aprendizagem Comercial E.E.P. Senac Pelotas Centro Histórico Programa Nacional de Acesso ao Ensino Técnico e Emprego Curso Técnico em Informática NAIELEM BITENCOURTE DE FREITAS MEIOS

Leia mais

Fundamentos de Redes de Computadores. Prof. Claudemir Santos Pinto

Fundamentos de Redes de Computadores. Prof. Claudemir Santos Pinto Fundamentos de Redes de Computadores MEIOS FÍSICOS DE TRANSMISSÃO Prof. Claudemir Santos Pinto [email protected] Meios Físicos de Transmissão Com cabeamento: Cabo coaxial Cabo par trançado Fibra ótica

Leia mais

Prática 1 - Confecção de Cabos de Rede

Prática 1 - Confecção de Cabos de Rede Prática 1 - Confecção de Cabos de Rede 1. Objetivos - Conhecer os principais meios de rede - Familiarizar-se com o principal meio de rede local cabo 10BaseT - Conhecer o processo de confecção de cabos

Leia mais

CURSO TÉCNICO EM INFORMÁTICA

CURSO TÉCNICO EM INFORMÁTICA 1. Considere a seguinte seqüência de cores utilizada para se fazer um cabo de par trançado no padrão T568A: 1 - Branco-verde 2 - Verde 3 - Branco-laranja 4 - Azul 5 - Branco-azul 6 - Laranja 7 - Branco-marrom

Leia mais

INTRODUÇÃO À TECNOLOGIA DA INFORMAÇÃO CONCEITO DE REDE DE COMPUTADORES PROFESSOR CARLOS MUNIZ

INTRODUÇÃO À TECNOLOGIA DA INFORMAÇÃO CONCEITO DE REDE DE COMPUTADORES PROFESSOR CARLOS MUNIZ INTRODUÇÃO À TECNOLOGIA DA CONCEITO DE REDE DE COMPUTADORES PROFESSOR CARLOS MUNIZ INTRODUÇÃO Redes de computadores são estruturas físicas (equipamentos) e lógicas (programas, protocolos) que permitem

Leia mais

REDES DE COMPUTADORES. Introdução

REDES DE COMPUTADORES. Introdução REDES DE COMPUTADORES Introdução Parte 03 [email protected] www.geovanegriesang.com Ementa UNIDADE I Introdução às redes de computadores 1.1 Visão geral de protocolos, pilha de protocolos e

Leia mais

- Curso: ANÁLISE E DESENVOLVIMENTO DE SISTEMAS Redes de Computadores Lista de Exercício I

- Curso: ANÁLISE E DESENVOLVIMENTO DE SISTEMAS Redes de Computadores Lista de Exercício I 1- Um dos componentes de um a Rede de Teleprocessamento que tem a função de compatibilizar o sinal digital de dados ao sinal analógico para uso da Rede Pública de Telefonia é: a) UNIDADE CONTROLADORA DE

Leia mais

REDES DE COMPUTADORES - ANO LECTIVO 2013/2014 MÓDULO 2 REDE DE COMPUTADORES - FICHA DE TRABALHO Nº 1

REDES DE COMPUTADORES - ANO LECTIVO 2013/2014 MÓDULO 2 REDE DE COMPUTADORES - FICHA DE TRABALHO Nº 1 MÓDULO 2 REDE DE COMPUTADORES - FICHA DE TRABALHO Nº 1 1) Em que consiste uma rede de computadores? 2) Refira as principais vantagens e desvantagens associadas à implementação de uma rede de computadores.

Leia mais

Redes. Redes (Introdução e Tipologias) Introdução às redes. Introdução às redes. Sumário. Equipamento de rede/comunicação. Introdução às redes:

Redes. Redes (Introdução e Tipologias) Introdução às redes. Introdução às redes. Sumário. Equipamento de rede/comunicação. Introdução às redes: Redes (Introdução e Tipologias) Equipamento de rede/comunicação Redes Sumário : Redes de computadores; Sinergias de redes; Hardware e software de rede. : ; 1 Tecnologias Informáticas 10º Ano 2004/2005

Leia mais

Meios Físicos Cont. Espectro Eletromagnético

Meios Físicos Cont. Espectro Eletromagnético Meios Físicos Cont. Pares Metálicos Cabo coaxial Par Trançado Condutores Óticos Fibra Rádio Microondas Satélites Infravermelho Espectro Eletromagnético 1 Espectro Eletromagnético Frequências 30MHz to 1GHz

Leia mais

Camada Física. Exemplo: RS-232 ou EIA-232. Redes Aplicação Apresentação Sessão Transporte Rede Enlace Físico. Codificação de Sinais Digitais

Camada Física. Exemplo: RS-232 ou EIA-232. Redes Aplicação Apresentação Sessão Transporte Rede Enlace Físico. Codificação de Sinais Digitais Camada Física Redes Nível Físico Aplicação Apresentação Sessão Transporte Rede Enlace Físico Ativar, manter e desativar transmissões físicas entre duas ou mais entidades do nível de enlace Cuidar da Transferência

Leia mais

Curso Profissional Técnico de Gestão e Programação de Sistemas Informáticos. Redes De Comunicação. Pedro Monteiro 10º / 13ª 2013/2014

Curso Profissional Técnico de Gestão e Programação de Sistemas Informáticos. Redes De Comunicação. Pedro Monteiro 10º / 13ª 2013/2014 Curso Profissional Técnico de Gestão e Programação de Sistemas Informáticos Redes De Comunicação Pedro Monteiro 10º / 13ª 2013/2014 Neste trabalho vamos abordar o tema Topologias de Redes. Com a leitura

Leia mais

Prof. Antonio P. Nascimento Filho. Tecnologias de rede. Ethernet e IEEE Token ring ATM FDDI Frame relay. Uni Sant Anna Teleprocessamento e Redes

Prof. Antonio P. Nascimento Filho. Tecnologias de rede. Ethernet e IEEE Token ring ATM FDDI Frame relay. Uni Sant Anna Teleprocessamento e Redes Tecnologias de rede Ethernet e IEEE 802.3 Token ring ATM FDDI Frame relay Ethernet A Ethernet é uma tecnologia de broadcast de meios compartilhados. Entretanto, nem todos os dispositivos da rede processam

Leia mais

Redes de Computadores. Disciplina: Informática Prof. Higor Morais

Redes de Computadores. Disciplina: Informática Prof. Higor Morais Redes de Computadores Disciplina: Informática Prof. Higor Morais 1 Agenda Sistemas de Comunicação Histórico das Redes de Comunicação de Dados Mídias de Comunicação Meios de Transmissão Padrões e Protocolos

Leia mais

Meios de Transmissão de Dados

Meios de Transmissão de Dados MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO CAMPUS DE PRESIDENTE EPITÁCIO Meios de Transmissão de Dados Aluna: Melissa Bonfim Alcantud Prof.: Alexandre Cassimiro

Leia mais

Introdução as Redes de Computadores

Introdução as Redes de Computadores Introdução as Redes de Computadores Redes de Computadores Charles Tim Batista Garrocho Instituto Federal de Minas Gerais IFMG Campus Ouro Branco https://garrocho.github.io [email protected]

Leia mais

INSTITUTO FEDERAL DE SANTA CATARINA - CAMPUS LAGES Ciência da Computação - 2ª fase

INSTITUTO FEDERAL DE SANTA CATARINA - CAMPUS LAGES Ciência da Computação - 2ª fase INSTITUTO FEDERAL DE SANTA CATARINA - CAMPUS LAGES Ciência da Computação - 2ª fase. FIBRA ÓPTICA Q U A L I D A D E & S I N C R O N I A Alunos: Arthur de Bortoli, Felipe Guimarães e João Vitor Manfroi Disciplina:

Leia mais

Redes de Computadores

Redes de Computadores Redes de Computadores Interconexão Gustavo Reis [email protected] Redes locais (LANs) Redes privadas contidas em um único edifício ou campus universitário com até alguns quilômetros de extensão.

Leia mais

CLASSIFICAÇÃO DE REDES-

CLASSIFICAÇÃO DE REDES- 1 CLASSIFICAÇÃO DE REDES- MEIO DE TRANSMISSÃO Prof. Me. Hélio Esperidião CLASSIFICAÇÃO SEGUNDO O MEIO DE TRANSMISSÃO: Rede por cabo Rede de Cabo coaxial Rede de Cabo de par trançado Rede de Cabo de fibra

Leia mais

Comunicação de Dados e Teleprocessamento. Estrutura de um Rede de Comunicações. Tarefas realizadas pelo sistema de comunicação

Comunicação de Dados e Teleprocessamento. Estrutura de um Rede de Comunicações. Tarefas realizadas pelo sistema de comunicação Comunicação de Dados e Teleprocessamento Profa.. Cristina Moreira Nunes Estrutura de um Rede de Comunicações Tarefas realizadas pelo sistema de comunicação Utilização do sistema de transmissão Geração

Leia mais

Quando você precisar de ir além do computador em cima. instalar uma rede local.

Quando você precisar de ir além do computador em cima. instalar uma rede local. Quando você precisar de ir além do computador em cima de sua mesa, está na hora de instalar uma rede local. Redes de Computadores Uma Rede de computadores ou Network é a maneira de conectar computadores

Leia mais

Visão Geral de Meios de Transmissão

Visão Geral de Meios de Transmissão Visão Geral de Meios de Transmissão Instituto Federal de Educação, Ciência e Tecnologia do Triângulo Mineiro Prof. Edwar Saliba Júnior Dezembro de 2018 1/33 2/33 Meios de Transmissão Os meios de transmissão

Leia mais

REDES DE COMPUTADORES. Introdução

REDES DE COMPUTADORES. Introdução REDES DE COMPUTADORES Introdução Parte 02 [email protected] www.geovanegriesang.com Ementa UNIDADE I Introdução às redes de computadores 1.1 Visão geral de protocolos, pilha de protocolos e

Leia mais

ANNE SOARES RELATÓRIO FINAL DE PROJETO MEIOS DE TRANSMISSÃO

ANNE SOARES RELATÓRIO FINAL DE PROJETO MEIOS DE TRANSMISSÃO Serviço Nacional de Aprendizagem Comercial E.E.P. Senac Pelotas Centro Histórico Programa Nacional de Acesso ao Ensino Técnico e Emprego Curso Técnico em Informática JULIE ANNE SOARES RELATÓRIO FINAL DE

Leia mais

FUNDAMENTOS DE REDES DE COMPUTADORES TP2

FUNDAMENTOS DE REDES DE COMPUTADORES TP2 LEIA COM ATENÇÃO AS INSTRUÇÕES ABAIXO Em sala de aula foram distribuídos pontos em exercícios e atividades extraclasse Número de Questões Total da Avaliação 5 Pontos 10 5 Pontos Cada questão tem peso 0,5

Leia mais

Desenho de esquemas de Redes com componentes de Redes

Desenho de esquemas de Redes com componentes de Redes Instituto Superior de Transportes e Comunicações Desenho Esquemático Desenho de esquemas de Redes com componentes de Redes Turmas: I11, I12, I13 e I14 DOCENTES: Emírcio Vieira Célio Pereira Rede de Computadores

Leia mais

Fundamentos de Redes de Computadores Topologias de Redes Barramento Estrela Anel Hibrida Token Ring. Instrutor: Airton Ribeiro de Sousa

Fundamentos de Redes de Computadores Topologias de Redes Barramento Estrela Anel Hibrida Token Ring. Instrutor: Airton Ribeiro de Sousa Fundamentos de Redes de Computadores Topologias de Redes Barramento Estrela Anel Hibrida Token Ring Instrutor: Airton Ribeiro de Sousa 2016-1 2 Topologia de Rede É a maneira com que os computadores de

Leia mais

FUNDAMENTOS DE REDES DE COMPUTADORES TP1

FUNDAMENTOS DE REDES DE COMPUTADORES TP1 LEIA COM ATENÇÃO AS INSTRUÇÕES ABAIXO Em sala de aula foram distribuídos pontos em exercícios e atividades extraclasse Número de Questões Total da Avaliação 5 Pontos 10 5 Pontos Cada questão tem peso 0,5

Leia mais

Redes de Computadores

Redes de Computadores Redes de Computadores Camada Física Parte II Prof. Thiago Dutra Agenda Camada Física n Introdução ntécnicas de Transmissão de Dados n Meios de Transmissão ndispositivos n Cabeamento

Leia mais

Capítulo 8. a) Em uma exposição de informática, na qual não existe infraestrutura pronta para um cabeamento normal.

Capítulo 8. a) Em uma exposição de informática, na qual não existe infraestrutura pronta para um cabeamento normal. Redes sem fio Capítulo 8 Aplicações das redes sem fio Redes sem fio (wireless) utilizam ondas de rádio, luz infravermelha ou a laser para transmitir dados pelo ar. É difícil dizer com certeza absoluta

Leia mais

Redes de Computadores I

Redes de Computadores I Redes de Computadores I Prof.ª Inara Santana Ortiz [email protected] Aula 1 Plano de Ensino Plano de Ensino Plano de Ensino Média Final: MF = M1 + M2 2 M1 = NA + N1 M2 = NA + N2 Onde: MF = Média

Leia mais

Topologias de Rede de Computadores

Topologias de Rede de Computadores Topologias de Rede de Computadores As redes de computadores possibilitam que indivíduos possam trabalhar em equipes, compartilhando informações, melhorando o desempenho da realização de tarefas, e estão

Leia mais

MICRO-ONDAS NOMES: ADRIEL GOULART IAGO BIANQUINI OSMAR HOFMAN

MICRO-ONDAS NOMES: ADRIEL GOULART IAGO BIANQUINI OSMAR HOFMAN MICRO-ONDAS NOMES: ADRIEL GOULART IAGO BIANQUINI OSMAR HOFMAN MICRO-ONDAS: CONCEITOS INICIAIS As micro-ondas funcionam acima de 100 MHz, as ondas viajam em linhas retas e podem ser estreitamente focadas

Leia mais

CAB Cabeamento Estruturado e Redes Telefônicas

CAB Cabeamento Estruturado e Redes Telefônicas MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA CAMPUS SÃO JOSÉ SANTA CATARINA CAB Cabeamento Estruturado e Redes Telefônicas

Leia mais

ESPECIFICAÇÕES DE UMA REDE DE AUTOMAÇÃO. Taxa de transmissão. Topologia física

ESPECIFICAÇÕES DE UMA REDE DE AUTOMAÇÃO. Taxa de transmissão. Topologia física ESPECIFICAÇÕES DE UMA REDE DE AUTOMAÇÃO Taxa de transmissão É a quantidade média de dados a serem transmitidos na rede em períodos de tempo. A taxa de transferência de dados é medida em kbps ou kb/s. Topologia

Leia mais

Redes de comunicação. Mod 2 Redes de computadores. Professor: Rafael Henriques

Redes de comunicação. Mod 2 Redes de computadores. Professor: Rafael Henriques Redes de comunicação Mod 2 Redes de computadores 1 Professor: Rafael Henriques Apresentação 2 Professor: Rafael Henriques Introdução às redes de computadores; Tipos de rede; Diagramas de encaminhamento;

Leia mais

Redes de Computadores

Redes de Computadores Redes de Computadores Introdução Rede O que é?? 1 O que é uma rede É a conexão de duas ou mais máquinas com o objetivo de compartilhar recursos entre uma máquina e outra. Recursos Podem ser físicos ou

Leia mais

Instalação de Equipamentos de Redes IER 12503

Instalação de Equipamentos de Redes IER 12503 Instituto Federal de Santa Catarina Instalação de Equipamentos de Redes IER 12503 2014 2 Área de Telecomunicações slide 1 O material para essas apresentações foi retirado das apresentações disponibilizadas

Leia mais

CST Redes de Computadores. Comunicação de Dados 2. Aula 13 Planejamento de Redes. Prof. Jéferson Mendonça de Limas

CST Redes de Computadores. Comunicação de Dados 2. Aula 13 Planejamento de Redes. Prof. Jéferson Mendonça de Limas CST Redes de Computadores Comunicação de Dados 2 Aula 13 Planejamento de Redes Prof. Jéferson Mendonça de Limas LANs Realizando a Conexão Física Planejamento e Cabeamento de uma Rede LANs Realizando a

Leia mais