Redes de Telecomunicações
|
|
|
- Matilde Fonseca Chaplin
- 10 Há anos
- Visualizações:
Transcrição
1 Redes de Telecomunicações Mestrado em Engenharia Electrotécnica e e de Computadores 1º semestre 2010/2011
2 Capítulo 4 Redes de Transporte SDH
3 Estrutura Estratificada das Redes de Telecomunicações Camada de rede de serviços Tecnologias usadas: PDH, SDH, OTN Camada de rede de transporte PDH: Plesiochronous Digital Hierarchy; SDH: Synchronous Digital Hierarchy; OTN: Optical Transport Network Camada de serviços: Consiste em redes de diferentes serviços (circuitos, IP,etc.) Camada de transporte: Fornece à camada superior uma plataforma apropriada para transferência de informação, que se pretende independente dos serviços. João Pires Redes de Telecomunicações (10/11) 132
4 Rede de Transporte A rede de transporte é uma plataforma tecnológica que assegura uma transferência transparente e fiável da informação à distância, permitindo suportar diferentes serviços. A rede de transporte garante diferentes funcionalidades, como sejam, transmissão, multiplexagem, encaminhamento, protecção, supervisão e aprovisionamento de capacidade. A rede de transporte é constituída por diferentes elementos de rede ligados entre si segundo uma certa topologia física (anel ou malha) e interagindo directamente com o plano de gestão. João Pires Redes de Telecomunicações (10/11) 133
5 Multiplexagem Multiplexagem designa a operação pela qual vários sinais analógicos ou digitais são combinados num único sinal tendo em vista a sua transmissão sobre um único canal. O dispositivo que realiza a operação de multiplexagem designa-se multiplexador (MUX), enquanto o dispositivo que realiza a operação inversa designa-se desmultiplexador (DEMUX). A multiplexagem pode ser realizada no domínio do tempo (TDM, Time-Division Multiplexing), no domínio da frequência (FDM, Frequency Division Multiplexing) ou no domínio do comprimento de onda (WDM, Wavelength Division Multiplexing). A operação de multiplexagem inversa consiste em separar um fluxo de informação em vários fluxos, os quais são transmitidos por diferentes canais e agregados na recepção. João Pires Redes de Telecomunicações (10/11) 134
6 FDM e WDM Na multiplexagem por divisão na frequência (FDM) cada sinal (analógico ou digital) vai modular uma portadora com uma frequência própria. f f f 1 f N M U X f 1 f N f Aplicações: Redes de TV por cabo D E M U X f 1 f N f f Na multiplexagem por divisão no comprimento de onda (WDM) os sinais ópticos obtidos a partir da modulação de lasers são multiplexados. L 1 L 2 L N Laser λ 1 λ 2 λ N M U X Fibra Óptica λ 1, λ 2,...λ Ν Aplicações: Redes OTN e WDM D E M U X λ 1 λ 2 λ Ν R1 R2 R3 Receptor Óptico Na emissão N sinais eléctrícos vão modular N lasers, cada um emitindo num comprimento de onda próprio. Na recepção os N sinais ópticos obtidos a seguir ao DEMUX são convertidos para o domínio eléctrico e regenerados com receptores ópticos. João Pires Redes de Telecomunicações (10/11) 135
7 Multiplexagem por Divisão no Tempo (I) A multiplexagem por divisão no tempo permite que uma via de transmissão seja usada simultaneamente por vários utilizadores (canais). Trama N N canais de entrada M U X Bits de sincro Bits do canal 1 multiplexador Bits do canal 2 Bits do canal 3 Via de transmissão Bits do canal N desmultiplexador D E M U X N N canais de saída Desvantagem do TDM A transmissão da informação na via é organizada em tramas. Cada trama contém um número fixo de time-slots. Cada time-slot é atribuído a um determinado canal de entrada. Se esse canal não transmitir informação o time-slot correspondente está vazio. João Pires Redes de Telecomunicações (10/11) 136
8 Multiplexagem por Divisão no Tempo (II) A multiplexagem TDM pode-se realizar usando interposição de bit ou interposição de palavra. No primeiro caso, a cada canal atribui-se um time-slot constituído por um único bit, enquanto no segundo caso a cada canal corresponde um time-slot constituído por vários bits (palavra). Interposição de palavra: Exemplo da multiplexagem de 4 canais: C 1 Palavra de 8 bit do canal C1 Multiplexagem Desmultiplexagem C 1 C 2 Trama C 2 C 4 C 3 C 2 C 1 C 3 C 4 t 4 t 3 t 2 t 1 Time-slot Sincronismo C 3 C 4 João Pires Redes de Telecomunicações (10/11) 137
9 Relógios e Sincronismo A geração de sinais de sincronismo é feita por relógios. Um relógio ideal gera sinais isócronos, ou seja sinais em que a frequência é constante (pelo menos em valor médio). Sinais de relógio T o Relógio isócrono T 0 t t t Relógio real Desfasagem positiva Desfasagem negativa t Frequência nominal f 0 =1/T 0 A precisão de um relógio expressa em ppm (parte por milhão) traduz o afastamento da frequência real (f r ) da nominal (f 0 ). Estão definidas quatro hierarquias de precisão (níveis stratum). Precisão = f 0 f f 0 r Nível Precisão (ppm) Stratum 1 Stratum 2 Stratum 3 Stratum Os relógios de stratum 1 são relógios atómicos (césio ou rubídio) João Pires Redes de Telecomunicações (10/11) 138
10 Redes Síncronas e Plesiócronas Dois relógios são síncronos se operam com a mesma frequência e com uma diferença de fase constante. Os relógios não síncronos designam-me por assíncronos. Os relógios assíncronos dividem-se em: mesócronos, plesiócronos e heterocronous. Relógios mesócronos: têm a mesma frequência, mas a relação de fase é aleatória. Relógios plesiócronos: têm a mesma frequência nominal, mas a real pode ser ligeiramente diferente. Relógios heterocronous: têm a frequência e fases diferentes. Redes síncronas e plesiócronas Relógio de stratum 1 Rede plesiócrona Rede síncrona Relógios com a mesma frequência nominal, mas independentes NE 1 NE 2 NE 3 NE 4 Relógios com a mesma frequência nominal, controlados por um relógio central NE 1 NE 2 NE 3 NE 4 João Pires Redes de Telecomunicações (10/11) 139
11 Redes de Sincronização: Mestre-Escravo Na arquitectura mestre-escravo a rede apresenta uma topologia em árvore com diferentes níveis hierárquicos. O nível mais elevado contém o PRC (Stratum 1), o qual pode ser duplicado de modo a garantir uma reserva em caso de falha. Percurso de distribuição de sincronismo normal Percurso de distribuição de sincronismo alternativo PRC SEC PRC: Primary Reference Clock SSU: Synchronisation Supply Unit SEC: Synchonous Equipment Clock Não são permitidas malhas fechadas SSU SSU SSU Os PRC e SSU são elementos da rede de sincronismo. Os SEC são relógios do equipamento síncrono. Anel SSU SEC Cadeia SSU Sub-rede com capacidade de auto-reconfiguração do sincronismo em caso de falha Nas redes SDH usa-se o octeto SSM (Status Message byte) para informar os elementos da rede, do estado da fonte se sincronismo. João Pires Redes de Telecomunicações (10/11) 140
12 Estrutura da Trama TDM (E1) A frequência de amostragem mínima (f a ) de um sinal deve ser igual ou superior ao dobro da frequência máxima do sinal (f a 2B). Um canal telefónico usa uma banda entre os 300 e os 3400 Hz. Para uma frequência máxima de 4000 Hz, tem-se uma frequência de amostragem de 8 khz, ou seja, um período de amostragem de 125 μs. Codificando cada amostra com 8 bits tem-se um débito de 64 kbit/s. A trama de um sinal E1 é consituída por 32 time-slots, a que correspondem 32 canais (30 de informação). Time-slot 8 bits μs Trama E1 Cada conjunto de 8 bits (time-slot) não poderá durar mais de 125μs/32=3.9 μs, o que corresponde a ns por bit, ou seja, um débito binário de Mbit/s. João Pires Redes de Telecomunicações (10/11) 141
13 Sistema de Multiplexagem Primário E1 (ITU-G704) A trama correspondente ao sinal E1 tem uma duração de 125 μs e está dividida em 32 intervalos de tempo. Os intervalos de tempo numerados de 1 a 15 e 17 a 32 são atribuídos a canais de informação, cada um com um débito de 64 kbit/s. Os intervalos de tempo 0 e 16 são usados, respectivamente, para fins de sincronização de trama e sinalização. No intervalo de tempo 0 das tramas ímpares é transmitido o padrão de enquadramento de trama (PET), enquanto nas tramas pares é transmitido um padrão de não enquadramento (NPET) PET 1 2 S1 S PEM: padrão de enquadramento de multitrama de sinalização NPET 1 2 S3 S PET 1 2 S5 S PET 1 2 S29 S NPET 1 2 PEM xxxx Multitrama de sinalização (16x125μs=2 ms) Si: sinalização correspondente ao canal i. A sinalização de cada canal é actualizada de 2 em 2 ms. João Pires Redes de Telecomunicações (10/11) 142
14 Aspectos de Sinalização Para estabelecer, terminar e controlar chamadas telefónicas é necessária sinalização entre os assinantes e a central local e entre as diferentes centrais. A informação de sinalização de assinante (na rede local), corresponde a sinais que variam lentamente, sendo suficiente um débito de 2 kb/s por assinante, e uma actualização da informação de 2 em 2 ms. Exemplo de um sinal de endereçamento (número 32): Pulso Interdígito Dígito ms 60 ms 40 ms Intervalo de amostragem de 2 ms No sistema em que se faz uma actualização da sinalização de cada assinante de 2 em 2 ms designa-se por sistema de sinalização de canal associado. Em alternativa tem-se o sistema de sinalização em canal comum, que proporciona um canal de sinalização a 64 kb/s, que é usado pelos diferentes canais. João Pires Redes de Telecomunicações (10/11) 143
15 Padrão de Enquadramento (E1) O padrão de enquadramento permite sincronizar a trama do lado do receptor. É constituído por uma padrão fixo com 7 bits. O primeiro bit do padrão têm funções especiais. PET b1 b2 b3 b4 b5 b6 b7 b8 Ui(C) No PCM30 o bit 1 (Ui) é usado para aplicações internacionais. No PCM30C o bit 1(C) é usado para o controlo CRC-4 (Código de Redundância Cíclica). O padrão de não enquadramento é usado para transportar informação sobre o estado da ligação e proporciona sinais de controlo para os multiplexadores. No PCM30 o bit 1 (Ui) é usado para aplicações NPET Ui(M) 1 A S a4 S a5 S a6 S a7 S a8 internacionais. No PCM30C o bit 1(M) é usado como padrão Falha de corrente de multitrama para a transmissão do CRC-4. 0:Normal 1:Alarme Falta do sinal E1 MUX A PET NPET MUX B Falha no Codec Erro no PET Taxa de erro do PET> Alarme AIS (Alarm Indication Signal) O bit A é usado como um alarme distante. Quando os bits Sa não são usados são feitos igual a 1. Sa4 pode ser usado para transmissão de dados de serviço, e os outros bits para diferentes aplicações. O NPET pode ser usado para transmitir um alarme distante RAI (Remote Alarm Indicator). Quando A recebe esse alarme deixa de transmitir os sinais de voz e passa a transmitir uma sequência de 1s. O multiplexador em B activa o alarme AIS (Alarm Indication Signal). João Pires Redes de Telecomunicações (10/11) 144
16 Hierarquia Plesiócrona Europeia Na hierarquia PDH (Plesiochronous Digital Hierarchy) os relógios dos diferentes elementos de rede (regeneradores e multiplexadores) não estão perfeitamente sincronizados. A primeira hierarquia PDH (sistema multiplex primário) europeia corresponde à multiplexagem de 30 canais de 64 kbit/s, enquanto as hierarquias de ordem superior obtêm-se multiplexando 4 de ordem inferior. 30 canais (64 kb/s) Mux Mux primário primário X30 X30 E Mbit/s (30 canais) E Mbit/s (120 canais) X4 X4 X4 X4 E Mbit/s (480 canais) X4 X4 E Mbit/s (1920 canais) Os relógios da hierarquia europeia requerem as seguintes precisões: Hierarquia E1 E2 E3 E4 Precisão 50 ppm 30 ppm 20 ppm 15 ppm João Pires Redes de Telecomunicações (10/11) 145
17 Hierarquia Plesiócrona Americana A nível mundial para além da hierarquia europeia há também as hierarquias plesiócronas americana e japonesa as quais têm a particularidade de serem incompatíveis entre si. As primeiras hierarquias PDH americana e japonesa usam como sistema multiplex primário um sistema com 24 canais de 64 kb/s. Hierarquia plesiócrona americana: 24 canais (64 kb/s) Mux Mux primário primário X24 X24 DS Mbit/s (24 canais) X4 X4 DS Mbit/s (96 canais) DS Mbit/s (672 canais) X7 X7 DS-n: Digital Signal ol Level n X6 X6 DS Mbit/s (4032 canais) Os sinais DS-n são transportadas usando um carrier system (inclui a componente de transmissão e as interfaces) designado por T-n. Assim, o DS1 é transportado através do T1. O DS2 através do T2, etc João Pires Redes de Telecomunicações (10/11) 146
18 Origem do Plesiocronismo Todos os elementos de rede digitais requerem uma fonte de temporização, ou relógio, de modo a sincronizar todas as operações realizadas por esse elemento. Os relógios reais não são isócronos, ou seja, a sua frequência de emissão está sujeita a ligeiras flutuações relativamente à frequência nominal. Relógio isócrono t Desfasagem positiva Desfasagem negativa Relógio real t Devidos às características referidas, dois relógios independentes com a mesma frequência nominal são plesiócronos (quase síncronos), pois oscilam com frequências que embora diferentes estão muito próximas. João Pires Redes de Telecomunicações (10/11) 147
19 Perturbações Introduzidas no Relógio A temporização necessária para sincronizar os relógios das centrais digitais pode ser derivada a partir da trama E1, a que corresponde um sinal de relógio de MHz. A transmissão deste sinal através de uma rede está sujeita a perturbações. As mais relevantes são a flutuação de fase ou jitter e o vageio de frequência. O jitter corresponde a variações rápidas da frequência do relógio em torno da sua frequência média. As principais fontes de jitter são os regeneradores e os multiplexadores. t Relógio isócrono Desfasagem positiva Desfasagem negativa t Relógio irregular (com jitter) A amplitude do jitter é expresso em termos do intervalo unitário ou UI (unit interval), sendo 1 UI igual ao período de bit (488 ns no E1). Por exemplo, um valor de 0.05 UI, indica que a flutuação temporal não deve ultrapassar 5% do período de bit. O vagueio de frequência corresponde a variações lentas (<10Hz) da frequência de relógio em torno do seu valor nominal, devido a variações do comprimento de transmissão. João Pires Redes de Telecomunicações (10/11) 148
20 Papel das Memórias Elásticas A temporização usada para formar as tramas PDH de ordem superior (E2, E3 e E4) não é derivada do relógio da rede a MHz, mas é gerada localmente no multiplexador com a precisão do relógio interno. O débito de chegada dos dados à entrada do multiplexador para cada um dos canais (tributários), pode ser diferente do débito de leitura imposto pelo relógio do multiplexador. A diferença de velocidades deve-se ao plesiocronismo e também às perturbações de transmissão (jitter e vagueio). Para acomodar essas diferenças usam-se memórias elásticas (buffer) com capacidade para armazenar uma trama do tributário de entrada. A memória é escrita ao ritmo do tributário e é lida ao ritmo imposto pelo relógio do multiplexador. Ritmo de relógio irregular Ritmo de relógio regular t Sinal de tributário, D k Memória Elástica Sinal de saída, D k t Jitter e vagueio Recuperação do relógio f k Escrita Leitura, f k Relógio do multiplexador João Pires Redes de Telecomunicações (10/11) 149
21 Origem dos Slips Estrutura de uma memória elástica Sinal de entrada, D k Operação da memória elástica (por bit) f k 1 2 Endereços de leitura f k =f k escrita leitura Tempo Endereços de escrita L bits f k f k >f k Dupla escrita Dupla escrita P/S Sinal de saída, D k Uma dupla escrita implica que uma trama (com L bits) é escrita sem a anterior ter sido lida Uma dupla leitura implica que a mesma trama é lida duas vezes Esta perda ou repetição designa-se por slip f k <f k Dupla leitura Dupla leitura Tempo Tempo João Pires Redes de Telecomunicações (10/11) 150
22 Impacto dos Slips A perda ou repetição de uma trama completa designa-se por slip controlado e ocorre com um período dado por T s = D k L D k = L ΔD k L: comprimento da trama em bit D k : débito binário de entrada D k: débito binário de saída O efeito dos slips depende do serviço considerado. Serviço Voz Fax Multimedia Texto encriptado Dados Dados na banda de voz Impacto dos Slips Cliques, perda de dados de sinalização (SS7) Perda de 4 a 8 linhas de varrimento Perturbação nas tramas de video, salvas de ruído no áudio É necessário retransmitir o código de criptografia Perda ou repetição de dados Erros de transmissão de 0.01 até 2 s, a chamada pode ser perdida Para reduzir a frequência de ocorrência dos slips deve-se aumentar a precisão dos relógios. Por exemplo, para garantir um período de slips de 20 h deveria usar-se no sistema E1 relógios com uma precisão de João Pires Redes de Telecomunicações (10/11) 151
23 Justificação Como as exigências imposta aos relógios para eliminar os slips são muito elevadas, recorre-se a uma outra técnica, designada por justificação, para evitar os slips. Na justificação positiva a frequência do relógio de leitura é feita igual ao ritmo máximo no canal de entrada, ou seja fk = fk + Δfk. Para evitar o esvaziamento da memória elástica é inserido na sequência de saída um bit sem informação (bit de justificação). Sistema de sincronização do multiplexador: Sinal do tributário, D k Relógio recuperado, f k Memória Elástica Inibidor Sinal de saída, D k Detector fase Comando de inibição f k Relógio interno Controla a ocupação da memória Quando a ocupação desce abaixo de um limiar O relógio de leitura é inibido durante um período de relógio João Pires Redes de Telecomunicações (10/11) 152
24 Estrutura de um Multiplexador TDM Plesiócrono Um multiplexador TDM plesiócrono inclui um multiplexador síncrono, um sincronizador por cada tributário e um relógio. O multiplexador terminal realiza a multiplexagem por interposição de bit dos bits lidos das diferentes memórias. Sinal do tributário 1 Relógio recuperado do tributário 1 D 1 f 1 Memória elástica f 1 ' Multiplexador síncrono D 2 f 2 Memória elástica f 2 ' Mux D 0 Sinal multiplexer com débito D 0 Sinal do tributário N Relógio recuperado do tributário N D N f N Memória elástica f ' N Controlo de justificação + sincronismo Padrão de enquadram. f 0 Relógio do multiplexador O relógio do multiplexador gera o relógio do sinal multiplexer (f 0 ), enquanto o bloco de controlo de justificação e sincronismo gera os relógios de leitura das diferentes memórias elásticas, usando a referência obtida a partir do relógio do multiplexador. João Pires Redes de Telecomunicações (10/11) 153
25 Estrutura da Trama E2 com Justificação Positiva A posição do bit de justificação na trama é assinalada pelos bits de indicação de justificação (bits C). Com base na informação transmitida pelos bits C os bits de justificação são removidos no desmultiplexador. Estrutura da trama E2 com justificação positiva (G742) F1 F1 F1 F1 F0 F1 F0 F0 F0 F0 X Y I 13 I 212 C k1 = C k2 = C k3 =1 C 11 C 21 C 31 C 41 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13 I 212 Há justificação C 12 C 22 C 32 C 42 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13 I 212 C 13 C 23 C 33 C 43 J 1 J 2 J 3 J 4 I 9 I 10 I 11 I 12 I 13 I 212 C k1 = C k2 = C k3 =0 Padrão de enquadramento de trama Bits F, F1=1 e F0=0 Bits de indicação de justificação Bits C, C kj : controlo de justificação do canal k Não há justificação Bits de justificação Bits J, J k : justificação do canal k Bits de informação Bits I, I 5,I 6,I 7,I 8 bits de informação, respectivamente, do canal 1, 2, 3 e 4 Bits de de serviço Bit X: bit de alarme, bit Y:bit de reserva João Pires Redes de Telecomunicações (10/11) 154
26 Estrutura da Trama E2 com Justificação Positiva/Negativa Na justificação positiva/negativa o relógio de leitura opera à velocidade nominal. Quando o débito de entrada aumenta são removidos bits da sequência e transmitidos em posições determinadas (justificação negativa). No caso oposto usa-se justificação positiva. Estrutura da trama E2 com justificação positiva /negativa (G745) C k1 = C k2 = C k3 =1 F1 F1 F1 F0 F0 F1 F1 F0 I 9 I 10 I 11 I 12 I 13 I 264 Justificação positiva C 11 C 21 C 31 C 41 X 1 X 2 X 3 X 4 I 9 I 10 I 11 I 12 I 13 I 264 C k1 = C k2 = C k3 =0 C 12 C 22 C 32 C 42 Y 1 Y 2 Y 3 Y 4 I 9 I 10 I 11 I 12 I 13 I 264 C 13 C 23 C 33 C 43 J - 1 J - 2 J - 3 J - 4 J + 1 J + 2 J + 3 J + 4 I 13 I 264 Padrão de enquadramento de trama Bits F, F1=1 e F0=0 Bits de indicação de justificação Bits C, C kj : controlo de justificação do canal k Bits de justificação Bits J, J k : justificação do canal k (J - :negativa; J + :positiva) Justificação negativa C kj = 1, C kj =0 alternadamente Não há justificação Bits de informação Bits I, I 9,I 10,I 11,I 12 bits de informação, respectivamente, do canal 1, 2, 3 e 4 Bits de de serviço Bits X: bits de alarme, bits Y:bits de reserva João Pires Redes de Telecomunicações (10/11) 155
27 Desvantagens da PDH (1) Não há normalização para débitos superiores a 140 Mbit/s. Incompatibilidade entre equipamento de diferentes fabricantes. Falta de flexibilidade. É díficil usar o equipamento PDH para funções de inserção/extracção de canais. Difícil a monitorização do desempenho dos canais ao longo da transmissão. Capacidade muito limitada para funções de gestão centralizada (não há canais nas tramas destinados a esta função). Não tem interfaces normalizadas a nível óptico (ex. definição dos códigos a usar, do nível de potência, da largura de linha das fontes). João Pires Redes de Telecomunicações (10/11) 156
28 Desvantagens da PDH (2) Cascata de multiplexadores/desmultiplexadores usados para extrair um E1 de um E4. Terminal de linha de 140 Mb/s DMUX Mb/s 8 Mb/s 2 Mb/s MUX Terminal de linha de 140 Mb/s Mb/s As interfaces só estão normalizadas a nível eléctrico MUX Interface eléctrica normalizada (G.703) Terminal de linha óptica Interface óptica proprietária do fabricante Códigos de linha, níveis de potência óptica, tipo de fibra, não normalizados. Fibra óptica João Pires Redes de Telecomunicações (10/11) 157
29 Hierarquia Digital Síncrona A hierarquia SONET (Synchronous Optical Network) foi proposta pela Bellcore (Telecordia) em 1985, com o objectivo de transportar os sinais DS-n no domínio óptico. A hierarquia SDH (Synchronous Digital Hierarchy) foi definida posteriomente pelo ITU-T como uma norma internacional, compatível com a SONET e com capacidade para transportar os sinais PDH E-n. A informação transmitida na SDH/SONET está organizada em tramas TDM. O sinal básico SDH designa-se por Synchronous Transport Module (STM). O sinal básico SONET no domínio eléctrico designa-se por Synchronous Tranport Signal (STS), enquanto no domínio óptico designa-se por Optical Carrier (OC). João Pires Redes de Telecomunicações (10/11) 158
30 Débitos SONET/SDH Hierarquias SONET e SDH SONET SONET SDH Débito Binário (Óptico) (Eléctrico) (Mb/s) OC-1 STS OC-3 STS-3 STM OC-12 STS-12 STM OC-48 STS-48 STM OC-192 STS-192 STM OC-768 STS-768 STM As hierarquais SDH também foram definidas para o transporte de células ATM e pacotes IP empacotados em PPP (point-to-point protocol) ou HDLC (high-level data link control). João Pires Redes de Telecomunicações (10/11) 159
31 VantagensdaSDH (1) Há normas até 10 Gbit/s: Apropriada para as rede de transporte. STM Mbit/s, STM Mbit/s, STM Mbit/s, STM Mbit/s, STM Gbit/s (STM: Synchronous Transport Module). Compatibilidade entre o equipamento de diferentes fabricantes e entre as hierarquias europeias e americanas. Função de inserção/extracção simplificada. Como a tecnologia é síncrona é fácil identificar os canais de ordem inferior. Gestão centralizada fácil. A trama SDH dispõe de um número elevado de octetos para comunicação entre os elementos de rede e um centro de gestão centralizada, usando o sistema TMN (Telecommunications Management Network). João Pires Redes de Telecomunicações (10/11) 160
32 VantagensdaSDH (2) Elevada disponibilidade permitindo uma provisão rápida dos serviços requeridos pelos clientes. Tal deve-se ao facto da SDH fazer uso intensivo de software, em contrapartida com a PDH cuja funcionalidade reside no hardware. Elevada fiabilidade. As redes SDH usam mecanismos de protecção que permitem recuperações rápidas a falhas (da ordem dos 50 ms), quer das vias de comunicação, quer dos nós da rede. Normalização das interfaces ópticas (definindo os códigos a usar, os níveis de potência, as características dos lasers e das fibras, etc.). Possibilidade de monitorizar o desempenho dos diferentes canais. Plataforma apropriada para diferentes serviços. João Pires Redes de Telecomunicações (10/11) 161
33 Desvantagens da SDH Técnica complexa devido à necessidade de registar a relação de fase entre os sinais dos tributários e o cabeçalho. A justificação por octeto usada na SDH é mais problemática relativamente ao jitter originado no processo de desmultiplexagem, do que a justificação por bit. A estrutura de multiplexagem não está organizada de modo muito eficiente no que diz respeito ao transporte dos tributários CEPT. Por exemplo, só é possível transportar 3x34 Mbit/s numa trama STM-1, embora a capacidade do STM-1 permitisse 4x34 Mbit/s. A estrutura de multiplexagem não está organizada de modo uniforme no que diz respeito ao transporte dos tributários plesiócronos. Um determinado tributário pode ser transportado usando diferentes opções de multiplexagem. Não suporta de modo eficiente as tramas Ethernet. SDH nova geração João Pires Redes de Telecomunicações (10/11) 162
34 Exemplificação do Papel do Transporte A rede de transporte neste exemplo é representada pelo plano inferior e é constituída por multiplexadores interligados por fibras ópticas. A camada de rede de serviços é representada por centrais de comutação telefónica (CC). d Camada de rede de serviço CC CC c Tecnologias de rede para o transporte: SDH (Synchronous Digital Hierarchy), WDM, (Wavelength Division Multiplexing), OTN (Optical Transport Network) CC a CC E A Camada de rede de Transporte B b D C João Pires Redes de Telecomunicações (10/11) 163
35 Rede de Transporte em Aplicações Telefónicas CT3 Rede de Serviço (circuitos) CL2 CL3 CT1 CT2 CL1 2.5 Gbit/s DXC Rede de Transporte (SDH) Mbit/s Usada para interligar diferentes centrais telefónicas Elementos de rede SDH DXC: Cruzador digital (digital crossconnect) : Multiplexador de inserção/extracção (add/drop multiplexer) Elementos de rede telefónica CL: Central telefónica local CT: Central telefónica de trânsito João Pires Redes de Telecomunicações (10/11) 164
36 Rede de Transporte em Aplicações de Dados CR Rede de Serviços (pacotes) ER CR CR ER ER Elementos de rede SDH DXC: Cruzador digital (digital crossconnect) : Multiplexador de inserção/extracção (add/drop multiplexer) 2.5 Gbit/s Elementos de rede de pacotes ER: Edge router CT: Core router DXC Rede de Transporte (SDH) Mbit/s Usada para interligar diferentes routers de uma rede IP ou diferentes comutadores de uma rede Ethernet Numa rede IP (Internet Protocol) os routers são usados para encaminhar os pacotes Os edge routers são aqueles que estão mais próximos do utilizador, enquanto os core routers fazem parte da dorsal da rede. João Pires Redes de Telecomunicações (10/11) 165
37 Estabelecimento de Caminhos Fases do estabelecimento: 1) O sistema de gestão configura os diferentes elementos de rede envolvidos no circuito; 2) Os elementos de rede de serviço iniciam a sua actividade. Interligações representadas: 1: CL3 CT1 2: CL2 CT3 CT3 Rede de Serviços (circuitos) CL2 CL3 CT1 CT2 CL1 Sistema de Gestão de Rede 2.5 Gbit/s DXC Rede de Transporte (SDH) Mbit/s A informação de gestão é enviada através do DCC (Data Communication Channel) João Pires Redes de Telecomunicações (10/11) 166
38 Definição dos Elementos de Rede (1) Regenerador: Regenera o relógio e a forma dos sinais de entrada. Possui canais de comunicação a 64 kb/s para transmitir mensagens. STM-N R STM-N Multiplexador terminal: Agrega sinais plesiócronos ou síncronos de modo a formar sinais STM-N de débito mais elevado. PDH SDH (STM-M) MT STM-N (N>M) Multiplexador de inserção/extracção: Permite extrair/inserir, quer sinais PDH, quer sinais SDH de débito mais baixo do que o da linha. STM-N Oeste STM-N Este Tributários PDH, SDH (STM-M) M<N João Pires Redes de Telecomunicações (10/11) 167
39 Definição dos Elementos de Rede (2) Comutador de cruzamento ou cruzador (DXC, digital cross-connect): Proporciona funções de comutação apropriadas para estabelecer ligações semi-permanentes a nível do VC-1, VC-3, VC-4, e permite o restauro das redes. STM-N STM-N STM-N STM-N Os comutadores de cruzamento são usados para interligar anéis SDH, ou como nós de redes em malha. 1 E3 C,2 E3 B,3 A DXC 4 C 2 4 Fibra Óptica 1 B João Pires Redes de Telecomunicações (10/11) 168
40 Topologias Físicas (1) Topologia em cadeia PDH SDH MT STM-N R STM-N MT PDH SDH PDH SDH PDH SDH Topologia em anel com duas ou quatro fibras Duas fibras ópticas Quatro fibras ópticas João Pires Redes de Telecomunicações (10/11) 169
41 Topologias Físicas (2) Anéis unidireccionais e bidireccionais Anel unidireccional Anel bidireccional Topologia emalhada (usada no núcleo central da rede) DXC DXC DXC DXC DXC DXC A presença dos DXC permite implementar um sistema de restauro dinâmico para fazer face a falhas na rede. Com esta técnica o sistema de gestão da rede reencaminha o tráfego por percursos alternativos àqueles onde ocorreram falhas. João Pires Redes de Telecomunicações (10/11) 170
42 Estabelecimento de um Caminho Exemplo de um caminho (E3) entre o utilizador A e o utilizador B Sinais de controlo A MT STM-4 B E3 STM-1 E3 Sistema de Gestão de Rede O utilizador A gera um sinal E3 que é multiplexado em conjunto com outros E3 num sinal STM-1 usando um multiplexador terminal. O sinal STM-1 é transmitido até um onde é inserido num sinal STM-4. O sinal STM-4 é transmitido em fibra óptica até ao que serve o utilizador B onde é extraído. Na comunicação B A o processo é recíproco. A ligação entre A e B com capacidade E3 é estabelecida por um operador através do sistema de gestão de rede, que envia os sinais de controlo apropriados para configurar cada um dos elementos de rede ao longo da ligação. Ligação semi-permanente e dedicada João Pires Redes de Telecomunicações (10/11) 171
43 Arquitectura de uma Rede de Transporte DXC DXC DXC DXC DXC DXC Rede Dorsal ( STM-64) DXC Rede Metropolitana (STM-4 ou STM-16) Nó concentrador (Hub) TM Rede de Acesso (STM-1) João Pires Redes de Telecomunicações (10/11) 172
44 Modelo de Camadas da SDH (1) Rede de transporte SDH Camada de caminho Camada de transmissão Ordem superior Ordem inferior Camada de secção Camada física Sub-camada de secção de multiplexagem Sub-camada de secção de regeneração João Pires Redes de Telecomunicações (10/11) 173
45 Modelo de Camadas da SDH (2) Algumas das funcionalidades das camadas: Caminho: Identificação da integridade da ligação, especificação do tipo de tráfego transportado no caminho e monitorização de erros. Secção de multiplexagem: Sincronização, comutação de protecção, monitorização de erros, comunicação com o sistema de gestão. Secção de regeneração: Enquadramento de trama, monitorização de erros, comunicação com o sistema de gestão. Física: Forma dos pulsos ópticos, nível de potência, comprimento de onda, sensibilidade dos receptores, etc. João Pires Redes de Telecomunicações (10/11) 174
46 Modelo de Camadas da SDH (3) Cada camada (com excepção da física) tem um conjunto de octetos que são usados como cabeçalho da camada. Estes octetos são adicionados sempre que a camada é introduzida e removidos sempre que esta é terminada. Regenerador Multiplexador de inserção/extracção Multiplexador terminal MT R MT S. Regeneração S. Regeneração S. Regeneração Secção de Multiplexagem S. de Multiplexagem Inserção de cabeçalhos Caminho Serviços Camadas: Caminho Secção de Multiplexagem Secção Regeneração Física Cabeçalho de caminho Cabeçalho de secção de multiplexagem Cabeçalho de secção de regeneração Multiplexador terminal Regenerador Multiplexador Multiplexador terminal João Pires Redes de Telecomunicações (10/11) 175
47 Modelo de Camadas SDH (4) CL3 CT1 CT3 Rede de Serviços (circuitos) CL2 CL3 CT1 CT2 CL1 2.5 Gbit/s Caminho Mbit/s TM S. multiplexagem Rede de Transporte DXC: crossconnect TM: multiplexer terminal : multiplexer de inserção/extracção CT: central de trânsito CL: central local João Pires Redes de Telecomunicações (10/11) 176
48 Estrutura da Trama Básica Uma trama SDH básica (STM-1) contém três blocos: - Cabeçalho de secção (SOH, section overhead) - Ponteiro (PT): permite localizar a informação transportada no VC - Contentor virtual (VC): capacidade transportada + cabeçalho de caminho. A duração da trama é igual a 125 μs, o que corresponde a 8000 tramas/s. Cabeçalho da secção de regeneração Ponteiro Cabeçalho da secção de multiplexagem SOH PT SOH Contentor Virtual Representação bidimensional de uma trama STM-1: matriz com 9 linhas e 270 colunas, a que correspondem 2430 octetos. Os diferentes octetos são transmitidos linha a linha, começando pela 1ª linha e 1ª coluna. 125 μs João Pires Redes de Telecomunicações (10/11) 177
49 Formação da Trama STM-N Sinais SDH multiplex de ordem superior são obtidos através de uma multiplexagem por interposição de palavra (octeto) de vários STM-1 O débito binário do sinal STM-N é N Mbit/s STM-1 #1 STM-1 #2 STM-1 #N SOH SOH SOH PT VC PT VC PT VC SOH SOH SOH 125 μs 125 μs 125 μs 9 N SOH PT SOH 261 N Contentor virtual N 125 μs João Pires Redes de Telecomunicações (10/11) 178
50 Cabeçalho de Secção da Trama STM-1 (1) Estrutura do cabeçalho de secção Cabeçalho de secção de regeneração Ponteiro A1 B1 D1 H1 A1 Δ Δ h1 A1 Δ Δ h1 A2 E1 D2 H2 A2 Δ Δ h2 A2 h2 J0 F1 D3 H3 X X H3 X X H3 X: usados para uso nacional Δ: informação dependente do meio de transmissão (fibra óptica, feixe hertziano, etc). B2 B2 B2 K1 K2 Cabeçalho de secção de multiplexagem D4 D7 D10 S1 D5 D8 D11 M1 D6 D9 D12 E2 X X Ex: Comandos de aprovisionamento remoto de capacidade; reportagem de alarmes; reportagem de parâmetros de desempenho, etc. Cabeçalho de secção de regeneração A1, A2 : Padrão de enquadramento de trama (A1= , A2= ). Jo: Traço de secção de regeneração. Verifica a integridade da ligação a nível de secção. B1: Monitorização de erros a nível da secção de regeneração. D1- D3: Canal de comunicação de dados. Transporta informação de gestão de rede. E1: Canal de comunicação de voz (64 kb/s) entre regeneradores. F1: Canal de utilizador. Diferentes aplicações. Ex: transmissão de dados, alarmes, etc. João Pires Redes de Telecomunicações (10/11) 179
51 Cabeçalho de Secção da Trama STM-1 (2) Cabeçalho de secção de multiplexagem B2: Monitorização de erros a nível da secção de multiplexagem. K1- K2: Comutação de protecção automática (Transporta o protocolo APS). D4- D12: Canal de comunicação de dados a 576 kbit/s. Transporta informação de gestão de rede entre os elementos que terminam a secção de multiplexagem e entre estes e o sistema de gestão de rede. S1: Indicador da qualidade do relógio. Transporta mensagens referentes ao tipo de relógio usado no processo de sincronização. M1: É usado para transportar uma indicação de erro remoto ou REI (remote error indication) a nível de secção de multiplexagem. O alarme REI é enviado para o ponto onde a secção de multiplexagem é originada e indica o número de blocos detectados errados a partir da informação dada pelo B2. E2: Canal de comunicação de voz (64 kb/s) para comunicações vocais entre as extremidades da camada de multiplexagem. Ponteiro H1, H2: Octetos de ponteiro. Indicam o início do contentor virtual na trama. H3: Octetos de acção do ponteiro. Usados para justificação negativa. h1, h2: Octetos com um valor invariável. João Pires Redes de Telecomunicações (10/11) 180
52 Cabeçalhos de Secção de Diferentes STM-N Nas figuras seguintes apresenta-se o cabeçalho de secção das tramas STM-0, (STS-1), STM-1 e STM-4. A1 B1 A2 E1 J0 F1 STS-1 (SONET) A1 B1 A1 Δ A1 Δ A2 E1 A2 Δ A2 J0 F1 X X X X STM-1 D1 D2 D3 D1 Δ Δ D2 Δ D3 H1 H2 H3 Ponteiro B2 K1 K2 B2 B2 B2 K1 K2 D4 D5 D6 D4 D5 D6 D7 D8 D9 D7 D8 D9 D10 D11 D12 D10 D11 D12 S1 M1 E2 S1 M1 E2 X X A1 A1 A1 A1 A1 A1 A2 A2 A2 A2 A2 A2 J0 Z0 Z0 Z0 X X B1 D1 Δ Δ Δ Δ E1 D2 Δ Δ Δ Δ F1 D3 X X X X X STM-4 Ponteiro B2 B2 B2 B2 B2 B2 K1 K2 D4 D5 D6 D7 D8 D9 D10 D11 D12 S1 M1 E2 X X X X X João Pires Redes de Telecomunicações (10/11) 181
53 Subestruturas Modulares do STM-1 Contentor (C) Unidade básica usada para transportar informação dos tributários (ex PDH). Inclui ainda octetos de justificação fixa (sem informação) para adaptar os débitos dos tributários aos débitos dos contentores e bits usados para justificação dos tributários PDH. Contentor Virtual (VC) O contentor virtual consiste num contentor mais o cabeçalho de caminho. O VC é uma entidade que não sobre modificações desde o ponto onde o caminho é originado até ao ponto onde é terminado. Os VCs transmitidos directamente no STM-1 designam-se contentores virtuais de ordem superior, e os restantes de ordem inferior. Unidade Administrativa (AU) Consiste num contentor virtual de ordem superior mais um ponteiro de unidade administrativa. O ponteiro regista a relação de fase existente entre o contentor virtual e a trama e específica o início do contentor virtual. João Pires Redes de Telecomunicações (10/11) 182
54 Subestruturas Modulares do STM-1 (2) Grupo de unidade administrativa (AUG) Resulta da combinação por interposição de octeto de várias unidades administrativas. Adicionando o cabeçalho de secção à AUG obtem-se a trama STM-1. Unidade tributária (TU) A unidade tributária consiste num contentor virtual de ordem inferior mais um ponteiro da unidade tributária. Como o VC de ordem inferior pode flutuar dentro do VC de ordem superior, o início do primeiro dentro do segundo é indicado pelo ponteiro da unidade tributária. Grupo de unidade tributária (TUA) Resulta da combinação de várias unidades tributárias por interposição de octeto. Em alguns casos é necessário proceder a justificação fixa, para adaptar débitos binários. João Pires Redes de Telecomunicações (10/11) 183
55 Transporte das Hierarquias E3 e E4 no STM-1 Transporte do E3 e E4 E3 E4 Octetos sem informação Octetos sem informação Mapeamento do E3 C-3 C-4 Cabeçalho de caminho de ordem superior Cabeçalho de caminho de ordem superior Alinhamento VC-3 VC-4 Ponteiro da AU-3 Ponteiro da AU-4 Multiplexagem por interposição de octeto AU-3 Unidade administrativa Multiplexagem de 3 AU-3 AU-4 Unidade administrativa AUG AUG Cabeçalho de secção Cabeçalho de secção STM-1 STM-1 João Pires Redes de Telecomunicações (10/11) 184
56 Estrutura de Multiplexagem Estrutura de multiplexagem do SDH ATM E3: Mb/s DS3: Mb/s DS2: Mb/s C-3 C-2 VC-3 VC-2 TU-3 TU VC-3 AU-3 3 AUG 1 STM-N=N Mb/s N STM-N E1: Mb/s DS1: Mb/s E4: Mb/s ATM C-12 C-11 C-4 VC-12 VC-11 C - Contentor VC - Contentor Virtual TU - Unidade Tributária TUG - Grupo de Unidade Tributária AU - Unidade Administrativa AUG - Grupo de Unidade Administrativa TU-12 TU-11 3 Em TUG TUG-3 3 Alinhamento Mapeamento Multiplexagem VC-4 AU-4 A informação entre os routers IP pode ser enviada usando o esquema Packet over Sonet/SDH. Os pacotes IP são encapsulados no protocolo PPP (Point-to- Point Protocol) e o signal resultante é depois transmitido num STM-N. existe processamento de ponteiros João Pires Redes de Telecomunicações (10/11) 185
57 Contentores Virtuais de Ordem Superior Os contentores virtuais VC-3 e VC-4 obtêm-se adicionando, respectivamente, aos contentores C-3 e C-4 um cabeçalho de caminho de ordem superior J1 J1 B3 B3 VC-4 C2 G1 F2 H4 C4 VC-3 C2 G1 F2 H4 C3 Cabeçalho de caminho de ordem superior F3 K3 N1 Duração=125 μs F3 K3 N1 O cabeçalho de caminho de ordem superior é constituído por 9 octetos iniciando-se com octeto J1, que é também o primeiro octeto do VC. O contentor VC-4 é constituído por 261 9=2349 octetos, o que dá um débito de Mbit/s. Ao VC-3 corresponde um débito de Mb/s. João Pires Redes de Telecomunicações (10/11) 186
58 Octetos do Cabeçalho de Caminho de Ordem Superior J1: Permite verificar a integridade do caminho. O terminal onde o caminho é gerado envia repetidamente uma mensagem padrão (traço de caminho) através de J1 a qual é confirmada pelo terminal receptor. O traço é constituído por 16 octetos. B3: É usada para monitorizar erros, transmitindo o BIP-8 do caminho. C2: É a etiqueta de sinal, indicando a composição dos contentores virtuais VC3/VC4: Ex: : não transporta tráfego; : usa uma estrutura TUG; : transporta um E4 num C-4, : transporta ATM. G1: É um canal usado pelo terminal receptor para enviar para o terminal emissor informação sobre desempenho do caminho, nomeadamente sobre os erros detectados por B3. F2: Canal de utilizador usado para manutenção pelos operadores da rede. H4: Indicador de super-trama. Usada na formação do VC-2, VC-12 e VC-11. F3: Canal de utilizador. Importante na SDH de nova geração K3: Canal usado para funções de protecção a nível do caminho. N1: Monitorização de ligações em cascata (caminhos por várias sub - redes ). João Pires Redes de Telecomunicações (10/11) 187
59 Unidade Administrativa AU-4 Uma AU-4 é uma estrutura síncrona constituída por 9x261+9 octetos, que inclui um VC-4 mais um ponteiro de unidade administrativa AU-4 (PTR AU-4). 261 colunas PTR AU-4 AU-4 9 linhas H1 h1 h1 H2 h2 h2 H3 H3 H3 J1 B3 C2 VC-4 G1 F2 C4 H4 No ponteiro do AU-4 têm-se h1=1001xx11 e h2= F3 K3 N1 O VC-4 pode flutuar dentro do AU-4. O ponteiro do AU-4 contém a posição (endereço) do primeiro octeto (J1) do cabeçalho de caminho do VC-4. Cada modificação do ponteiro de 1 unidade corresponde a uma deslocação do VC-4 no AU-4 de 3 octetos. João Pires Redes de Telecomunicações (10/11) 188
60 Esquema de Endereçamento do Ponteiro do AU-4 A cada posição do ponteiro da AU-4 correspondem 3 octetos. A cada posição do ponteiro do AU-3 corresponde um octeto. 261 colunas Cabeçalho de regeneração Posição indicada pelo ponteiro: 87 Um valor de 0 do ponteiro indica que o J1 do VC-4 se encontra na posição 0 H1 h1 h1 H2 h2 h2 H3 H3 H3 Cabeçalho de multiplexagem Cabeçalho de regeneração H1 h1 h1 H2 h2 h2 H3 Cabeçalho de multiplexagem Trama #n-1 VC-4 #n μs Trama #n João Pires Redes de Telecomunicações (10/11) 189
61 Esquema de Endereçamento do Ponteiro do AU-4 (II) A cada posição do ponteiro da AU-4 correspondem 3 octetos. A cada posição do ponteiro do AU-3 corresponde um octeto. 261 colunas Cabeçalho de regeneração Posição indicada pelo ponteiro: 522 Um valor de 0 do ponteiro indica que o J1 do VC-4 se encontra na posição 0 H1 h1 h1 H2 h2 h2 H3 H3 H3 Cabeçalho de multiplexagem Cabeçalho de regeneração H1 h1 h1 H2 h2 h2 H3 Cabeçalho de multiplexagem Trama #n μs VC-4 #n Trama #n João Pires Redes de Telecomunicações (10/11) 190
62 Unidades Administrativa AU-3 A AU-3 é uma estrutura síncrona composta por octetos, que inclui um VC-3 mais um ponteiro da unidade administrativa AU-3 (PTR-AU-3). Como a capacidade de transporte da AU-3 (87 colunas) é superior à requerida pelo VC-3 (85 colunas), são inseridas duas colunas sem informação (justificação fixa) para adaptação de capacidade (colunas 30 e 59) coluna 9 linhas PTR AU-3 H1 H2 H3 J1 A posição do contentor virtual pode flutuar dentro da AU-3. O ponteiro PTR AU-3 contem o endereço do J1. B3 C2 G1 F2 H4 C3 Um alteração do ponteiro de uma unidade corresponde à deslocação do VC-3 na AU-3 de 1 octeto. VC-3 F3 K3 N O ponteiro PTR AU-3 permite endereçar 87 9 =783 posições. João Pires Redes de Telecomunicações (10/11) 191
63 Grupo de Unidade Administrativa O AUG é uma estrutura síncrona constituída por octetos que, por adição do cabeçalho de secção, dá origem à trama STM-1. Um AUG é composto de 1 AU-4 ou de 3 AU-3 usando multiplexagem por interposição de octeto. H1 H2 H3 AU-3 H1 H2 H3 AU-3 H1 H2 H3 AU colunas H1 H1 H1 H2 H2 H2 H3 H3 H3 AUG (Octetos dos 3 AU-3 entrelaçados) AUG obtido a partir de 3 AU-3 usando multiplexagem por interposição de octeto João Pires Redes de Telecomunicações (10/11) 192
64 Estrutura de Multiplexagem (II) Estrutura de multiplexagem da SDH ATM E3: Mb/s DS3: Mb/s DS2: Mb/s C-3 VC-3 C-2 VC-2 E1: Mb/s C-12 VC-12 DS1: Mb/s C-11 VC-11 E4: Mb/s C-4 ATM 260 TU-3 12 TU-2 4 TU-12 3 TU TUG TUG-3 12x7 = =66 3 VC VC-4 AU-3 3 AUG 1 AU-4 STM-N=N Mb/s N 86x3 = =260 STM-N Justificação fixa 261 colunas + PTR Au-4 C - Contentor VC - Contentor Virtual TU - Unidade Tributária TUG - Grupo de Unidade Tributária AU - Unidade Administrativa AUG - Grupo de Unidade Administrativa Em Alinhamento Mapeamento Multiplexagem Justificação fixa existe processamento de ponteiros João Pires Redes de Telecomunicações (10/11) 193
65 Estrutura dos Ponteiros Os ponteiros dividem-se em ponteiros de unidade administrativa e ponteiros de unidade tributária. Tipos de ponteiros A estrutura dos ponteiros AU-4, AU-3 e TU-3 é baseada nos octetos H1, H2 e H3. O octeto H3 é usado para acções de justificação negativa. As funções dos bits constituintes do H1 e H2 são as seguintes: H1 Ponteiro de AU Ponteiro de TU H2 Ponteiro de AU-4 Ponteiro de AU-3 Ponteiro de TU-3 Ponteiro de TU-1/TU-2 Tipo SS Valor do ponteiro N N N N S S I D I D I D I D I D AU-4 AU TU NDF Valor do ponteiro em 10 bits Os bits N constituem o identificador de novos dados ou NDF (New Data Flag), os bits S identificam o tipo de ponteiro e os bits I e D o valor do ponteiro. João Pires Redes de Telecomunicações (10/11) 194
66 Papel do Identificador de Novos Dados O identificador de novos dados NDF pode-se usar no modo activado fazendo NNNN=1001, ou no modo normal fazendo NNNN=0110. O modo activado suporta uma variação arbitrária (e significativa) do valor do ponteiro, como aquela que ocorre quando há uma alteração do VC, enquanto o modo normal só suporta uma variação unitária do ponteiro. Uma variação não unitária do valor do ponteiro é realizada fazendo NNNN=1001, numa determinada trama e NNNN=0110 nas tramas seguintes. O mesmo valor deverá aparecer sucessivamente três vezes. O modo normal é usado em três situações: 1) ausência de justificação; 2) justificação positiva; 3) justificação negativa. A acção de justificação positiva é indicada invertendo os 5 bits I relativamente aos 5 bits anteriores e o valor do ponteiro é incrementado de uma unidade na trama seguinte, enquanto a justificação negativa implica a inversão dos 5 bits D relativamente aos cinco bits anteriores e o valor do ponteiro é decrementado de uma unidade. João Pires Redes de Telecomunicações (10/11) 195
67 Flutuação do Contentor VC-4 Sem justificação Exemplo Regeneração Trama #n-1 NNNN=0110 Valor I,D SS=10 H3H3H3 0 H1 h1 h1 H2 h2 h2 H3 H3 H3 Multiplexagem 0 J1 VC-4 #n-1 Trama #n-1 Trama #n NNNN=0110 Valor I,D SS=10 H3H3H3 0 H1 h1 h1 H2 h2 h2 H3 H3 H3 Multiplexagem Regeneração J1 VC-4 #n 782 Posição 782 Trama #n O ponteiro H1 H2 indica o início do contentor virtual VC-4 e mantém o mesmo valor em todas as tramas. A posição zero corresponde à posição a seguir ao octeto H3. A cada variação unitária do ponteiro correspondem três octetos. João Pires Redes de Telecomunicações (10/11) 196
68 Justificação Negativa no AU-4 Justificação negativa:o débito do contentor VC-4 é superior ao débito do AU-4. Exemplo Regeneração Trama #n NNNN=0110 Valor I,D SS=10 H3H3H3 VC-4 #n-1 H1 h1 h1 H2 h2 h2 H3 H3 H3 Multiplexagem 0 J1 VC-4 #n-1 Trama #n-1 Inversão dos bits D Trama #n+1 NNNN=0110 Valor I,D SS=10 H3H3H3 0 Regeneração H1 h1 h1 H2 h2 h2 Multiplexagem J1 VC-4 #n 782 Posição 782 Trama #n Durante a justificação os bits D do ponteiro são invertidos e os três octetos H3 são usados para transportar informação do contentor virtual VC-4. A seguir à justificação (na trama seguinte) o ponteiro é decrementado de uma unidade. João Pires Redes de Telecomunicações (10/11) 197
69 Justificação Positiva no AU-4 Justificação positiva: o débito do contentor VC-4 é inferior ao débito do AU-4. Exemplo Regeneração Trama #n NNNN=0110 Valor I,D SS=10 H3H3H3 0 H1 h1 h1 H2 h2 h2 H3 H3 H3 Multiplexagem 0 J1 VC-4 #n-1 Trama #n-1 Inversão dos bits I Trama #n+1 NNNN=0110 Valor I,D SS=10 H3H3H3 0 Regeneração H1 h1 h1 H2 h2 h2 H3 H3 H3 Multiplexagem J1 VC-4 #n 782 Posição 782 Trama #n Durante a justificação os bits I do ponteiro são invertidos e os três octetos a seguir a H3 não são usados para transportar informação. Depois da justificação (trama seguinte) o ponteiro é incrementado de uma unidade. João Pires Redes de Telecomunicações (10/11) 198
70 Aplicações Especiais dos Ponteiros Indicação de ponteiro nulo ou NPI (null pointer indication): É usada na formação do TUG-3 a partir do TUG-2. O H3 não é usado e H1 e H2 têm a seguinte configuração: H1 H S S Indicação de concatenação ou CI (concatenation indication). Usada quando o sinal do tributário tem uma capacidade superior ao C-4. O H3 pode ser usado para justificação negativa. H1 Não representa um endereço válido H S S Não representa um endereço válido João Pires Redes de Telecomunicações (10/11) 199
71 Concatenação Concatenação é o processo de agregação de X contentores de mesmo tipo de modo a formar um contentor de maior capacidade. A concatenação poder ser contínua ou virtual. Concatenação contínua (CC): Cria contentores de grande capacidade, que não podem ser segmentados, para transmissão. Todos os elementos de rede têm de suportar a funcionalidade concatenação contínua. Concatenação virtual (VC): Corresponde a uma operação de multiplexagem inversa. Os contentores de grande capacidade podem ser segmentados nos VCs usuais para fins de transmissão. Só os elementos de rede fonte e terminação do caminho é que necessitam de suportar a funcionalidade concatenação virtual. João Pires Redes de Telecomunicações (10/11) 200
72 Concatenação Contínua Permite transportar tráfego com um débito binário superior ao permitido pelo C-4. A concatenação é identificada pelo sufixo c e o número de concatenações por X. Por exemplo, um VC-4 concatenado é representado por VC-4-Xc (genérico VC-n-Xc) e uma AU-4 por AU-4-Xc (genérico AU-n-Xc). No caso do AU-4-Xc a concatenação dos ponteiro é feita usando multiplexagem por interposição de octeto. O primeiro ponteiro tem as funções usuais dos ponteiros da AU-4, enquanto os restantes X-1 ponteiros transportam o indicador CI octetos VC-4-4C O cabeçalho de caminho do primeiro VC-4 transporta os octetos normais. Os cabeçalhos de caminho dos outros VC-4 transportam octetos de enchimento (sem informação). J1 B3 C2 G1 F2 H4 F3 K3 N1 C-4-4c Capacidade do C-4-4c Mb/s João Pires Redes de Telecomunicações (10/11) 201
73 ATM sobre SDH As células ATM (Asynchronous Tranfer Module) são constituídas por 53 octetos (5 de cabeçalho e 48 de informação). No transporte de ATM sobre SDH o fluxo de células pode ser mapeado num VC-4 ou num VC-4-4c. Note-se que um utilizador ATM não está a transmitir continuamente. Por isso, pode haver necessidade de inserir células sem informação, de modo a gerar um fluxo contínuo. VC-4 J1 B3 C2 G1 F2 H4 F3 K3 N1 C-4 O C-4 suporta um débito de Mb/s. Para adaptar o fluxo ATM a este débito são inseridas células inactivas sempre que é necessário. Estas são caracterizadas por VPI=VCI=0, CLP=1 e PT=0. No processo inverso estas células são ignoradas. O C-4 é constituído por 2340 octetos que não é um número divisível por 53. Assim se as células se dispuserem como na figura há uma célula que se inicia no presente contentor e termina no seguinte. O início das células é indicado no octeto H4 do cabeçalho de caminho. Este octeto indica o número de octetos que vão desde H4 até ao primeiro octeto da primeira célula a seguir a H4. O valor máximo é de 52. Célula ATM x x Indicador da célula H C2 João Pires Redes de Telecomunicações (10/11) 202
74 Ineficiências da SDH Convencional A utilização da estrutura de contentores da SDH convencional (incluindo a concatenação contínua ) é muito pouco eficiente para o transporte de dados. Aplicação Débito da aplicação Estrutura/ Ineficiência Ethernet 10 Mbit/s VC-3 /80% Fast Ethernet 100 Mbit/s VC-4/33% Gigabit Ethernet 1 Gbit/s VC-4-16C/58% Enterprise Systems Connection ESCON 200 Mbit/s VC-4-4C/67% A fragmentação dos contentores virtuais vai também contribuir para aumentar a ineficiência. STM-1 livre A B C SDH NE-A STM-16 SDH NE-B D E F STM-1 #1 STM-1 #2 STM-1 #3 STM-1 #4 STM-1 #5 STM-1 #6 STM-1 #7 STM-1 #8 STM-1 #9 STM-1#10 STM-1#11 STM-1#12 STM-1#13 STM-1#14 STM-1#15 STM-1#16 Etapa 1: Os primeiros 8 STM-1 são atribuídos à ligação entre A e D, enquanto os últimos 8 STM-1 são usados entre B e E. STM-1 #1 STM-1 #2 STM-1 #3 STM-1 #4 STM-1 #5 STM-1 #6 STM-1 #7 STM-1 #8 STM-1 #9 STM-1#10 STM-1#11 STM-1#12 STM-1#13 STM-1#14 STM-1#15 STM-1#16 Etapa 2: Os utilizadores A-B libertam 2 STM-1 e os ultilizadores B-E libertam outros 2. Os utilizadores C-F requerem uma capacidade VC-4-4c. Embora fisicamente haja capacidade disponível, como os STM-1 livres não são contínuos, não é possível satisfazer o pedido de C-F. João Pires Redes de Telecomunicações (10/11) 203
75 Tecnologias Chave da Next Generation-SDH GFP (Generic Framing Procedure) É uma técnica ( ITU-T Rec. G7041) apropriada para mapear o tráfego de pacotes (Ethernet, Escon, etc) em canais SDH ou OTN de débito fixo. O mapeamento pode ser feito de modo transparente (GFP-T), ou usando as tramas dos clientes completas (GFP-F). Concatenação virtual ou VCAT (Virtual Concatenation) É um mecanismo (ITU-T G707) que permite combinar um número variável de contentores virtuais de diferentes ordens de modo a criar canais de capacidade muito elevada. É mais eficiente do que a concatenação contínua para o tráfego de pacotes e contrariamente aquela não requer que todos os elementos de rede suportem essa funcionalidade. LCAS (Link Capacity Adjustment Scheme) Permite modificar dinamicamente a capacidade alocada pelo VCAT através da adição/remoção de membros do caminho estabelecido (ITU-T Rec. G7042). João Pires Redes de Telecomunicações (10/11) 204
76 Protocolo GFP O protocolo GFP foi definido por ITU-T G.7041 e proporciona um mecanismo para encapsular diferentes sinais de dados em redes SDH ou OTN (ver cap. 5). O serviço GFP apresenta dois modos de funcionamento: Modo Transparente ou GFP-T (Transparent) e modo enquadrado ou GFP-F (Framed). A solução GFP-T corresponde a um encapsulamento de nível 1 e vai gerar tramas de comprimento constante. Está optimizado para tráfego que usa o código de blocos 8B10B (Gigabit Ethernet, Fibre Channel, etc.) A solução GFP-F corresponde a um encapsulamento de nível 2 e e vai gerar tramas de comprimento variável. Optimizado para tráfego Ethernet, IP/PPP, DVD, etc. Na solução GFP-F deve ser extraído o pacote completo do cliente antes da trama GFP ser gerada. Isto envolve, por exemplo, a memorização de uma trama completa no caso da Ethernet, o que vai aumentar a latência (atraso) do processo. Na solução GFP-T não se verifica esse atraso porque o processamento é feito a nível de blocos de 10 bits. João Pires Redes de Telecomunicações (10/11) 205
77 Transporte de Pacotes IP sobre SDH/WDM Existem diferentes soluções para o transporte de pacotes, originados que com o protocolo IP, quer com os protocolos SAN, sobre uma rede SDH/WDM. AAL5 ATM PPP IP (Internet Protocol) MPLS VLAN Vídeo DVB SAN Os protocolos SAN, tais como Fibre Channel, Enterprise Systems CONnectivity (ESCON) e Fibre CONnectivity (FICON) eram transportados tradicionalmente sobre soluções proprietárias 10/100/1000 Mbps Ethernet Fibre Channel ESCON FICON SAN: Storage Area Networks DVB: Digital Video Broadcasting HDLC PPP: Point-to-point protocol GFP HDLC: High-level Data Link control Concatenação contínua SDH Concatenação virtual LCAS VLAN: Virtual LAN MPLS: Multiprotocol Label switching WDM, OTN, Fibra óptica João Pires Redes de Telecomunicações (10/11) 206
78 Storage Area Networks De: U. Troppens et al., Storage Networks Explained, Wiley, 2004 João Pires Redes de Telecomunicações (10/11) 207
79 Estrutura da Trama GFP A trama GFP inclui o cabeçalho principal (core header) e a área do campo de informação. A área do campo de informação inclui o cabeçalho do campo de informação, o campo de informação em si e um FCS (CRC-32) para proteger a integridade do campo de informação (detectar e corrigir erros). Os mecanismos de protecção (CRC-16) do cabeçalho principal e do cabeçalho do campo de informação são independentes. Trama GFP Cabeçalho (core header) Área do campo de informação 2 16 =65536 Indicador do comprimento do campo de informação Controlo de erros do cabeçalho Cabeçalho do campo de informação 4 a 64 octetos Campo de Informação octetos FCS (opcional) 4 octetos 2 octetos 2 octetos, Indica o tipo HEC CRC-16 de informação Payload header (CRC-16+payload identifier+ campos opcionais) Frame check sequence (CRC-32) João Pires Redes de Telecomunicações (10/11) 208
80 Trama GFP (continuação) O cabeçalho principal (core header) consiste em dois campos:1) Indicador de comprimento do campo (2 octetos) que indica a dimensão do campo de informação;2) HEC (Header Error Control) usado para proteger a integridade do cabeçalho principal, o qual é baseado no código CRC-16 (permite a correcção de erro de 1 bit e a detecção de erro em vários bits). O cabeçalho do campo de informação é um campo com dimensão variável (entre 4 e 64 octetos). Contém dois campos obrigatórios: Payload Type Identifer (PTI) e o Type Header Error Control( thec). O thec contém um CRC- 16 e é usado para proteger a integridade do cabeçalho do campo de informação. O PTI contém informação sobre o tipo de informação transportada pelo campo de informação e sobre o modo como a informação é mapeada (modo transparente, ou modo enquadrado) Para além das funções de controlo de erros e de indicação do comprimento do campo de informação o cabeçalho principal também é responsável pela delimitação (enquadramento) da trama. A função de delimitação de trama permite identificar o início da trama. Inicialmente quando a primeira trama chega ao receptor, é calculado o CRC-16 sobre os dois primeiros octetos, o qual é comparado com o CRC-16 presente no campo HEC. Se não coincidirem avança um bit e tenta de novo. Se houver coincidência é provável que tenha identificado o início da trama. Para comprovar salta para a segunda trama. João Pires Redes de Telecomunicações (10/11) 209
81 Concatenação Virtual O ponto de partida para implementar a concatenação virtual consiste em segmentar um fluxo de informação (ex: Fast Ethernet, Gigabit Ethernet, etc.) em diferentes contentores de ordem superior ou inferior, ligados entre si a nível lógico através da integração no mesmo grupo de concatenação virtual ou VCG (virtual concatenation group). Os elementos do grupo são transportados individualmente através da rede SDH e recombinados na terminação do VCG de modo a originar o fluxo original. A concatenação virtual é representada por v e o número de contentores que pertencem ao grupo por X. VC-n-Xv Tipo de Número VCs de VCs Concatenação virtual Capacidades dos diferentes contentores em concatenação virtual Contentores VC-11-Xv VC-12-Xv VC-3-Xv Tipo Ordem inferior Ordem inferior Ordem superior Capacidade disponível (Mb/s) X (X=1,..,64) X (X=1,..,64) X (X=1,..,256) VC-4-Xv Ordem superior X (X=1,..,256) Os diferentes elementos do grupo podem ser encaminhado seguindo todos o mesmo percurso, ou diferentes percursos (multi-percurso). João Pires Redes de Telecomunicações (10/11) 210
82 Concatenação Virtual vs. Contínua Uma das vantagens da concatenação virtual consiste no aumento significativo das eficiências de mapeamento. Aplicação Débito da aplicação Eficiência Conc. Contínua Eficiência Conc. Virtual Ethernet 10 Mbit/s VC-3 /20% VC-11-7v /89% Fast Ethernet 100 Mbit/s VC-4/67% VC-3-2v/99% Gigabit Ethernet 1 Gbit/s VC-4-16c/42% VC-4-7v/95% 10 Gb Ethernet 10 Gbit/s VC-4-64c/100% VC-4-64v/100% DVB 270 Mb/s VC-4-4c/37% VC-3-6v (93%) ESCON 160 Mbit/s VC-4-4c/26% VC-3-4v/83% FiCON 850 Mb/s VC-4-16c /35% VC-4-6v /94% Fibre Channel 1700 Mb/s VC-4-16c/42% VC-4-12v/90% João Pires Redes de Telecomunicações (10/11) 211
83 Vantagens da Concatenação Virtual Permite um transporte eficiente dos débitos usados nas aplicações de dados. Permite ultrapassar o problema da fragmentação dos contentores virtuais. Introduz flexibilidade nas aplicações que exigem elevadas qualidades de serviço e uma largura de banda de transporte garantida na medida em que permite alocar a largura de banda necessária de modo dinâmico. Não introduz novos requisitos nos elementos de rede intermédios. A concatenação virtual só exige a funcionalidade de concatenação nos elementos de rede fonte e destino do serviço. Note-se que a concatenação contínua exige essa funcionalidade em todos os elementos de rede. A utilização da concatenação virtual permite projectar as redes SDH da próxima geração para serem usadas como plataforma de transporte das redes multiserviço baseadas em diferentes protocolos (Ethernet, ESCON, RPR, PDH, etc). João Pires Redes de Telecomunicações (10/11) 212
84 Implementação da Concatenação Virtual Caso do encaminhamento multi-percurso: Etapa 1 Nó fonte H4 VC-3 #0 H4 VC-3 #0 Nó terminção Etapa 5 Etapa 2 VC-3-3v SQ=0 SQ=1 SQ=2 H4VC-3 H4VC-3 VC-3 H4 H4 VC-3 #2 H4 VC-3 #1 H4 VC-3 #1 H4 VC-3 #2 SQ=1 SQ=0 SQ=2 H4 H4VC-3 H4 Etapa 4 VC-3-3v Etapa 3 Etapa1: O elemento de rede fonte aloca o tráfego em memória de modo a formar um sinal SDH contínuo. Etapa2: São constituídos os diferentes contentores virtuais que pertencem ao mesmo VCG os quais são identificados pelo indicador de sequência ou SQ (sequence indicator). Etapa3: Os diferentes contentores virtuais são transportados individualmente através da rede SDH podendo seguir caminhos diferentes, o que conduz a tempos de propagação diferentes- atraso diferencial. Etapa4: Os diferentes contentores são armazenados em memória no nó receptor, para compensar o atraso diferencial. Etapa5: Os contentores são realinhados, colocados em ordem e recombinados de modo a originar o fluxo inicial. João Pires Redes de Telecomunicações (10/11) 213
85 Formato da Multi-trama de Concatenação Virtual (Ordem Superior) O método usado para realizar o alinhamento dos contentores virtuais de ordem superior é baseado numa multitrama, constituída em duas etapas (níveis). Para cada etapa tem-se um indicador de multitrama ou MFI (multiframe indicator). Octeto H4 Cabeçalho de caminho J1 B3 C2 G1 F2 H4 F3 K3 N1 b1 b2 b3 b4 b5 b6 b7 b8 MFI2 bits MFI2 bits Reservado Reservado Reservado Reservado Reservado Reservado Reservado Reservado Reservado Reservado Reservado Reservado SQ bits SQ bts μs = 2 ms O MFI da primeira etapa (MFI1) é constituído pelos quatros últimos bits do octeto H4 do cabeçalho de caminho de ordem superior. Os quais são incrementados todos os 125 μs. O MFI da segunda etapa (MFI2) é constituído pelos primeiros quatro bits das duas primeiras tramas da multitrama da primeira etapa. Suporta um atraso diferencial máximo de 256 ms. A multitrama é constituída por =4096 tramas, com uma duração de 125 μs 4096 = 512 ms. Os bits 1 a 4 das duas últimas tramas da multitrama 1 são usados como indicador de sequência (SQ). João Pires Redes de Telecomunicações (10/11) 214
86 Capacidades das Memórias na Concatenação Virtual Problema: Calcular a dimensão das memórias usadas para compensar o atraso diferencial máximo admissível na concatenação virtual para diferentes tipos de sinais de transporte. Como exemplo considere-se o VC-12. A capacidade do contentor C-12 é de Mb/s. Como a pior situação o atraso máximo suportado pelo VC-12 é de 256 ms, requer-se uma memória de Mb/s s= kb. Se o grupo de concatenação virtual englobar 63 VC-12 (STM-1) requer-se uma memória de 35 Mbit. Tipo de contentor virtual Sinal de transporte Número de caminhos Dimensão total da memória VC-11 STM Mbit VC-12 STM Mbit VC-12 STM Mbit VC-3 STM Mbit VC-3 STM Mbit VC-4 STM Mbit Note-se que a memória deve ser simultaneamente lida e escrita durante o intervalo de tempo de 1 bit, o que para o STM-16 implica a existência de um relógio operando a 5 GHz. João Pires Redes de Telecomunicações (10/11) 215
87 LCAS O LCAS foi concebido para gerir a capacidade alocada a qualquer caminho, de modo dinâmico em resposta a mudanças nos padrões de tráfego, adicionando ou removendo membros de um VCG. Mensagens enviadas entre o nó fonte e terminação Multi-Frame Indicator (MFI): mantém a sequência da multitrama. Sequence Indicator (SQ): indica a sequência dos membros do VCG de modo a permitir reagrupá-los correctamente na recepção. Control (CTRL): mensagens do protocolo que descrevem as acções a executar. Group Identification (GID) : um valor constante para todos os membros do grupo. Mensagens envidas entre o nó terminação e o nó fonte. Member status (MST): informa a fonte do estado de cada membro (OK, fail). Re-Sequence Acknowledege (RS-Ack): confirmação de mudança de indicador de sequência depois de receber uma mensagem normal ou eos. João Pires Redes de Telecomunicações (10/11) 216
88 Papel do H4 no LCAS de Ordem Superior O LCAS permite variar a capacidade dos VGC de modo a poder responder a variações nos requisitos de capacidade sem ter qualquer impacto nos dados transmitidos. Octeto H4 LCAS b1 b2 b3 b4 b5 b6 b7 b8 MFI2 bits MFI2 bits CT1 CT2 CT3 CT Reservado GID Reservado C1 C2 C3 C C5 C6 C7 C M1 M2 M3 M M5 M6 M7 M RS-Ack Reservado Reservado Reservado SQ bits SQ bits Pacote de controlo μs= 2 ms O funcionamento do LCAS requer a transmissão de mensagens de controlo entre a fonte do VGC e a terminação e vice-versa. As palavras de controlo entre a fonte e a terminação são enviadas através dos bits de controlo (CRTL), transmitidos no octecto H4 (CT1, CT2, CT3, CT4). As mensagens entre a terminação e a fonte designam-se por MST (message status) e são responsáveis por reportarem o estado de cada um dos elementos do VCG. Usam os bits M1- M8. Cada VCG tem no máximo 256 membros. Cada multitrama transporta o MST de 8 elementos. São necessárias 32 tramas para transportar os MSTs de todo o VCG. 64 ms GID: Group indentification ; Cn: Código CRC ; Rs-Ack: Re-Sequence Acknowledge João Pires Redes de Telecomunicações (10/11) 217
89 Etapas na Adição de um Novo Membro A codificação dos bits de controlo (CTRL) é feita de acordo com a tabela: CT1 CT2 CT3 CT4 Palavra de controlo FIXED Não se usa LCAS ADD Está-se preste a adicionar um novo membro ao VCG NORM A carga transportada pelo membro é útil EOS Indica que é o último membro do VCG IDLE O membro não faz parte da VCG DNU A carga transportada pelo membro não deve ser usada Exemplo: Adição de um novo membro (ordem superior): 1) O sistema de gestão é usado para configura o novo membro na fonte e na terminação. Na fonte faz-se CTRL= IDLE, SQ=256 (máximo) e na terminação MST=FAIL. 2)Na fonte: o número de sequência é feito o menor possível (não atribuído); CTRL=ADD. A fonte fica a aguardar pela mensagem da terminação. 3) A terminação envia MST=OK. 4) Quando o nó fonte recebe MST=OK coloca o CTRL= NORMAL em todos os novos membros excepto se este for o último do grupo (neste caso CTRL=EOS). A multitrama (pacote de controlo) seguinte passa a transportar tráfego no campo do contentor virtual adicionado. 5) O nó terminal depois de detectar a transição de ADD para normal inverte o bit RS-Ack. 7) Nó fonte quando recebe RS-Ack pode voltar avaliar o status do membro adicionado. João Pires Redes de Telecomunicações (10/11) 218
90 Exemplo de Adição de um Novo Membro Pretende-se adicionar um novo membro ao grupo VC-3-3V H4 SQ=0 H4 SQ=1 SQ=2 VC-3 VC-3 VC-3 H4 VC-3 SQ=3 VC-3 VC-3 H4 VC-3 Etapas Nó fonte Nó terminação Pedido de adição enviado pelo sistema de gestão CTRL=IDLE SQ= 255 CTRL=ADD SQ= 3 MST (M4)=Fail tempo MST (M4)=OK Novo membro passa a transmitir dados. MST deixam de ser avaliados CTRL=EOS SQ= 3 tempo Altera RS-Ack MST voltam de novo a ser avaliados João Pires Redes de Telecomunicações (10/11) 219
91 Exemplo de Adição de um Membro 1ª Etapa O sistema de gestão configura o novo membro AU3(2,3) 3ª Etapa A terminação responde com MST=OK Cliente A AU3 (1,1), SQ=0, GID=a, CTRL=Normal AU3 (1,1), SQ=0, GID=a, CTRL=Normal Cliente A Cliente B AU3 (1,3), SQ=1, GID=a, CTRL=Normal AU3 (2,1), SQ=0, GID=b, CTRL=Normal AU3 (2,2), SQ=1, GID=b, CTRL=EOS Cliente B AU3 (1,3), SQ=1, GID=a, CTRL=Normal AU3 (2,1), SQ=0, GID=b, CTRL=Normal AU3 (2,2), SQ=1, GID=b, CTRL=Normal AU3 (2,3), SQ=255, GID=b, CTRL=IDLE AU3 (2,3), SQ=2, GID=b, CTRL=EOS 2ª Etapa Na fonte SQ é feito igual a 2 e CTRL=ADD 4ª Etapa A terminação envia Rs-Ack (confirma a nova sequência Cliente A AU3 (1,1), SQ=0, GID=a, CTRL=Normal Cliente A AU3 (1,1), SQ=0, GID=a, CTRL=Normal Cliente B AU3 (1,3), SQ=1, GID=a, CTRL=Normal AU3 (2,1), SQ=0, GID=b, CTRL=Normal AU3 (2,2), SQ=1, GID=b, CTRL=EOS Cliente B AU3 (1,3), SQ=1, GID=a, CTRL=Normal AU3 (2,1), SQ=0, GID=b, CTRL=Normal AU3 (2,2), SQ=1, GID=b, CTRL=Normal AU3 (2,3), SQ=2, GID=b, CTRL=ADD AU3 (2,3), SQ=2, GID=b, CTRL=EOS João Pires Redes de Telecomunicações (10/11) 220
92 Elementos de Rede SDH-NG (I) Multiservice Provisioning Platform (MSPP) Virtual Private Networks Digital Video Broadcasting StorageAreaNetworks (Fiber Channel, ESCON, etc.) Um MSPP resulta da evolução dos s convencionais com interfaces PDH e ópticas para um nó de acesso que inclui: Interfaces PDH convencionais Interfaces de dados como Ethernet, GigE, Fiber Channel, ou DVB Funcionalidades GFP (Generic Framing Procedure), VCAT(Virtual Concatenation) e LCAS (Link Capacity Adjustment Scheme) Interfaces ópticas desde STM-1 até STM-16 Funcionalidades SDH-NG João Pires Redes de Telecomunicações (10/11) 221
93 Elementos de Rede SDH-NG (II) Multiservice Switching Platform (MSSP) O MSSP é o elemento de rede SDH-NG equivalente ao cruzador da SDH, realizando agregação de tráfego e cruzamento não só ao nível STM-N, como também ao nível VC. A nível de dados (Ethernet) o MSSP para além das funções de mapeamento de tráfego, suporta também funções de switching. João Pires Redes de Telecomunicações (10/11) 222
94 Exemplo: CISCO SDH MSPP Plataforma apropriada para aplicações multiserviço, em redes metro. Interfaces E1 (75 Ohm) Cartas de temporização, comunicação e controlo Suporta as interface usais, E1, E3, E4, DS3, as soluções 10/100/1000 Mb/s Ethernet e o transporte óptico desde 155 Mb/s (STM-1) até 320 Gb/s (32- STM-64 comprimentos de onda). Cartas de cruzamento Permite diferentes topologias físicas: anel, linear, estrela, etc. Cartas com interfaces ópticas de débitos elevados (STM-64 e STM-16) Suporta diferentes esquemas de protecção: MS-SPRing (2 e 4 fibras), SNCP, caminho em malha, etc. Fonte: João Pires Redes de Telecomunicações (10/11) 223
95 Cartas do CISCO SDH MSPP (I) Carta Ethernet Multidébito de 10 portos Suporta 10/100/1000 Mbps Base T; 100 Mbps Fx, Lx, Bx; 1000 Mbps SX, LX, Zx. Suporta VCAT e LCAS Suporta encapsulamento GFP- F e Cisco HDLC Suporta esquemas de protecção/restauro SDH com tempos de resposta inferiores a 50 ms Porto Ethernet multidébito: 10/100/1000 Mbps Concatenação virtual e contínua 1000 Mbps: VC4-7v, VC4-8c, VC4-16c, VC3-21v 100 Mpps: VC4; VC3-2v; VC3-3v, VC12-50v João Pires Redes de Telecomunicações (10/11) 224
96 Cartas do CISCO SDH MSPP (II) Carta STM-64 com interface óptica XFP Carta STM-1 com 8 portos Permite a transmissão de um débito até 10 Gbps, com um BER máximo de a uma distância máxima de 80 km (atenuação máxima =22 db, tolerância à dispersão máxima de 1600 ps/nm). Proporcional 8 interface emissoras/ receptoras, cada uma operando a um débito de 155 Mbps (STM- 1) e usando óptica de 1310 nm. Interface óptica Suporta VC-4-nc ( com N=2, 3, 4, 4,16, 32), assim como VC-11, VC-12, VC-3 e VC-4. Suporta protecção SNCP, e MSP. Suporta esquemas de protecção tais como : SNCP, MS-SPRing de 2 e 4 fibras e protecção de caminho em redes em malha. Suporta sinais concatenados (VC3-3c) e não concatenados (VC- 11/12, VC-3 e VC-4) Interface óptica STM-1 João Pires Redes de Telecomunicações (10/11) 225
97 Cartas do CISCO SDH MSPP (III) Carta de temporização, controlo e comunicação (TCC) Carta responsável pelo cruzamento dos VCs (XC-VXC Cross-connect) Permite inicializar o sistema, reporta alarmes, gera sinais de controlo para provisionamento de capacidade, detecta falhas no sistema e outras funções OAM e termina os canais DCC da camada de regeneração e de multiplexagem Incorpora um relógio de stratum 3 o qual é controlado por um sinal de sincronismo exterior. Processa as mensagens SSM, de modo a seleccionar o melhor relógio externo. Suporta cruzamentos a nível de VC-11/12, VC-3, VC-4 e VC-4-Xc (com X=2, 3, 4, 16 e 64). Disponibiliza uma capacidade de comutação de 60 Gb/s para VC de ordem superior (1152x1152 VC-3, ou 384x384 VC-4) e de 5 Gb/s para os VCs de ordem inferior (2016x2016 VC-12). Interface RJ45 Possuí uma interface RJ45 (10 Base T) para interligação com o sistema de gestão de rede. Os sinais de controlo requeridos nas operações de cruzamento são proporcionados pela carta TCC. João Pires Redes de Telecomunicações (10/11) 226
98 Aplicação da NG-SDH em Redes Empresariais MSPP Fonte: Cisco João Pires Redes de Telecomunicações (10/11) 227
99 Aplicação da NG-SDH na Rede Metro MSSP (MultiService Switching Platform) = MSPP+ Switching Ethernet LH/ELH = Long Haul/Extended Long Haul Fonte: Defining the Multiservice Switching Platform, White Paper, Cisco João Pires Redes de Telecomunicações (10/11) 228
100 Análise de Desempenho em Redes SDH A análise do desempenho das redes de transporte é baseada na norma G.826 da ITU-T. Os objectivos definidos são independentes do meio de transmissão, são baseados em blocos e permitem fazer uso de medidas de desempenho em serviço. As medidas de desempenho (monitorização dos erros) são realizadas usando o código BIP. Um código BIP-(n,m) genérico pode ser representado pela matriz: x x... xn 1,1 2,1,1 x x x 1,2 2,2... n, x x x 1, m 2, m... n, m y y... y 1 2 n x i,j : bit da sequência de entrada y i : bit de paridade de ordem i y i = xi, 1 xi,2 xi, m Os blocos correspondem aos contentores virtuais ou às tramas STM-N. Tipo de bloco Nº de bits por bloco BIP-(n,m) VC-11 VC-12 VC BIP-(2,416) BIP-(2,560) BIP-(2,1712) Relação entre a dimensão do bloco e o código BIP VC BIP-(8,765) VC BIP-(8,2349) STM BIP-(8,2430) João Pires Redes de Telecomunicações (10/11) 229
101 Código de Paridade de Bits Entrelaçados O código de paridade de bits entrelaçados de ordem n ou BIP-n (bit interleaved parity) é obtido calculando a soma módulo 2 de n grupos de bits e colocando o resultado numa palavra de controlo constituída por n bits. n bits m bits BIP-8 B1 BIP-24 B2 B2 B2 BIP-8 B3 BIP-2 V5 Soma módulo 2 BIP-n Palavra de controlo constituída por n bits O BIP-n é calculada sobre os correspondentes bits da trama actual e o resultado é transmitido nos octetos B1, B2, B3, ou nos dois primeiros bits do V5 da trama seguinte. Na recepção o BIP-n é recalculado, e qualquer discrepância entre este e o valor recebido é vista como um erro de bloco. João Pires Redes de Telecomunicações (10/11) 230
102 Eventos e Parâmetros de Desempenho Bloco errado (EB, Errored Block): Bloco em que um ou mais bits estão errados. Eventos Segundo com erros (ES, Errored Second): Período de tempo de um segundo com um ou mais blocos errados. Segundo gravemente errado (SES, Severely Errored Second): Período de tempo de um segundo com 30% de blocos errados, ou no mínimo com um defeito. Erro de bloco residual (BBE, Background Block Error): Um bloco errado que não faz parte de um SES. Razão de segundos errados (ESR, Errored Second Ratio): Razão entre os ES e o número total de segundos correspondentes a um determinado intervalo de medida. Parâmetros Todos os parâmetros só consideram o tempo de disponibilidade. Razão de segundos gravemente errado (SESR, SES Ratio): Razão entre os SES e o número total de segundos correspondentes a um determinado intervalo de medida. Razão de erro de bloco residual (BBER, BBE Ratio): Razão entre os BBE e o número total de blocos num intervalo de medida, excluindo os blocos durante SES. João Pires Redes de Telecomunicações (10/11) 231
103 Disponibilidade e Caminho Hipotético O período de indisponibilidade começa no início de um intervalo de tempo que contem no mínimo 10 SESs consecutivos e termina no início de um intervalo de tempo que contem no mínimo 10 segundos não SES. Segundo livre de erros 10 s Detectada a indisponibilidade 10 s Detectada a disponibilidade Segundo gravemente errado Segundo com erros (não SES) Período de indisponibilidade Período de disponibilidade Para a definição dos objectivos extremo-a-extremo a norma G.826 considera um caminho hipotético de referência de km. PEP País terminal CAN IEN Parte nacional IG Países intermédios (assume-se quatro) IG IG Parte internacional IG Ligação interpaís (Ex:cabo submarino) País terminal IG IG Parte nacional PEP Caminho hipotético de referência ( km) PEP: Path End Poin ; IG: International Gateway; CAN: Customer Access Network; IEN: Interexchange Network João Pires Redes de Telecomunicações (10/11) 232
104 Objectivos Extremo-a-Extremo Objectivos extremo-a-extremo para o caminho hipotético de km Débito bináro (Mbit/s) 1.5 a 5 >5 a 15 >15 a 55 >55 a 160 >160 a 3500 Bits/Bloco 800 a a a a a ESR Não especificado SESR BBER 2x10-4 2x10-4 2x10-4 2x Distribuição dos objectivos extremo-a-extremo da norma G.826 Alocação em bloco 17.5% para cada país terminal Parte Nacional Parte Internacional Países terminais (2x17.5%+2x1%) 37% Países intermédios(4x2%) 8% Função da distância (55x500km) 55% Total 100% Alocação em função da distância 1% por 500 km Alocação em bloco 2% pelos países intermédios 1% por país terminal Alocação em função da distância 1% por 500 km Para obter a distância operacional o ITU- T aconselha a multiplicar a distância geográfica por 1.5 João Pires Redes de Telecomunicações (10/11) 233
105 Relação entre os Parâmetros da Norma e o BER Admite-se que os erros são aleatórios e que os bits são independentes e que apresentam uma razão de erros binários de p. O número de bits transmitidos num segundo é N b (N b = D b débito binário). O parâmetro ESR é dado por ESR = P (ES) = 1 (1 p) N b Admite-se independência estatística dos erros e que o código detector é ideal. Seja R o número de bits por bloco (D b xδt, Δt: duração de um bloco). A probabilidade de erro de um bloco é R = p B = 1 (1 p BBER P( EB) P ( EB) ) Seja N o número de blocos presentes no intervalo de tempo de 1s e N e o número de blocos errados nesse intervalo de tempo. Um segundo gravemente errado corresponde ao evento N e /N 0.3. SESR e P( SES) = P(0.3N N N) = p (1 p ) e e N N = 0.3N N Ne N B B N N e João Pires Redes de Telecomunicações (10/11) 234
REDES DE TELECOMUNICAÇÕES
Hierarquia Digital Plesiócrona (PHD) REDES DE TELECOMUNICAÇÕES SDH (Synchronous Digital Hierarchy) Engª de Sistemas e Informática UALG/FCT/ADEEC 2003/2004 1 Redes de Telecomunicações Hierarquia Digital
Sistemas de Telecomunicações I. Capítulo 5. Tecnologias de transporte
Sistemas de Telecomunicações I Capítulo 5 Tecnologias de transporte João Pires Estrutura estratificada das redes de telecomunicações Camada de serviços PDH, SDH, WDM Camada de transporte Camada de serviços:
Rede Telefónica Pública Comutada - Principais elementos -
Equipamento terminal: Rede Telefónica Pública Comutada - Principais elementos - o telefone na rede convencional Equipamento de transmissão: meio de transmissão: cabos de pares simétricos, cabo coaxial,
REDES DE TELECOMUNICAÇÕES
REDES DE TELECOMUNICAÇÕES SDH (Synchronous Digital Hierarchy) Engª de Sistemas e Informática UALG/FCT/ADEEC 2006/2007 1 Hierarquia Digital Plesiócrona (PHD) Hierarquia Digital Plesiócrona (PHD) 2 Hierarquia
Sistemas de Telecomunicações I
Introdução aos Sistemas de Telecomunicações José Cabral Departamento de Electrónica Industrial Introdução aos Sistemas de Telecomunicações 1-16 Introdução aos Sistemas de Telecomunicações Tópicos: Redes
Problemas Relativos ao Cap.4
Problemas Relativos ao Cap..1) Admita que uma trama de uma primeira hierarquia plesiócrona é constituída por 0 canais de voz de kb/s e que o enquadramento é em bloco, sendo o PET transmitido no time-slot
Rede Telefónica Pública Comutada - Principais elementos -
- Principais elementos - Equipamento terminal: o telefone na rede convencional Equipamento de transmissão: meio de transmissão, e.g. cabos de pares simétricos, cabo coaxial, fibra óptica, feixes hertzianos,
Voz sobre ATM. Prof. José Marcos C. Brito
Voz sobre ATM Prof. José Marcos C. Brito 1 Camada de adaptação Voz não comprimida (CBR) AAL 1 Voz comprimida (VBR) AAL 2 Para transmissão de voz sobre a rede ATM podemos utilizar a camada de adaptação
Apostilas de Eletrônica e Informática SDH Hierarquia DigitaL Síncrona
SDH A SDH, Hierarquia Digital Síncrona, é um novo sistema de transmissão digital de alta velocidade, cujo objetivo básico é construir um padrão internacional unificado, diferentemente do contexto PDH,
REDES DE COMPUTADORES II. Ricardo José Cabeça de Souza www.ricardojcsouza.com.br
REDES DE COMPUTADORES II Ricardo José Cabeça de Souza www.ricardojcsouza.com.br REDE PÚBLICA x REDE PRIVADA Rede Pública Circuitos compartilhados Rede Privada Circuitos dedicados Interligação entre Dispositivos
Redes de Telecomunicações. IP sobre SDH 2006/2007
Redes de Telecomunicações IP sobre SDH 2006/2007 IP sobre SDH Tipos de concatenação: Contígua standard; Contígua arbitrária; Virtual. 48 Concatenação contígua Este mecanismo é fornecido para permitir transportar
Sistemas de Comunicação Óptica Redes Ópticas da Primeira Geração
Sistemas de Comunicação Óptica Redes Ópticas da Primeira Geração João Pires Sistemas de Comunicação Óptica 106 Estrutura estratificada das redes de telecomunicações Camada de serviços PDH, SDH, WDM Camada
ICORLI. INSTALAÇÃO, CONFIGURAÇÃO e OPERAÇÃO EM REDES LOCAIS e INTERNET
INSTALAÇÃO, CONFIGURAÇÃO e OPERAÇÃO EM REDES LOCAIS e INTERNET 2010/2011 1 Protocolo TCP/IP É um padrão de comunicação entre diferentes computadores e diferentes sistemas operativos. Cada computador deve
Planeamento e Projecto de Redes. Capítulo 3. Redes de Transporte
Planeamento e Projecto de Redes Capítulo 3 Redes de Transporte João Pires Planeamento e Projecto de Redes (11/12) 93 Estrutura Estratificada das Redes de Telecomunicações Camada de rede de serviços Tecnologias
Sistemas de Comunicação Óptica
Sistemas de Comunicação Óptica Mestrado em Engenharia Electrotécnica e e de Computadores Docente : Prof. João Pires Objectivos Estudar as tecnologias que servem de base à transmisssão óptica, e analisar
Centro Tecnológico de Eletroeletrônica César Rodrigues. Atividade Avaliativa
1ª Exercícios - REDES LAN/WAN INSTRUTOR: MODALIDADE: TÉCNICO APRENDIZAGEM DATA: Turma: VALOR (em pontos): NOTA: ALUNO (A): 1. Utilize 1 para assinalar os protocolos que são da CAMADA DE REDE e 2 para os
Módulo 8 Ethernet Switching
CCNA 1 Conceitos Básicos de Redes Módulo 8 Ethernet Switching Comutação Ethernet 2 Segmentação de Redes Numa Ethernet o meio de transmissão é compartilhado Só um nó pode transmitir de cada vez. O aumento
REDES COM INTEGRAÇÃO DE SERVIÇOS
REDES COM INTEGRAÇÃO DE SERVIÇOS (1ª Parte) Rede Digital com Integração de Serviços () 1 1. INTRODUÇÃO 2 EVOLUÇÃO DAS REDES PÚBLICAS DE TELECOMUNICAÇÕES 1: Rede Telefónica Analógica 2: Rede Telefónica
Redes de Comunicações Capítulo 6.1
Capítulo 6.1 6.1 - Técnicas de Comutação 1 WAN s Wide Area Networks Uma WAN é uma rede dispersa por uma grande área física, sob o controlo de uma administração única e baseada em circuitos dedicados (exemplo:
Redes de Computadores
Redes de Computadores Técnicas de comutação Escola Superior de Tecnologia e Gestão Instituto Politécnico de Bragança Maio de 2006 WAN s Wide Area Networks Uma WAN é uma rede dispersa por uma grande área
Cap 01 - Conceitos Básicos de Rede (Kurose)
Cap 01 - Conceitos Básicos de Rede (Kurose) 1. Quais são os tipos de redes de computadores e qual a motivação para estudá-las separadamente? Lan (Local Area Networks) MANs(Metropolitan Area Networks) WANs(Wide
III.2. CABLE MODEMS CARACTERÍSTICAS BÁSICAS UNIDADE III SISTEMAS HÍBRIDOS
1 III.2. CABLE MODEMS III.2.1. DEFINIÇÃO Cable modems são dispositivos que permitem o acesso em alta velocidade à Internet, através de um cabo de distribuição de sinais de TV, num sistema de TV a cabo.
Multiplexador. Permitem que vários equipamentos compartilhem um único canal de comunicação
Multiplexadores Permitem que vários equipamentos compartilhem um único canal de comunicação Transmissor 1 Receptor 1 Transmissor 2 Multiplexador Multiplexador Receptor 2 Transmissor 3 Receptor 3 Economia
Há dois tipos de configurações bidirecionais usados na comunicação em uma rede Ethernet:
Comunicação em uma rede Ethernet A comunicação em uma rede local comutada ocorre de três formas: unicast, broadcast e multicast: -Unicast: Comunicação na qual um quadro é enviado de um host e endereçado
Camada de Ligação de Dados
Camada de Ligação de Dados Serviços Detecção e correcção de erros Protocolos de Acesso Múltiplo Endereçamento em LANs Hubs e Pontes de interligação Tecnologias da camada de ligação de dados Ethernet Anel
Módulo 5 Cablagem para LANs e WANs
CCNA 1 Conceitos Básicos de Redes Módulo 5 Cablagem para LANs e WANs Cablagem de LANs Nível Físico de uma Redes Local Uma rede de computadores pode ser montada utilizando vários tipos de meios físicos.
Redes de Telecomunicações
Redes de Telecomunicações Mestrado em Engenharia Electrotécnica e e de Computadores 1º semestre 2009/2010 Capítulo 4 Redes de Transporte SDH Estrutura Estratificada das Redes de Telecomunicações Camada
5. Camada ATM (I.361)
5. Camada ATM (I.361) 5.1 Estrutura da célula Bits8 7 6 5 4 3 2 1 Cabeçalho (5 octetos) Campo de informação (48 octetos) 1... 5 6..... 53 octetos - Os octetos são enviados por ordem crescente começando
Redes de Computadores. Trabalho de Laboratório Nº7
Redes de Computadores Curso de Eng. Informática Curso de Eng. de Electrónica e Computadores Trabalho de Laboratório Nº7 Análise do tráfego na rede Protocolos TCP e UDP Objectivo Usar o Ethereal para visualizar
REDE DE COMPUTADORES TECNOLOGIA ETHERNET
SERVIÇO NACIONAL DE APRENDIZAGEM COMERCIAL REDE DE COMPUTADORES TECNOLOGIA ETHERNET Prof. Airton Ribeiro de Sousa E-mail: [email protected] ARQUITETURA ISDN (Integrated Services Digital Network)
Redes e Telecomunicações
Redes e Telecomunicações Comunicação Processo pelo qual uma informação gerada num ponto (origem) é transferida para outro ponto (destino) Telecomunicações Telecomunicação do grego: tele = distância do
Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. Multiplexação e Frame Relay
e Frame Relay o Consiste na operação de transmitir varias comunicações diferentes ao mesmo tempo através de um único canal físico. Tem como objectivo garantir suporte para múltiplos canais. o A multiplexação
Introdução. Escola Superior de Tecnologia e Gestão Instituto Politécnico de Bragança Março de 2006
Redes de Computadores Introdução Escola Superior de Tecnologia e Gestão Instituto Politécnico de Bragança Março de 2006 Um pouco de História Século XVIII foi a época dos grandes sistemas mecânicos Revolução
Redes de Dados e Comunicações. Prof.: Fernando Ascani
Redes de Dados e Comunicações Prof.: Fernando Ascani Redes Wireless / Wi-Fi / IEEE 802.11 Em uma rede wireless, os adaptadores de rede em cada computador convertem os dados digitais para sinais de rádio,
Nível de Enlace. Nível de Enlace. Serviços. Serviços. Serviços. Serviços. Serviços oferecidos os nível de rede
Nível de Enlace Enlace: caminho lógico entre estações. Permite comunicação eficiente e confiável entre dois computadores. Funções: fornecer uma interface de serviço à camada de rede; determinar como os
2- Conceitos Básicos de Telecomunicações
Introdução às Telecomunicações 2- Conceitos Básicos de Telecomunicações Elementos de um Sistemas de Telecomunicações Capítulo 2 - Conceitos Básicos de Telecomunicações 2 1 A Fonte Equipamento que origina
Márcio Leandro Moraes Rodrigues. Frame Relay
Márcio Leandro Moraes Rodrigues Frame Relay Introdução O frame relay é uma tecnologia de chaveamento baseada em pacotes que foi desenvolvida visando exclusivamente a velocidade. Embora não confiável, principalmente
Funções específicas de cada camada do modelo OSI da ISO.
Funções específicas de cada camada do modelo OSI da ISO. 1ª Camada - Física - Grupo Rede Física Esta camada traduz os bits a enviar em sinais elétricos, de tensão ou corrente. Ela fornece os meios de hardware
Exercícios do livro: Tecnologias Informáticas Porto Editora
Exercícios do livro: Tecnologias Informáticas Porto Editora 1. Em que consiste uma rede de computadores? Refira se à vantagem da sua implementação. Uma rede de computadores é constituída por dois ou mais
1 Introdução. 1.1. Motivação
15 1 Introdução Esta dissertação dedica-se ao desenvolvimento de um analisador de erro para Redes Ópticas através da utilização de circuitos integrados programáveis de última geração utilizando taxas que
09/06/2011. Profª: Luciana Balieiro Cosme
Profª: Luciana Balieiro Cosme Revisão dos conceitos gerais Classificação de redes de computadores Visão geral sobre topologias Topologias Barramento Anel Estrela Hibridas Árvore Introdução aos protocolos
Estrutura de um Rede de Comunicações. Redes e Sistemas Distribuídos. Tarefas realizadas pelo sistema de comunicação. Redes de comunicação de dados
Estrutura de um Rede de Comunicações Profa.. Cristina Moreira Nunes Tarefas realizadas pelo sistema de comunicação Utilização do sistema de transmissão Geração de sinal Sincronização Formatação das mensagens
REDES DE COMPUTADORES II. Ricardo José Cabeça de Souza www.ricardojcsouza.com.br
REDES DE COMPUTADORES II Ricardo José Cabeça de Souza www.ricardojcsouza.com.br Surgiu final década de 1980 Tecnologia de comutação em infraestrutura redes RDSI-FL(B-ISDN) Recomendação I.121 da ITU-T(1988)
Módulo 7 Tecnologia da Ethernet
CCNA 1 Conceitos Básicos de Redes Módulo 7 Tecnologia da Ethernet Ethernet a 10 e 100 Mbps Tipos de Ethernet Todas as verões da Ethernet têm: Endereçamento MAC. Formato das tramas idêntico. Utilizam o
Redes de Comunicações. Redes de Comunicações
Capítulo 0 Introdução 1 Um pouco de história Século XVIII foi a época dos grandes sistemas mecânicos Revolução Industrial Século XIX foi a era das máquinas a vapor Século XX principais conquistas foram
Organização de Computadores 1
Organização de Computadores 1 SISTEMA DE INTERCONEXÃO (BARRAMENTOS) Prof. Luiz Gustavo A. Martins Arquitetura de von Newmann Componentes estruturais: Memória Principal Unidade de Processamento Central
Redes de Computadores I Licenciatura em Eng. Informática e de Computadores 1 o Semestre, 26 de Outubro de 2005 1 o Teste A
Redes de Computadores I Licenciatura em Eng. Informática e de Computadores 1 o Semestre, 26 de Outubro de 2005 1 o Teste A Número: Nome: Duração: 1 hora O teste é sem consulta O teste deve ser resolvido
Redes de Telecomunicações. Redes de acesso 2006-2007
Redes de Telecomunicações Redes de acesso 2006-2007 Arquitectura da rede: Estrutura geral Central Local de Comutação concentra toda a comutação numa central de comutação telefónica ligando cada assinante
Redes de Computadores I ENLACE: PPP ATM
Redes de Computadores I ENLACE: PPP ATM Enlace Ponto-a-Ponto Um emissor, um receptor, um enlace: Sem controle de acesso ao meio; Sem necessidade de uso de endereços MAC; X.25, dialup link, ISDN. Protocolos
Protocolos em Redes de Dados. Enquadramento histórico. Modo de funcionamento FEC. Antecedentes IP Switching Tag Switching. Exemplo de.
Multiprotocol Label Switching Aula 07 FCUL 2005-20056 Objectivo: Conciliar as tecnologias baseadas em comutação (switching) com o encaminhamento IP. Aplicações: Aumentar o desempenho. Engenharia de tráfego.
Aula 08 MPLS 2004-2005 FCUL. Protocolos em Redes de Dados. Luís Rodrigues. Enquadramento. Modo de funcionamento. Antecedentes MPLS.
Aula 08 FCUL 2004-2005 Multiprotocol Label Switching Objectivo: Conciliar as tecnologias baseadas em comutação (switching) com o encaminhamento IP. Aplicações: Aumentar o desempenho. Engenharia de tráfego.
Redes WAN. Prof. Walter Cunha
Redes WAN Conceitos Iniciais Prof. Walter Cunha Comutação por Circuito Todos os recursos necessários em todos os subsistemas de telecomunicação que conectam origem e destino, são reservados durante todo
Frame Relay. Serviços de Suporte em Modo Trama FEUP/DEEC/RBL 2005/06. José Ruela. Serviços de Suporte em Modo Trama
Frame Relay Serviços de Suporte em Modo Trama FEUP/DEEC/RBL 2005/06 José Ruela Serviços de Suporte em Modo Trama A expressão Frame Relay é habitualmente usada, em sentido lato, para designar serviços baseados
Introdução à Transmissão Digital. Funções básicas de processamento de sinal num sistema de comunicações digitais.
Introdução à Transmissão Digital Funções básicas de processamento de sinal num sistema de comunicações digitais. lntrodução à transmissão digital Diferença entre Comunicações Digitais e Analógicas Comunicações
Redes de Computadores (RCOMP 2014/2015)
Redes de Computadores (RCOMP 2014/2015) Transmissão de Dados Digitais Comunicação em rede 1 Transmissão de dados Objetivo: transportar informação mesmo que fosse usado um meio de transporte clássico seria
O nível Transporte nas redes ATM
O nível Transporte nas redes TM Introdução Estrutura da camada de adaptação TM (L) L 1 L 2 L 3/4 L 5 Comparação entre protocolos L COP Introdução camada L (TM daptation Layer) da rede TM corresponde a
Arquitetura de Redes: Camadas de Protocolos (Parte II)
Arquitetura de Redes: Camadas de Protocolos (Parte II) Outline Tarefa: Camadas do modelo OSI e Multiplexação Encapsulamento de dados Comunicação ponto a ponto Fluxo de pacotes nas camadas 1, 2 e 3 Discussões
Largura de banda e Throughput (Tanenbaum,, 2.1.2)
Largura de banda e Throughput (Tanenbaum,, 2.1.2) A largura de banda,, em termos gerais, indica a quantidade máxima de dados que podem trafegar no meio em um determinado momento. É medida em bps (bits
REDES SDH (SYNCHRONOUS DIGITAL HIERARCHY, HIERARQUIA DIGITAL SÍNCRONA) Prof. Carlos Messani
REDES SDH (SYNCHRONOUS DIGITAL HIERARCHY, HIERARQUIA DIGITAL SÍNCRONA) Prof. Carlos Messani SDH: O QUE É? Rede SDH: é o conjunto de equipamentos e meios físicos de transmissão que compõem um sistema digital
Redes de Telecomunicações
Redes de Telecomunicações Problemas e questões sobre Redes de Transporte SDH (cap.) ) Quais são as diferenças mais importantes entre o PDH e SDH relativamente a: - tipo de multiplexagem usada? - alinhamento
Quadro de consulta (solicitação do mestre)
Introdução ao protocolo MODBUS padrão RTU O Protocolo MODBUS foi criado no final dos anos 70 para comunicação entre controladores da MODICON. Por ser um dos primeiros protocolos com especificação aberta
Protocolos de Redes Revisão para AV I
Protocolos de Redes Revisão para AV I 01 Aula Fundamentos de Protocolos Conceituar protocolo de rede; Objetivos Compreender a necessidade de um protocolo de rede em uma arquitetura de transmissão entre
Multiplexação. Multiplexação. Multiplexação - FDM. Multiplexação - FDM. Multiplexação - FDM. Sistema FDM
Multiplexação É a técnica que permite a transmissão de mais de um sinal em um mesmo meio físico. A capacidade de transmissão do meio físico é dividida em fatias (canais), com a finalidade de transportar
4 Arquitetura básica de um analisador de elementos de redes
4 Arquitetura básica de um analisador de elementos de redes Neste capítulo é apresentado o desenvolvimento de um dispositivo analisador de redes e de elementos de redes, utilizando tecnologia FPGA. Conforme
1 Transmissão digital em banda base
1 Transmissão digital em banda base A transmissão digital oferece algumas vantagens no que diz respeito ao tratamento do sinal, bem como oferecimento de serviços: Sinal pode ser verificado para avaliar
Redes de Computadores II. Módulo 1 Introdução e a camada de enlace
Redes de Computadores II Módulo 1 Introdução e a camada de enlace 1 A Camada de Enlace Principal objetivo da camada: Comunicar dados entre dois equipamentos de rede conectados ao mesmo meio de transmissão
10. GENERALIZED MPLS (GMPLS)
10. GENERALIZED MPLS (GMPLS) 10.1 INTRODUÇÃO GMPLS é baseado nos conceitos desenvolvidos para MPLS e, em particular, nos aspectos relativos ao plano de controlo de MPLS. GMPLS pretende disponibilizar um
1. Descrição do Produto
1. Descrição do Produto Os repetidores óticos FOCOS/PROFIBUS AL-2431 e AL-2432 destinam-se a interligação de quaisquer dispositivos PROFIBUS, assegurando altíssima imunidade a ruídos através do uso de
PROJETO DE REDES www.projetoderedes.com.br
PROJETO DE REDES www.projetoderedes.com.br Curso de Tecnologia em Redes de Computadores Disciplina: Redes I Fundamentos - 1º Período Professor: José Maurício S. Pinheiro AULA 6: Switching Uma rede corporativa
:: Telefonia pela Internet
:: Telefonia pela Internet http://www.projetoderedes.com.br/artigos/artigo_telefonia_pela_internet.php José Mauricio Santos Pinheiro em 13/03/2005 O uso da internet para comunicações de voz vem crescendo
Redes de Computadores
s de Computadores Prof. Macêdo Firmino Revisão do Modelo de Camadas da Internet (TCP/IP) Macêdo Firmino (IFRN) s de Computadores Novembro de 2012 1 / 13 Modelo de Camadas Revisão de de Computadores Os
Deve justificar convenientemente todas as suas respostas.
nstituto Superior de Engenharia de Lisboa Departamento de Engenharia de Electrónica e Telecomunicações e de Computadores Secção de Redes de Comunicação de Dados RC (LEC / LESTE) Exame ª Chamada 0/0/06
Multiprotocol Label Switching. Protocolos em Redes de Dados- Aula 08 -MPLS p.4. Motivação: desempenho. Enquadramento histórico
Multiprotocol Label Switching Protocolos em Redes de Dados - Aula 08 - MPLS Luís Rodrigues [email protected] DI/FCUL Objectivo: Conciliar as tecnologias baseadas em comutação (switching) com o encaminhamento
MÓDULO 7 Modelo OSI. 7.1 Serviços Versus Protocolos
MÓDULO 7 Modelo OSI A maioria das redes são organizadas como pilhas ou níveis de camadas, umas sobre as outras, sendo feito com o intuito de reduzir a complexidade do projeto da rede. O objetivo de cada
Telecomunicações CONCEITOS DE COMUNICAÇÃO
Telecomunicações CONCEITOS DE COMUNICAÇÃO 1 COMUNICAÇÃO A COMUNICAÇÃO pode ser definida como a transmissão de um sinal através de um meio, de um emissor para um receptor. O sinal contém uma mensagem composta
Arquitetura de Rede de Computadores
TCP/IP Roteamento Arquitetura de Rede de Prof. Pedro Neto Aracaju Sergipe - 2011 Ementa da Disciplina 4. Roteamento i. Máscara de Rede ii. Sub-Redes iii. Números Binários e Máscara de Sub-Rede iv. O Roteador
(Open System Interconnection)
O modelo OSI (Open System Interconnection) Modelo geral de comunicação Modelo de referência OSI Comparação entre o modelo OSI e o modelo TCP/IP Analisando a rede em camadas Origem, destino e pacotes de
Protocolo Ethernet e Dispositivos de Interconexão de LANs
Protocolo Ethernet e Dispositivos de Interconexão de LANs Prof. Rafael Guimarães Redes de Alta Velocidade Tópico 4 - Aula 1 Tópico 4 - Aula 1 Rafael Guimarães 1 / 31 Sumário Sumário 1 Motivação 2 Objetivos
Redes Locais. Prof. Luiz Carlos B. Caixeta Ferreira
Redes Locais. Prof. Luiz Carlos B. Caixeta Ferreira 5. Ethernet 5.1 Introdução 5.2 LLC (Logical Link Control) 5.3 MAC (Media Access Control) 5.4 Sistemas de Endereçamento 5.5 Quadros Ethernet 5.6 Codificação
Redes de Telecomunicações
Redes de Telecomunicações Mestrado em Engenharia Electrotécnica e e de Computadores 1º semestre 2009/2010 Capítulo 1 Introdução João Pires Redes de Telecomunicações (09/10) 2 Aspectos da Evolução das Telecomunicações
AGRUPAMENTO DE ESCOLAS DA PEDRULHA ESCOLA BÁSICA RAINHA SANTA ISABEL Curso de Educação e Formação (Despacho Conjunto Nº453/2004, de 27 de Julho)
Nome: Nazmul Alam Nº: 11 Ficha de Trabalho 1. No texto que se segue são mencionados três tipos de rede. Indica quais são. Ao chegar a casa, o Miguel ligou o telemóvel ao PC. Transferiu por bluetooth as
Administração de Sistemas de Informação I
Administração de Sistemas de Informação I Prof. Farinha Aula 03 Telecomunicações Sistemas de Telecomunicações 1 Sistemas de Telecomunicações Consiste de Hardware e Software transmitindo informação (texto,
Redes de Computadores II Prova 3 13/07/2012. Nome:
Redes de Computadores II Prova 3 13/07/2012 Nome: 1. Com base na rede mostrada abaixo: i. Assumindo que essa rede use IP, circule as subredes IP que nela devem ser criadas. ii. Identifique um protocolo
3 Qualidade de serviço na Internet
3 Qualidade de serviço na Internet 25 3 Qualidade de serviço na Internet Além do aumento do tráfego gerado nos ambientes corporativos e na Internet, está havendo uma mudança nas características das aplicações
UNIVERSIDADE CATÓLICA DE PETRÓPOLIS CENTRO DE ENGENHARIA E COMPUTAÇÃO
UNIVERSIDADE CATÓLICA DE PETRÓPOLIS CENTRO DE ENGENHARIA E COMPUTAÇÃO Amanda 5ª Atividade: Codificador e codificação de linha e seu uso em transmissão digital Petrópolis, RJ 2012 Codificador: Um codoficador
Redes de Telecomunicações Redes de Transporte SDH
Redes de Telecomunicações Redes de Transporte SDH João Pires Redes de Telecomunicações 15 Estrutura estratificada das redes de telecomunicações Camada de serviços PDH, SDH, WDM Camada de transporte Camada
TÉCNICAS DE ACESSO MÚLTIPLO NO DOMINIO ÓPTICO. José Valdemir dos Reis Junior
TÉCNICAS DE ACESSO MÚLTIPLO NO DOMINIO ÓPTICO José Valdemir dos Reis Junior ROTEIRO Gerações das redes PON Componentes das Redes Ópticas Passivas Técnicas de acesso múltiplo nas redes PON: - Acesso Multiplo
TELECOMUNICAÇÕES E REDES
TELECOMUNICAÇÕES E REDES 1 OBJETIVOS 1. Quais são as tecnologias utilizadas nos sistemas de telecomunicações? 2. Que meios de transmissão de telecomunicações sua organização deve utilizar? 3. Como sua
ATM. Redes de Longa Distância Prof. Walter Cunha
Redes de Longa Distância Prof. Walter Cunha Orientado à conexão Modo assíncrono* Comutação por Células ATM Aplicações que requerem classes de qualidade de serviço diferenciadas Pacotes de tamanho fixo
TRANSMISSÃO DE DADOS
TRANSMISSÃO DE DADOS Aula 5: Comutação Notas de aula do livro: FOROUZAN, B. A., Comunicação de Dados e Redes de Computadores, MCGraw Hill, 4ª edição Prof. Ulisses Cotta Cavalca
Porta Série. Trabalhos Práticos AM 2007/2008. Porta Série. Objectivos
3 Objectivos - Configurar os parâmetros associados à comunicação série assíncrona. - Saber implementar um mecanismo de menus para efectuar a entrada e saída de dados, utilizando como interface um terminal
1. Introdução às Comunicações e às Redes de Computadores Generalidades, noções e classificações de redes. Secção de Redes de Comunicação de Dados
1. Introdução às Comunicações e às Redes de Computadores Generalidades, noções e classificações de redes Redes de Comunicações/Computadores I Secção de Redes de Comunicação de Dados Necessidades de comunicação
Faculdade Anhanguera de São Caetano do Sul
Faculdade Anhanguera de São Caetano do Sul Redes Locais Curso: Tecnologia em Redes de Computadores Prof:Eduardo M. de Araujo Site-http://professoreduardoaraujo.com Modelo de Rede Hierárquico Camada de
REDES DE COMPUTADORES I 2007/2008 LEIC - Tagus-Park TPC Nº 1. Avaliação sumário da matéria do capítulo 1
REDES DE COMPUTADORES I 007/008 LEIC - Tagus-Park TPC Nº 1 Avaliação sumário da matéria do capítulo 1 Pergunta: 1 1. Que tipo de Elemento de Rede é um Cliente? 1 Sistema Terminal ou Host Servidor 3 Encaminhador
Introdução. Arquitetura de Rede de Computadores. Prof. Pedro Neto
Introdução Arquitetura de Rede de Prof. Pedro Neto Aracaju Sergipe - 2011 Ementa da Disciplina 1. Introdução i. Conceitos e Definições ii. Tipos de Rede a. Peer To Peer b. Client/Server iii. Topologias
Redes WAN. Redes de Longa Distância Prof. Walter Cunha
Redes WAN Frame-Relay Redes de Longa Distância Prof. Walter Cunha Desdobramento da ISDN Alta Velocidade Taxas entre 64 Kbps e 2 Mbps Roteamento na Camada de Enlace Usada p/ interligar: WAN, SNA, Internet
Prof. Samuel Henrique Bucke Brito
- Switch na Camada 2: Comutação www.labcisco.com.br ::: [email protected] Prof. Samuel Henrique Bucke Brito Introdução A conexão entre duas portas de entrada e saída, bem como a transferência de
Redes de Computadores
Redes de Computadores Capítulo 5.6 e 5.7 Interconexões e PPP Prof. Jó Ueyama Maio/2011 SSC0641-2011 1 Elementos de Interconexão SSC0641-2011 2 Interconexão com Hubs Dispositivo de camada física. Backbone:
